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So far, the COVID-19 pandemic has been characterised by an initial rapid rise in new cases
followed by a peak and a more erratic behaviour that varies between regions. This is not easy to
reproduce with traditional SIR models, which predict a more symmetric epidemic. Here, we argue
that superspreaders and population heterogeneity are the core factors explaining this discrepancy.
We do so through an agent-based lattice model of a disease spreading in a heterogeneous population.
We predict that an epidemic driven by superspreaders will spread rapidly in cities, but not in the
countryside where the sparse population limits the maximal number of secondary infections. This
suggests that mitigation strategies should include restrictions on venues where people meet a large
number of strangers. Furthermore, mitigating the epidemic in cities and in the countryside may
require different levels of restrictions.

INTRODUCTION

At its onset the COVID-19 pandemic shocked the
world, with the number of new cases and deaths growing
more than 20 % per day in the main hotspots [1]. With a
growth rate this high, the disease was expected to spread
through the population in less than six months without
mitigation, and to reach a peak after three months, at
which point 30 % of the population would have had the
disease [2]. This, however, was not how the initial wave
of the epidemic played out [3].

While most of the epidemic undoubtedly was halted
due to mitigation efforts, it is striking that even in coun-
tries that have implemented a very light lockdown, such
as Sweden, the epidemic has peaked long before herd im-
munity was achieved. Furthermore, even societies that
slowly reopened businesses and public life did not expe-
rience an immediate explosive resurgence of the epidemic
expected given the low levels of immunity and the speed
with which the disease spread initially [3].

Here, we will propose an agent-based lattice model of
an infectious disease that spreads in a geographically het-
erogeneous population. The model is a simplified depic-
tion of the dynamics of COVID-19 with its characteristic
parameters. We will examine the effect of the heteroge-
neous infection pattern that is so characteristic of this
disease, using a gamma distributed infectiousness with
dispersion factor k = 0.1 from [4]. Infection heterogene-
ity is a feature of several epidemic diseases [5], and plays
a particularly important role for COVID-19 [4, 6–8]. In
individual events, a single person has caused dozens of
infections [9]. At the same time, the attack rate within
households has been reported to be very low, at less than
20 % [10], despite prolonged close contact. This suggests
that the majority of COVID-19 patients infect very little.

In [11] an agent-based model was used to demonstrate
that the Achilles heel of an epidemic driven by super-
spreaders was public social contacts, while the repeated

∗ sneppen@nbi.ku.dk

contacts to smaller family and work groups were less dan-
gerous.

Looking at COVID-19 data from the United States in
the analysis by [12], it is clear that a rapidly spreading
epidemic occurs primarily in densely populated areas. In
less densely populated areas, the epidemic onset is de-
layed, and in rural areas the epidemic never really starts,
with most cases appearing to be spillover from the cities.
The peak daily per capita mortality in [12] varies by a
factor of ten between the most and least densely popu-
lated areas in the USA.

The density dependence of COVID epidemics could
in principle be explained by the higher chance of meet-
ing infected people in dense areas. However, only 1% of
COVID-19 spread was outdoors in China [13], suggest-
ing that only indoor meetings counts. Furthermore, only
few infections happens within households [10], suggesting
that it is social visits and meetings in confined areas that
facilitate infection [14]. We will base our model on these
observations.

MODEL

Our model plays out on a lattice of side L with peri-
odic boundary conditions. Each lattice site may either
be empty or contain one agent. The agents can be in one
of three states, susceptible, infectious, or recovered. In-
dividuals interact with their neighbours with a frequency
fmeet which is fixed along with the mean infection prob-
ability per meeting to give the desired number of sec-
ondary infections, R0. The distance that agents travel we
draw from the distribution p(r) = 1

r0
e−r/r0 with a mean

of r0 = 10 sites unless stated otherwise. The real proba-
bility distribution of travel distances for cars has in Italy
been determined to be an exponential function below 20
kilometers, and then a powerlaw with a steeper cutoff
around 500 kilometers [15]. The interaction radius r0 is
not by itself a meaningful parameter. Rather, it is the
number of neighbours within this radius, given by πρr20
(where ρ is the population density) which determines the
behaviour of the system, as will be demonstrated below.
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FIG. 1. Model: A superspreader in a city interacts a little with a lot of people and will infect some fraction of them. On the
other hand, a superspreader outside the city will interact a lot with each of a smaller set of people. The superspreader then
infects practically all of them, but there is a lower cap on the number of secondary infections.

COVID-19 is known to be transmitted before the on-
set of symptoms [16]. For simplicity, rather than using
the SEIR modeling framework, we combined the exposed,
presymptomatic state and the overlapping infectious pe-
riod (both estimated at about five days) into one single
infectious period of 1/γ = 10 days [17, 18]. Infected
agents randomly leave the infectious state with a prob-
ability of γ per day, meaning that the duration of the
disease is exponentially distributed.

When an infectious agent i interacts with a susceptible
agent, the susceptible agent will become infected with a
probability pi that is specific to the infecting agent. We
draw these probabilities from a gamma distribution with
dispersion factor k = 0.1 [4, 5], within the range observed
for COVID-19 [4, 6, 8]. The distribution is normalised
to give an average reproduction number R0 of 3 at a
population density of 1.

The geographical heterogeneity of the population is
modeled by placing a square ”city” of side L/5 on a lat-
tice with periodic boundary conditions and lattice size
L. The city has the population density 1 , i.e. all sites
are occupied, and the city population is thus L2/25. The
city is surrounded by ”countryside” with a population
density ρ and total population of 24ρL2/25.

Importantly we assume that the rate of interactions
per agent is kept the same in both city and countryside,
meaning that we assume that people are equally social.
If an agent in the countryside attempts to interact with
an empty site, the attempt is counted as failed, and new
attempts are made until the number of contacts is the
same as in the city, where all sites are occupied.

Thus, people in the countryside interact with a smaller
set of people while still spending the same amount of time
on social activities. In a wider perspective this proposes
that density dependence of disease spreading is more due
to difference in diversity of contacts than due to differ-
ences in time spent around other people. Thereby our
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FIG. 2. Epidemic trajectories: Infected fraction of the
population over time changes with the countryside population
density ρ. In the low-ρ regime, increasing the population
density stretches the curve, as the epidemic spreads further
from the city. When ρ is above ∼ 0.06, the epidemic again
approaches the behaviour of a SIR model, as the epidemic now
spreads unhindered across the whole system. Around ρcrit,
there is a large variation in the duration of the epidemic.
The parameters used are γ = 0.1, r0 = 10, fmeet = 10 and
dispersion parameter k = 0.1.

model assumes an infection rate that depends on density,
but not in a simple linear fashion as sometimes assumed
[19].

We seed the disease within the city. Even if we were
to seed it randomly, the city would usually be hit early
on provided that the epidemic catches on.
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FIG. 3. Comparison of models without and with su-
perspreaders. Panel (a) shows the attack rate as a function
of the number of neighbours within the radius of interaction
(∼ ρr20) in a population where everyone infects with the same
rate. (b) shows attack rate with heterogeneous infection rates,
using a gamma distribution with dispersion factor k = 0.1.
The two overlaid curves demonstrate that the parameter r0
does not affect the physics of the system, and what really de-
termines the ability of the disease to percolate is the number
of neighbours, proportional to ρr20. (c) Epidemic trajectory
when superspreaders dominate (blue) and when infectiousness
is evenly distributed (red) for equal countryside population
density and radius of interaction (ρr20 = 6). When super-
spreaders are the main drivers of the epidemic, it is strongly
impeded once the city has reached herd immunity. When ev-
eryone infects equally, the epidemic simply spreads radially
out from the city, leading to a ”second wave” in the country-
side. Parameters are as in fig. 2.

RESULTS

In fig. 2 we consider a disease with heterogeneous in-
fection rates and study how simulated epidemic trajec-
tories depend on population density. One sees that the
dynamics resembles that of a SIR model at ρ values much
lower and much higher than the critical density. In the
low regime, the epidemic only spreads in the city which
is relatively well-mixed, whereas in the high regime the
countryside begins to resemble the city more and more.
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FIG. 4. Dependence of attack rate on density and k.
Since the variable determining percolation is not the abso-
lute density, but the number of neighbours, we plot ρr20 on
the x-axis rather than ρ. It is seen that the disease perco-
lates much more easily at a higher k, which implies a more
homogeneous infectivity. The more overdispersed the disease
(corresponding to lower k), the more neighbours are required
for percolation.

In both extremes, the fraction of infected individuals rise
and fall symmetrically. The figure illustrates how the
epidemic is ”stretched out” in the intermediate density
range. The epidemic has the longest lifetime when ρ is
just above the percolation threshhold ρcrit, as the disease
still spreads in the countryside, but is nonetheless slowed
down by the lower population density.

In fig. 3 (a, b) we measure the attack rate of the
epidemic in a homogeneously distributed population in
order to find the percolation threshhold, below which
the epidemic will stop propagating. Panel (a) identifies
ρcrit ≈ 0.01 for a homogeneously spreading disease. In
contrast, a disease with an overdispersion of k = 0.1 has
a much higher critical density ρcrit ≈ 0.04, as seen in
(b). The same figure demonstrates that it is not the
density alone that determines the ability of the disease
to percolate, but rather the number of neighbours, pro-
portional to ρr20. As expected, the disease with homo-
geneous infectivity can spread already when each person
has one neighbour on average, whereas the overdispersed
disease requires almost four neighbours to percolate. The
overdispersed simulation and the simulation with homo-
geneous infection were done with same average disease
transmission rate and the factor ∼ 4 difference in critical
density comes about because a disease with k = 0.1 has
10 % of the infected being responsible for 80 % of the in-
fections. Thus most people do not transmit the disease,
and it is therefore the density of the few people who do
spread the disease that sets the critical threshhold.

Since our model analysis centers on superspreaders as
a main driver of the epidemic, fig. 3(c) compares epi-
demics with and without superspreaders. It can be seen
that with no superspreaders, the epidemic will spread un-
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FIG. 5. Epidemic trajectory in regions of varying den-
sity. When infectivity is homogeneous (top), the epidemic is
a lot less sensitive to a lower population density than when
the epidemic is driven by superspreaders (bottom). Here, the
epidemic is nearly absent in the low-density regions, and ap-
pears to be driven by spillover. Inset illustrates the layout of
the lattice.

hindered in the countryside, albeit more slowly since the
countryside is geographically larger than in the city.

This leads to a graph similar to two superimposed SIR-
like models. If superspreaders are present, however, the
epidemic may spread both slowly and erratically in the
countryside and continue long after herd immunity is
achieved in the city.

The dependence of the percolation threshhold on the
dispersion parameter k is further investigated in fig. 4,
which shows the attack rate as a function of both the
number of neighbours and k. The figure shows that
the percolation threshhold increases drastically at low k,
meaning that a superspreader-driven epidemic requires
more social contacts per person in order to spread. Once
the epidemic becomes sufficiently overdispersed (k <
0.05), it is no longer viable.

In fig. 5, we try to replicate the data compiled by [12]
and see that local disease incidence in a model with het-
erogeneous infectivity is indeed much more population
density dependent than a model assuming homogeneous
infectivity. This fits well with the cited data, which sug-
gest a strong dependence of COVID-19 incidence on pop-
ulation density. It has already been known for years that
the spread of epidemics is population density dependent
[19]. Here, we show that this dependence is enhanced
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FIG. 6. Simulation with multiple cities: Infected individ-
uals are shown in red, susceptibles are green, empty sites are
white and recovered are black. City size distribution mimics
Zipf’s law [23], such that there is one city of with 40000 in-
habitants, 4 with 10000, and so forth. The graphs show the
fraction of the population currently infected as a function of
time for three example runs of the simulation. Here, ρ = 0.03
and the other parameters are the same as the above figures.

by heterogeneous infectivity. Importantly, as opposed to
traditional disease models, we assume that everyone is
equally social, but that the set of available contacts is
smaller in sparsely populated regions. The significance
of this will be discussed further below.

The delayed onset and erratic behaviour of the coun-
tryside epidemic obviously depends on the density and
other characteristics of the countryside and the assumed
travelling pattern of individuals. Also, real countryside
contains a diverse pattern of smaller and large settle-
ments. Therefore we considered a system with several
cities distributed on a lattice with side length L = 1000.
The system mimics the observed city size distribution
which is fairly close to the Zipf law [20]. The random
distribution of smaller cities is not entirely naturalistic,
since evidence suggests that real cities are organised in a
fractal pattern [21, 22]. A figure using a city distribution
closer to a fractal can be found in the supplement. For il-
lustrative purposes we chose a density in the countryside
that is close to but below the percolation threshhold for
the disease (ρ = 0.03). With this below-critical spread-
ing we observe cities that are spared and cities that are
nearly completely infected. In reality assuming near crit-
ical spreading in the countryside would not be not nec-
essary for global spread, since people occasionally travel
long distances [15], facilitating rare direct transmissions
between distant cities.
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DISCUSSION

Based on the above, we suggest that the lopsided ap-
pearance of COVID-19 epidemic curves can be explained
by heterogeneous infection ability combined with a ge-
ographically heterogeneous population. However, our
model makes a number of assumptions and breaks from
reality, whose importance must be discussed.

First and foremost, the distribution of full and empty
lattice sites does not represent the geographical distribu-
tion of people as such. Rather, it represents the density of
contacts. The density ratio between people in the coun-
tryside compared to an inner city is much lower than used
in our model. On the other hand, persons living outside
the cities may be more mobile than city-dwellers. The
density contrast of agents on our lattice represents the
combined effect of these factors.

A further complication is the distribution of disease
duration and incubation periods. We here assume a sim-
ple exponential distribution of infectious period dura-
tion, whereas the real mechanics of COVID-19 includes
presymptomatic transmission and a broad gamma dis-
tribution of incubation periods [17]. A different infec-
tious period distribution might complicate our findings.
Therefore, we examine the effect of a gamma distributed
infectious period duration in the supplement. We find
that, while changing this distribution has an effect on
the percolation threshhold, it does not change our fun-
damental conclusions.

It has long been discussed how disease transmission
rate depends on population density [19, 24, 25]. We here
present a new way of looking at this problem. A classical
SIR model with pseudo-mass action transmission would
assume a simple linear dependence of R0 on population
density, implicitly assuming that people become more so-
cial by living in a densely populated area.

Our model makes a different assumption: People will
be equally social regardless of population density, but
when population density is lower, the groups that they
spend time with will be less diverse. The number of pos-
sible unique contacts for each individual declines linearly
with population density, but people in sparsely populated
areas are likely to have multiple encounters with the same
persons, as their communities are smaller.

If, however, the epidemic is dominated by superspread-
ers who only need one or a few encounters to transmit the
disease, the duration of each encounter becomes less im-
portant as even a rather brief contact to a superspreader
is likely to lead to infection. Instead, what limits the
action of superspreaders is their number of unique con-
tacts. Superspreaders that interact with only a small,

tight-knit group will inherently be highly limited in how
many secondary infections they can generate.

If superspreading makes a disease vulnerable to varia-
tions in population density, we should conversely expect
to see that diseases with a homogeneous infectivity, i.e.
a dispersion factor close to or above 1, exhibit little vari-
ation with population density. One example of a disease
with a homogeneous infectivity is influenza, with an es-
timated dispersion factor of k = 0.94 for the 1918 pan-
demic flu [26]. When examining the incidence of seasonal
influenza, which we assume to have a similar dispersion
factor, [27] find no consistent variation with population
density. This is a point in favour of the link between
superspreading and population density dependence.

Finally, the effect of lockdowns and changes of social
behaviour is important. A previous paper [11] suggests
that even moderate mitigation may limit the action of
superspreaders by reducing the maximal number of peo-
ple any person can be in contact with. If this hypothesis
is true, bans on gatherings and a reduction in public so-
cial life would lead to early peaks in the number of new
cases. Our study compounds this finding, and suggests
that a change in behaviour is not strictly necessary to
cause an epidemic peak well before herd immunity has
been achieved. Mitigation strategies that primarily tar-
get cities may well be sufficiently effective in bringing
down the epidemic. However, large events like funerals,
weddings, or festivals are not included in our model and
will of course facilitate spreading in any location.

Despite some caveats, our model reproduces the main
aspects of geographical heterogeneity and suggests a new
view on density dependence of epidemic dynamics. An
epidemic with a large heterogeneity in infection rates is
predicted to be most intense in large cities while it slowly
tapers off in the countryside. This is consistent with what
we see in data from the COVID-19 pandemic [12, 28].
Our results thus favour the hypothesis that the COVID-
19 pandemic is driven by superspreaders, and that the
observed quick exponential growth phase, early peak, and
slow recovery phase are consequences of combining het-
erogeneity of infectivity with a heterogeneous population
density.
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COVID-19 superspreading in cities versus the countryside -

supplement

Andreas Eilersen and Kim Sneppen

Different distribution of infectious periods

In order to take into account that the duration of illness caused by COVID-19 does not actually follow
a neat exponential distribution, we have here considered the case where the duration of infection is
gamma distributed as well, though with a dispersion factor greater than one (k ≈ 4). We repeat the
central figures 3 and 5 from the main article in order to see if a different distribution of infectious
period durations changes our results. The gamma distribution should give fewer people with a very
short disease duration, though both distributions have a relatively long tail. The mean duration of
infectiousness is the same as in the main article (10 days). An important complication, that individuals
with a long period of illness are likely to be hospitalised or otherwise isolated for part of it and thus
less infectious, has not been accounted for here.

We find that, while the different distribution of infectious periods does lower the percolation thresh-
hold slightly and also diminishes the population density dependence of the epidemic, it does not fun-
damentally change our conclusions.
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Figure 1: (a) and (b) show attack rates as a function of ρr20, a measure of the number of neighbours
within a radius of r0. (a) shows the case with no infectivity overdispersion (k = 1) and (b) shows the
case where infectivity is overdispersed with k = 0.1. We see that the system behaves similar to the
main model, but with a slightly lower percolation threshhold in both cases. (c) shows the probability
distribution function for disease duration used here.
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Figure 2: A comparison of the effect of population density on an epidemic that is not overdispersed
(top) and an overdispersed epidemic (bottom). As above, the duration of illness is gamma distributed.
The effect of density is somewhat reduced in the overdispersed case, but still noticeably greater than
the non-overdispersed case. The smaller number of people with very short disease durations using this
distribution seemingly also helps the epidemic spread more effectively.
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Fractal city distribution

The random distribution of cities used in fig. 6 of the main article is not entirely realistic. Rather,
there is evidence suggesting that real geographical distribution of cities follows a fractal pattern [1,2].
We therefore repeat the figure here with a (partially) fractal distribution of cities. The results of this
simulation are fairly similar to the random city distribution.
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Figure 3: A simulation where, instead of a random distribution, the cities are laid out in a fractal
pattern. We see that this makes little difference from the random distribution shown in the main
article. The lower panel shows epidemic trajectories from three test runs.
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