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Highlights:  9 

1.We predicted future COVID-19 occurrences in mainland of China based on ARIMA model. 10 

2. We validated the model based on the previous outbreak data with actual data for June, 2020. 11 

3. The measures taken by the government have contained spread of the epidemic 12 

4. The combination of multiple models may improve the robustness of the model 13 

 14 

Abstract: The ongoing pandemic of COVID-19 has aroused widespread concern around the 15 

world and poses a severe threat to public health worldwide. In this paper, the autoregressive 16 

integrated moving average (ARIMA) model was used to predict the epidemic trend of COVID-19 17 

in mainland of China. We collected the cumulative cases, cumulative deaths, and cumulative 18 

recovery in mainland of China from January 20 to June 30, 2020, and divided the data into 19 

experimental group and test group. The ARIMA model was fitted with the experimental group 20 
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data, and the optimal model was selected for prediction analysis. The predicted data were 21 

compared with the test group. The average relative errors of actual cumulative cases, deaths, 22 

recovery and predicted values in each province are between -22.32%-22.66%, -9.52%-0.08%, 23 

-8.84%-1.16, the results of the comprehensive experimental group and test group show The error 24 

of fitting and prediction is small, the degree of fitting is good, the model supports and is suitable 25 

for the prediction of the epidemic situation, which has practical guiding significance for the 26 

prevention and control of the epidemic situation. 27 

Keywords: ARIMA model; COVID-19; optimal model; prediction 28 
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 29 

1. Introduction 30 

COVID-19 has spread worldwide and has caused tens of thousands of human deaths. At the 31 

same time[1], it has a huge impact on the world's medical, public health, economic, and other 32 

aspects [2]. In order to effectively suppress the spread of COVID-19, the Chinese government has 33 

successively announced the launch of a first-level response mechanism for major public health 34 

emergencies and implemented strict prevention and control measures[3]. By the end of June 2020, 35 

mainland of China had 85000 confirmed COVID-19 cases and 4648 deaths. Although the situation 36 

of prevention and control is getting better, the global situation is still not optimistic. 37 

ARIMA model considers the law that the historical data of the research object itself changes 38 

with time, and uses this to predict future values, that is, to replace various influence factors with 39 

time. At present, the advantage of ARIMA model in predicting infectious diseases has been 40 

confirmed in many studies[4-5]. 41 

This study is based on the autoregressive integrated moving average model to predict the 42 

cumulative cases, cumulative deaths, and cumulative recovery of COVID-19 in mainland of China, 43 

and select the most appropriate model to simulate the epidemic pattern by simulating multiple 44 

models. A preliminary explanation is given to evaluate the effects of the epidemic prevention and 45 

control measures at this stage. 46 

 47 

2. Data and Methods 48 

2.1 Data Sources 49 

The COVID-19 case data comes from the National and local health and construction 50 
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commission daily information release (https://ncov.dxy.cn/). We collected the cumulative cases, 51 

deaths, recovery in mainland of China from January 20, 2020 to June 30, 2020. 52 

 53 

2.2 Methods 54 

ARMA model is a stationary time series model, but COVID-19 daily cases, deaths and 55 

recovery changes with volatility, uncertainty, is a non-stationary random process, so this article 56 

introduces the difference operator I (The original non-stationary time series can be improved into 57 

a stationary time series after d-order difference), establish the COVID-19 cumulative cases, deaths, 58 

and recovery trend prediction ARIMA model. In recent years, the ARIMA model has become one 59 

of the most commonly used methods in the prediction of many epidemics. This method is 60 

particularly suitable for short-term prediction of infectious diseases, and its prediction accuracy 61 

has been widely recognized, at the same time, it can also provide effective help for disease 62 

prevention and policy-making[6]. 63 

ARIMA model is composed of autoregressive model (AR model (P)), moving average 64 

model( MA model (q) ) and difference operator I (d), where p, d and q are autoregressive order, 65 

difference order and moving average order of time series[7]. The expression of the p-order AR 66 

model is as follows: 67 

Yt =C1+α1Yt−1+α2Yt−2+...+αpYt-p +et    （1） 68 

Where αi（i=1,2,…,p） is the AR model coefficient, et is the random interference term, and 69 

C1 is the constant. 70 

The mathematical expression of the q order MA model is: 71 

            Yt=G(B)et+c2            （2） 72 
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    G（B）=（1-β1B-β2B
2-…-βqB

q
）   (3) 73 

Where βj (j=1,2,...,q) is the MA model coefficient, et is the random interference term, and c2 74 

is the constant. 75 

Combining the time series after the difference of order d, the final expression of the ARIMA 76 

model is: 77 

F（x）=c+α1Xt−1+α2Xt−2+...+αp Xt-p +β1et－1+…+βqet－q   (4) 78 

Where α represents the coefficient of AR, β represents the coefficient of MA, and c is the 79 

constant term. 80 

ARMA model construction（Fig.1 The flowchart of ARIMA modelFig.1）： 81 

(1) Data difference: the collected COVID-19 data are divided for several times to make it 82 

stable, and then the autocorrelation and partial autocorrelation tests are performed on the 83 

differential data. 84 

(2) The choice of modeling parameters: according to an information criterion (AIC) and 85 

Bayesian information criterions (BIC), combing with the autocorrelation function (ACF) and 86 

partial autocorrelation function (PACF) of the residual sequence to determine the order of the 87 

model, and finally select the model with the highest fitting degree[8]. 88 

AIC=-2ln（L）+2m       (5) 89 

BIC=-2ln（L）+mln（n）   (6) 90 

Where: L is the maximum likelihood function of the model, m is the number of estimated 91 

parameters, and n is the sample size. 92 

(3) Verify the reliability of the model: we use the model to predict the cumulative cases, 93 

deaths, recovery in Chinese provinces (excluding Hong Kong, Macao, and Taiwan) from June 94 
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1-30, 2020, calculate the relative error from the actual cases, and verify the model predictive 95 

effect. 96 

 97 

 98 

Fig.1 The flowchart of ARIMA model 99 

3. Results  100 

We build a model based on the cumulative cases, deaths, and recovery data in mainland of 101 

China from January 20 to May 30, 2020. Here we take Hubei Province as an example to describe 102 

the recognition process of the model. 103 

First, we build the original time series figure (Fig.2), from the figure, we can see that the 104 

initial outbreak of COVID-19 increased exponentially. The Chinese government took timely 105 

measures to control the epidemic. It can be seen from Fig.2 that the original data time series are 106 

not stationary, so we need to carry out first-order differential processing on the original data. The 107 

processed time series is shown in Fig.3. Since the time series in Fig.3 is still unstable, we need to 108 
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N 

Y 
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make two difference, d = 2, as shown in Fig.4. It can be seen from the figure that the data floats up 109 

and down in "0", which can judge that the data is stable after the second-order difference, so d = 2 110 

is determined. 111 

 112 

Fig.2 The cumulative cases, deaths, recovery original time series figure 113 

 114 

Fig.3 First-order difference processing time series figure (d=1) 115 

 116 
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 117 

Fig.4 Second-order difference processing time series figure (d=2) 118 

 119 

After the d value is determined to be 2 by differential processing, we need to select different 120 

combinations of p and q values to test the goodness of fit, and use the models with relatively small 121 

AIC and BIC values as the best model, and then verify the model. 122 

In the end, we obtained the models for predicting the cumulative cases, deaths, and recovery 123 

in Hubei Province as ARIMA(0,2,1), ARIMA(1,2,1), ARIMA(1,2,4). The residual of the model is 124 

tested by white noise sequence. As shown in Fig.5, the autocorrelation function and partial 125 

autocorrelation function of the residual sequence are basically within 95% confidence interval, 126 

indicating that there is no autocorrelation in the residual sequence. Then the model through the 127 

white noise test, the model can be used to predict the cumulative cases, deaths, and recovery in 128 

Hubei Province. 129 
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 132 

Fig.5 Residual sequence figure of ARIMA model for the cumulative cases, deaths, recovery in 133 

Hubei Province 134 

 135 

Model test and error analysis：We divided the data into experimental group (January 20 - 136 

May 31, 2020) and test group (June 1 - June 30, 2020), First of all, we bring the data of the 137 

experimental group into the ARIMA model of the cumulative cases, deaths, recovery in each 138 

province, and calculate the average relative error between the actual number and the fitted value. 139 

The results are shown in Table 1. 140 

 141 

Table 1 142 

the average relative error table of actual cumulative cases, deaths, recovery and fitted values in each province 143 

during January 20, 2020 to May 31, 2020 144 

Province 

Cumulative 

cases model 

Cumulative 

cases 

Cumulative 

deaths model 

Cumulative 

deaths 

Cumulative 

recovery model 

Cumulative 

recovery 
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type average 

relative 

error 

type average 

relative 

error 

type average 

relative 

error 

Beijing ARIMA(0,2,1) 0.60% ARIMA(1,2,17) 1.92% ARIMA(0,2,1) 3.20% 

Shanghai ARIMA(2,2,1) 0.68% ARIMA(0,1,0) 1.94% ARIMA(0,2,4) 3.01% 

Gansu ARIMA(1,1,0) 0.92% ARIMA(0,1,2) 0.00% ARIMA(0,2,1) 0.71% 

Sichuan ARIMA(0,2,0) 1.75% ARIMA(0,1,0) 1.63% ARIMA(0,2,11) 3.47% 

Hebei ARIMA(1,2,8) 2.09% ARIMA(0,1,4) 1.24% ARIMA(0,2,7) 0.79% 

Shaanxi ARIMA(3,2,0) 1.78% ARIMA(0,1,5) 1.49% ARIMA(0,2,1) 1.65% 

Guangdong ARIMA(0,2,1) 19.64% ARIMA(6,1,0) 2.23% ARIMA(2,2,2) 1.63% 

Liaoning ARIMA(2,2,0) 1.12% ARIMA(0,1,0) 0.93% ARIMA(1,2,2) 2.36% 

Chongqing ARIMA(1,2,0) 1.01% ARIMA(0,2,2) 0.65% ARIMA(2,2,2) 1.16% 

Fujian ARIMA(1,2,0) 1.14% ARIMA(0,1,0) 0.00% ARIMA(0,2,1) 2.58% 

Tianjin ARIMA(0,2,5) 0.48% ARIMA(0,2,1) 1.29% ARIMA(0,2,1) 3.04% 

Jiangsu ARIMA(1,2,0) 2.15% ARIMA(0,0,0) * ARIMA(0,2,13) 2.61% 

Hubei ARIMA(0,2,1) 1.99% ARIMA(1,2,1) 1.69% ARIMA(1,2,4) 0.98% 

Zhejiang ARIMA(3,2,0) 0.51% ARIMA(0,1,0) 0.00% ARIMA(0,2,7) 2.64% 

Henan ARIMA(2,2,0) 2.80% ARIMA(1,2,2) 1.69% ARIMA(2,2,2) 1.89% 

Hainan ARIMA(0,2,1) 0.62% ARIMA(3,1,11) 1.83% ARIMA(3,2,0) 3.12% 

Heilongjiang ARIMA(0,2,1) 1.30% ARIMA(0,2,7) 1.39% ARIMA(1,2,0) 1.21% 

Jilin ARIMA(0,2,1) 2.43% ARIMA(0,1,0) 0.87% ARIMA(0,2,2) 2.23% 

Hunan ARIMA(0,2,1) 2.01% ARIMA(0,1,2) 1.62% ARIMA(0,2,1) 1.86% 
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Shandong ARIMA(1,2,0) 2.00% ARIMA(0,1,6) 2.21% ARIMA(4,2,0) 3.28% 

Tibet ARIMA(0,1,0) 0.00% ARIMA(0,0,0) * ARIMA(0,1,0) 0.00% 

Guangxi ARIMA(0,2,8) 1.41% ARIMA(0,1,4) 0.00% ARIMA(0,2,3) 2.06% 

Shanxi ARIMA(6,2,0) 0.79% ARIMA(0,0,0) * ARIMA(0,2,1) 2.54% 

Ningxia ARIMA(0,2,12) 0.49% ARIMA(0,0,0) * ARIMA(2,2,1) 4.13% 

Xinjiang ARIMA(1,2,2) 1.15% ARIMA(0,1,9) 1.38% ARIMA(0,2,1) 0.41% 

Jiangxi ARIMA(0,2,5) 2.23% ARIMA(0,1,0) 0.00% ARIMA(0,2,3) 0.85% 

Guizhou ARIMA(1,2,7) 0.80% ARIMA(0,1,0) 0.86% ARIMA(0,2,1) 2.79% 

Inner Mongolia ARIMA(0,1,2) -1.23% ARIMA(0,1,0) 0.00% ARIMA(1,1,1) -8.57% 

Anhui ARIMA(1,2,0) 3.82% ARIMA(0,1,0) 2.46% ARIMA(0,2,10) 1.37% 

Qinghai ARIMA(0,1,6) -2.92% ARIMA(0,0,0) * ARIMA(0,2,6) 0.00% 

Yunnan ARIMA(1,2,0) 2.23% ARIMA(0,1,0) 0.98% ARIMA(0,2,6) 0.59% 

Note: * means that the cumulative death is 0, which cannot be calculated. 145 

 146 

It can be seen from Table 1 that the average relative error of the cumulative cases in each 147 

province is between -2.92% and 3.82% (except for Guangdong Province); the average relative 148 

error of the cumulative cases in Guangdong Province is 19.64%. By analyzing the data of 149 

Guangdong Province, we found that on January 23, 2020, the actual cumulative cases were 26, 150 

and the fitting value was 1. This is mainly since at the early stage of the epidemic, the 151 

transmission route of COVID-19 was not known, and the government did not take effective 152 

measures, so the number of cases increased exponentially, which led to a large error at that time. 153 

The average relative errors of cumulative deaths and recovery in various provinces are between 154 
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0-2.46% and -8.57%-4.13%, the errors are small and the fit is good, so the model is suitable. We 155 

further analyzed the average relative error between the actual cases and the predicted values in 156 

each province of the test group (June 1 - June 30, 2020). The results are shown in Table 2. 157 

 158 

Table 2 159 

the average relative error table of actual cumulative cases, deaths, recovery and fitted values in each province from 160 

June 1st to 30th 161 

Province 

Cumulative cases 

average relative error 

Cumulative deaths 

average relative error 

Cumulative recovery 

average relative error 

Beijing 22.66% 0.00% 0.45% 

Shanghai 3.00% -9.40% -0.50% 

Gansu 6.47% 0.00% 0.66% 

Sichuan -21.32% -6.67% -0.34% 

Hebei 2.76% 0.00% 0.60% 

Shaanxi -0.32% 0.00% 0.19% 

Guangdong 0.44% 0.00% 1.16% 

Liaoning 1.74% 0.00% -0.98% 

Chongqing 0.30% 0.00% 0.00% 

Fujian 0.88% 0.00% -2.07% 

Tianjin 1.93% 0.00% 1.10% 

Jiangsu 0.05% * 0.26% 

Hubei 0.56% 0.08% 0.05% 
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Zhejiang 0.04% 0.00% 0.00% 

Henan 0.00% 0.00% -0.28% 

Hainan 0.87% 0.00% 0.60% 

Heilongjiang 0.21% -8.70% 0.21% 

Jilin -0.15% 0.00% -8.84% 

Hunan 0.00% 0.00% 0.00% 

Shandong -1.30% 0.00% 0.35% 

Tibet 0.00% * 0.00% 

Guangxi -0.21% 0.00% 0.00% 

Shanxi 0.00% * 0.00% 

Ningxia 0.00% * 0.00% 

Xinjiang 0.00% 0.00% 0.00% 

Jiangxi 0.00% 0.00% 0.00% 

Guizhou 0.00% 0.00% 0.00% 

Inner Mongolia -9.13% 0.00% 0.62% 

Anhui 0.00% -9.52% 0.00% 

Qinghai 0.00% * 0.00% 

Yunnan 0.00% 0.00% 0.44% 

Note: * means that the cumulative death is 0, which cannot be predicted. 162 

 163 

It can be seen from Table 2 that the average relative errors of actual cumulative cases, deaths, 164 

recovery and predicted values in each province are between -22.32%-22.66%, -9.52%-0.08%, 165 
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-8.84%-1.16%. The results of comprehensive experimental group and test group show that the 166 

error between fitting and prediction is small, the fitting effect is good, the model supports and is 167 

suitable for epidemic situation prediction. 168 

COVID-19 trend in mainland of China：According to each provincial model, we get the 169 

overall trend of COVID-19 in mainland of China, as shown in Fig.6. The trend of the fitting line 170 

between the predicted value and the actual value of the cumulative cases, deaths and recovery was 171 

consistent (6a, 6b, 6c). At the beginning of the epidemic, the cases showed an exponential upward 172 

trend. At the end of January, the Chinese government took measures to seal the city, isolate it from 173 

the source of infection, and reduce the possibility of infection, the epidemic was controlled in 174 

mainland of China. The epidemic situation in Hubei, Guangdong, Zhejiang, Henan and other 175 

places in mainland of China is relatively serious (6a). Residents in this area still need to do 176 

epidemic prevention and control work to prevent the possibility of a second rebound of the 177 

epidemic situation. 178 

With the increase of confirmed cases, the number of deaths initially gradually increased. It 179 

can be seen from 6b that the number of deaths in mid-April showed a linear upward trend. The 180 

reason for this data surge is that the preliminary data statistics are incomplete, the statistical 181 

standards are inconsistent and there are varying degrees of delay in the statistical process [9]. The 182 

state has proposed efforts to reduce deaths, requiring provinces to increase the number of 183 

ventilators to ensure adequate medical facilities. The number of deaths in mainland of China has 184 

remained stable around May. In this fight against the epidemic, many volunteers have appeared in 185 

many places, and medical personnel throughout the country have conducted targeted research on 186 

the epidemic, and their experience and level have been improved, resulting in the continuous 187 
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improvement of the number of cures (6c). 188 

 189 

 190 

(a) 191 

 192 

(b) 193 

 194 

(c) 195 

Fig.6 Cumulative cases, deaths, recovery figure in mainland of China 196 
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4.Discussion 197 

Data from January to June 2020 shows that the epidemic in mainland of China has peaked at 198 

the end of February and has been steadily declining since then. This is mainly due to the closed 199 

management measures taken by the Chinese government in the face of the COVID-19 pandemic 200 

to stop population-intensive Place, and achieved good results. By the end of March 2020, all 201 

regions had lifted the closure measures and adjusted the primary response to major public health 202 

emergencies to secondary, and the cases in the epidemic have not changed significantly since then. 203 

This may be related to climate factors such as continuous temperature increase in various places. 204 

The studies have shown that changes in temperature and humidity may be important factors 205 

affecting the spread of COVID-19[10]. 206 

In recent years, ARIMA model, neural network and so on are more active in the field of 207 

epidemic prediction because they can relatively accurately explore the occurrence and 208 

development of epidemics[11-15]. 209 

The reason why ARIMA model can be widely favored in the field of epidemiological 210 

prediction is that it not only absorbs the advantages of traditional regression analysis but also takes 211 

advantage of the moving average, and can affect many factors affecting the development of the 212 

epidemic (such as temperature, humidity, aerosol, population migration, etc.) integrated into time 213 

variables for quantitative expression, is a method with strong practicability and high prediction 214 

accuracy. However, ARIMA model also has certain limitations. It is a mathematical model built 215 

on past historical data. Therefore, ARIMA model is only suitable for short-term forecasting. If the 216 

forecasting time is too long, it will increase the forecasting error and affect the forecasting 217 

accuracy[16-18]. 218 
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At present, COVID-19 has become a global epidemic, and the epidemic situation is still 219 

accelerating and has not yet reached its peak. The prevention and control of the epidemic situation 220 

must not be delayed. Based on the COVID-19 data of mainland of China, we found that the model 221 

has a high degree of fitting, which can predict the development trend of the epidemic situation in 222 

the future. However, in practice, other factors[19-22] will also affect the development trend of the 223 

epidemic situation, causing predictions to deviate, this needs further study. In practical 224 

applications, we can make the model have better prediction effect and accuracy by combining 225 

with multiple models. 226 

5.Conclusion 227 

We used the epidemic data of Chinese provinces from January 20 to June 31, 2020, in which 228 

the data before May 30 were involved in model fitting, the data of June were tested in the model, 229 

and the ARIMA model was used to fit the data, so as to obtain the epidemic prediction of different 230 

periods in mainland of China. Through the verification of the existing data, the prediction effect is 231 

good. The model can be used to predict the epidemic situation in mainland of China in the future 232 

and make positive contributions to policy makers' prevention and control of the epidemic and 233 

protection of people's lives. On the other hand, the applicability and robustness of the model in 234 

mainland of China can also be studied in other countries and regions, so as to verify the accuracy 235 

and improve the performance of the model and provide assistance for epidemic prevention and 236 

control in this region. 237 
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