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Abstract

Importance The spread of COVID-19 has led to a severe strain on hospital
capacity in many countries. There is a need for a model to help planners
assess expected COVID-19 hospital resource utilization.
Objective Provide publicly available tools for predicting future hospital-
bed utilization given a succinct characterization of the status of currently
hospitalized patients and scenarios for future incoming patients.
Design Retrospective cohort study following the day-by-day clinical status
of all hospitalized COVID-19 patients in Israel from March 1st to May 2nd,
2020. Patient clinical course was modelled with a machine learning approach
based on a set of multistate Cox regression-based models with adjustments
for right censoring, recurrent events, competing events, left truncation, and
time-dependent covariates. The model predicts the patient’s entire disease
course in terms of clinical states, from which we derive the patient’s hos-
pital length-of-stay, length-of-stay in critical state, risk of in-hospital mor-
tality, and overall hospital-bed utilization. Accuracy assessed over 8 cross-
validation cohorts of size 330, using per-day Mean Absolute Error (MAE) of
predicted hospital utilization over time; and area under the receiver operating
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characteristics (AUROC) for individual risk of critical illness and in-hospital
mortality, assessed on the first day of hospitalization. We present predicted
hospital utilization under hypothetical incoming patient scenarios.
Setting 27 Israeli hospitals.
Participants During the study period, 2,703 confirmed COVID-19 patients
were hospitalized in Israel for 1 day or more; 28 were excluded due to missing
age or sex; the remaining 2,675 patients were included in the analysis.
Main Outcomes and Measures Primary outcome: per-day estimate of
total number of hospitalized patients and number of patients in critical state;
secondary outcome: risk of a single patient experiencing critical illness or in-
hospital mortality.
Results For random validation samples of 330 patients, the per-day MAEs
for total hospital-bed utilization and critical-bed utilization, averaged over 64
days, were 4.72±1.07 and 1.68±0.40 respectively; the AUROCs for prediction
of the probabilities of critical illness and in-hospital mortality were 0.88 ±
0.04 and 0.96 ± 0.04, respectively. We further present the impact of several
scenarios of patient influx on healthcare system utilization, demonstrating
the ability to accurately plan ahead how to allocate healthcare resources.
Conclusions and RelevanceWe developed a model that, given basic easily
obtained data as input, accurately predicts total and critical care hospital
utilization. The model enables evaluating the impact of various patient influx
scenarios on hospital utilization. Accurate predictions are also given for
individual patients’ probability of in-hospital mortality and critical illness.
We further provide an R software package and a web-application for the
model.

1. Introduction1

The coronavirus disease 2019 (COVID-19) was first recognized in Wuhan,2

China in December 2019. On March 11 2020 the world health organization3

characterized the disease as a pandemic [1]. Worldwide, the COVID-19 pan-4

demic poses a major challenge for the healthcare systems and it will probably5

continue to pose challenges in the coming years [2, 3]. In particular, the dis-6

ease has taken its toll on healthcare systems around the world with some7

patients requiring lengthy general and intensive care [4].8

Given the danger of unprecedented burden on healthcare systems due to9

COVID-19, there is a need for tools that help decision-makers plan resource10

allocation on the unit, hospital, regional and national levels. In this study11
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we aimed to use a nationwide hospitalization registry which includes the12

day-by-day hospitalization record of all the confirmed COVID-19 patients in13

Israel.14

We used the registry to develop a tool for accurate projections of the15

total number of hospitalized patients and critical-care occupancy based on16

the state of the current hospitalized patient population and projections of17

hospital patient influx. To facilitate use of the model, we provide an R [5]18

software package5 enabling anyone with access to similar data to develop19

a model tailored to specific patient and healthcare system characteristics20

and provide a web-application6 that receives as input the characteristics of a21

patient and predicts the probabilities of di↵erent disease courses, including22

length-of-stay (LOS), probability of becoming critically ill, expected length-23

of-stay in critical state (LOSCS), and the probability of in-hospital mortality.24

Finally, we will share an anonymized version of the dataset used to develop25

the tool, where we shift hospitalization dates and aggregate age into 5-year26

categories.27

2. Methods28

We conducted a retrospective cohort study based on the Israeli Ministry of29

Health (MOH) COVID-19 hospitalized patient registry. The registry includes30

the patients’ age and sex, dates and results of their severe acute respiratory31

syndrome corona virus-2 (SARS-COV-2) polymerase chain reaction (PCR)32

tests, dates of hospital admissions and discharge, daily clinical status dur-33

ing the admission (moderate, severe or critical, as detailed below), and the34

death registry. We included in the analyses all the patients who were ad-35

mitted between the 1st of March and the 2nd of May 2020 and who were36

hospitalized for at least 1 day. We excluded patients who were missing age37

or sex documentation. No data imputation was performed.38

2.1. Outcomes39

The primary outcome was predictions of the total and critical-care beds occu-40

pancy on a calendar scale which are due to the currently hospitalized patients41

and when the arrival process of new patients to the hospital at each day. We42

5https://github.com/JonathanSomer/covid-19-multi-state-model
6https://covid19-hospitalcourse.net/
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do this by predicting for each patient their day-by-day clinical state, includ-43

ing days in which the patient is in a critical state, non-critical, discharged,44

or possibly died. We further use the day-by-day clinical state predictions for45

predicting the overall risk for a single patient of being in a critical state at46

some point throughout hospitalization, risk of in-hospital mortality, expected47

hospital LOS and expected LOSCS.48

2.2. Definitions49

COVID-19 confirmed diagnosis was defined as a patient who was found to50

be positive for SARS-CoV-2 PCR tests [6]. Patients’ clinical state during51

admission (mild or moderate, severe, and critical) was defined by the Is-52

raeli MOH guidelines, which are closely related to the National Institute for53

Health treatment guidelines [7]. A mild or moderate clinical state was de-54

fined as patients with symptoms such as fever, cough, sore throat, malaise,55

headache, or muscle pain, without shortness of breath, dyspnea on exertion,56

or abnormal imaging, or as patients with clinical or imaging evidence for57

lower respiratory disease and the saturation of oxygen (SpO2) > 90% on58

room air. For brevity we will refer to this state as moderate henceforth. A59

severe clinical state was defined as a patient with a respiratory rate higher60

than 30 breaths per minute, SpO2 < 90% on room air, or ratio of the arterial61

partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) < 30062

mmHg. A critical clinical state was defined as a state where the patient suf-63

fers from respiratory failure which requires invasive/non-invasive mechanical64

ventilation, septic shock, or multiorgan dysfunction. In addition, we denote65

patients who were discharged from the hospital to their home or to out of66

hospital quarantine as Discharged. We note that discharged patients might67

be readmitted upon deterioration.68

2.3. Statistical analysis methods69

The clinical state of COVID-19 patients often alternates between moderate70

and more severe clinical states; see table S1 in supplementary materials (SM)71

for descriptive statistics of these transitions between clinical states. We mod-72

elled the way patients move between the di↵erent clinical states over time73

using a statistical machine learning approach. Specifically, we used an ap-74

proach whose purpose is exactly to model such processes: a multistate Cox75

regression-based survival analysis with right censoring, competing events, re-76

current events, left truncation, and time-dependent covariates, to model the77

way patients move between the di↵erent clinical states over time [8, 9, 10, 11].78
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The multistate model has 4 states: (1) moderate or severe, (2) critical, (3)79

discharged and (4) deceased. We chose to merge the moderate and severe80

clinical states due to sample size considerations. The model consists of six81

semiparametric Cox regression models, one for each possible state-to-state82

transition, as depicted in Figure 1; some transitions were excluded as either83

clinically implausible or due to few observed transitions. For details see SM84

sections 1.1 – 1.3.85

Figure 1: We model a COVID-19 patient’s disease course as moving between 4 possible
states: (i) moderate or severe, (ii) critical, (iii) discharged and (iv) deceased. We combined
the two clinical states moderate and severe into a single model state due to statistical
considerations; however, we emphasize that we keep a distinction between the two by a
covariate indicating whether the patient first entered at mild/moderate clinical state or at
a severe clinical state. Numbers next to arrows indicate number of observed transitions;
each patient can make several state transitions, and may visit a transient state more than
once.

The six semiparametric models each took in age, sex, and state at hospi-86

talization as covariates; for the latter we kept the distinction between mod-87

erate and severe clinical states. We also added time-dependent covariates88

encoding the hospitalization history of the patient: cumulative days in hos-89

pital, and whether the patient had been in a critical state before; see SM90

section 1.1.91

Since hospitalization consists of potentially multiple transitions between92

transient states, the absolute risks, also known as the cumulative incidence93
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functions, do not have a tractable analytic form. Thus, we employed a94

method called Monte-Carlo (MC) sampling for obtaining unbiased estimates95

of patient and cohort statistics from the multistate model. Each MC sample96

for a given patient consists of a disease course (in terms of clinical states over97

time), conditioned on the patient’s history and covariates; this includes how98

long a patient spends in each clinical state. We calculated statistics such99

as median LOS or expected number of hospitalized patients per day based100

on aggregating the results of 20,000 MC samples for each patient. Standard101

errors were obtained by weighted bootstrap. See SM sections 1.4 and 1.7.102

2.4. Model validation – hospital resource utilization and individual patient103

disease course prediction104

We validated our model using 8-fold cross-validation – fitting the model on105

7/8 of the data and evaluating performance on the remaining held-out 1/8,106

repeated 8 times. Each held-out set consists of 330 patients.107

We validated predictions of hospital utilization by two methods: “Snap-108

shot”, where we fix a set of patients and predict only this set’s utilization109

from a start date forward, without considering incoming patients, where the110

start date was chosen as either April 1st or April 15th 2020; and “Arrival111

process”, where we estimate utilization for the entire course of the first wave112

in Israel from March 1st to May 2nd 2020, over a held-out cohort of patients;113

see SM section 1.3 for description of both. For both validation methods we114

estimate the Mean Absolute Error (MAE) between the model’s predictions115

per-day and the actual number of hospitalized (or critical) patients on that116

day; the mean is over the number of days in the prediction window; see SM117

section 1.3.118

We further validate the model’s performance by testing its predictions119

on the level of the individual patient: we use data from the first day of120

a patient’s admission to predict their probability of becoming critically ill121

(among patients who were non-critically ill on their 1st day) and the prob-122

ability of in-hospital mortality. For both outcomes we report Area Under123

Receiver Operating Characteristic (AUROC) with inverse weighting correc-124

tion for censoring, see SM section 1.3 for details. Finally, we validated the125

calibration of our predictions by tracking expected number of deaths vs. ac-126

tual number of deaths over time in an “Arrival+Snapshot” scenario, see SM127

section 1.3 for details.128
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2.5. Using the model for prediction of hospital utilization under hypothetical129

scenarios130

In order to illustrate how our model may be employed for utilization predic-131

tion, we focus on a single held-out cohort of 330 patients. For this cohort132

we predict the total future hospital-bed and critical hospital-bed utilization133

up to 49 days ahead, starting from March 15th. Utilization for this cohort134

is composed of patients among the 330 who were hospitalized at the start-135

ing date and remain at the hospital, as well as utilization by newly arrived136

patients.137

We present the expected hospital utilization and the number of deaths138

under three putative patient arrival scenarios (i) “younger”: rate and state139

of incoming patients are the same as in Israel during the weeks from March140

15th to May 2nd, but with patients in their 40s and 50s instead of 60+; (ii)141

“milder”: rate and age of incoming patients are the same as in Israel during142

the weeks from March 15th to May 2nd, but all patients incoming only in143

moderate or severe clinical state, none at critical, and (iii) “eldercare nursing144

home (NH) outbreak” where we assume that in addition to the arrival of145

patients as happened in Israel from March 15th to May 2nd there is a single146

week during which there are 4 times as many incoming patients aged 70+,147

arriving in various clinical states. The details of the scenarios are given in148

SM section 2.4.149

3. Results150

3.1. Hospitalized patient characteristics151

The first patient with COVID-19 In Israel was diagnosed on February 27th152

2020. As of May 2nd 2020, 16,137 patients had confirmed positive diagnosis.153

The median (IQR) age of the confirmed patients was 33 (21-54); 44.5% were154

females. Out of the 16,137 confirmed COVID-19 patients up May 2nd, 2,703155

(17%) were hospitalized by May 2nd for at least one full day 7. Of these156

2,703 hospitalized patients, 28 patients had no age or sex covariates. For the157

remaining cohort of 2,675 patients median (IQR) age was 58 (39-73), 44.19%158

were female. The demographics, medical history, and the clinical status of159

hospitalized patients are shown in Table 1. We use the model to estimate160

7In addition, 30 patients were either dead on arrival or deceased within their first
hospitalization day, and 5 were discharged on their first hospitalization day.
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the median, 10% and 90% quantiles of the length-of-stay for hospitalized161

patients stratified by clinical state at time of admission. The results are162

shown in Figure 2 and Table S7 in the SM; in Table S8 in SM we report163

LOSCS results.164

LOS stratified by patients’ age, sex and the clinical state at the time of admission

10% quantile 50% quantile (median) 90% quantile

55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85 55 65 75 85
moderate severe critical moderate severe critical moderate severe critical moderate severe critical moderate severe critical moderate severe critical

Male Female Male Female Male Female
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Figure 2: Model-based estimates of quantiles of length of stay in days based on 20,000
Monte Carlo results for each patient strata. Error bars indicate 95% confidence interval,
calculated by weighted bootstrap.

In Table 2 we present the probability of di↵erent patient populations165

entering a critical state and the probability for in-hospital mortality, as esti-166

mated by the model. Both probabilities sharply increase with age; males of167

all ages tend to have a greater probability of becoming critically ill compared168

to females entering the hospital at the same clinical state, but hospitalized169

Females over age 75 tend to have higher risk of mortality compared to hos-170

pitalized males entering at comparable age and clinical state. Probabilities171

and LOS and LOSCS quantiles for younger ages are given in Tables S5-S8172

in the SM; for cumulative distribution function of LOS see Figure S2 in the173

SM.174

3.2. Cox models175

The results for all six Cox models are given in Tables S2-S4 in the SM.176

3.3. Model validation177

The following results are all averaged over the 8 held-out validation cohorts.178

Using “Snapshot” evaluation with April 1st as start data, MAE for pre-179

dicting the per-day number of hospitalized patients is 3.15 ± 1.20 for total180
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hospital-bed utilization and 1.47±0.56 for critical-care bed utilization. Using181

“Snapshot” evaluation with April 15th as start data, MAE for predicting the182

per-day number of hospitalized patients is 3.13± 1.07 for total hospital-bed183

utilization and 1.98 ± 0.93 for critical hospital-bed utilization. Using “Ar-184

rival” evaluation, MAE for predicting the per-day number of hospitalized185

patients is 4.72 ± 1.07 for total hospital-bed utilization and 1.68 ± 0.40 for186

critical hospital-bed utilization. See Table S9 and Figures S3-S4 in the SM187

for full results.188

Using only information from the first day of a patient’s hospitalization,189

the AUROC for predicting in-hospital mortality and for predicting the out-190

come of becoming critically ill (among patients who were non-critically ill on191

their first day of admission) were 0.96±0.04 and 0.88±0.04 respectively; see192

Table S10 in the SM for full results. Table 3 presents the number of deaths193

predicted by our model under the true patient influx process (“Expected”194

column), which matches very closely the observed number of deaths, showing195

the model is well-calibrated.196

3.4. Predicting hospital-bed utilization197

In Figure 3 and Table 3 we show an example of the utilization and mortality198

projections generated by the model for several hypothetical scenarios.199

As an example of how these scenarios could be useful for resource plan-200

ning, we consider the following use case for our model: COVID-19 patients201

are usually cared for in special wards. Our model can help planners assess202

when a new COVID-19 ward will need to open; towards that end, we add203

markers to Figure 3 indicating when total patient utilization passes multi-204

ples of 30, assuming that each COVID-19 ward can care for 30 patients. The205

intersection of the horizontal lines with the predicted utilization curve indi-206

cates at what date we estimate a new ward will need to be opened. Similarly,207

we add markers to show when critical patient utilization exceeds multiples208

of 15. In Figure S3 in the SM we show that the error for predicting the209

times when total hospital-bed utilization will hit such capacity thresholds is210

at most 1 day, and 3 days for critical-bed utilization.211

4. Discussion212

One of the distinctive characteristics of COVID-19 is the way health systems213

are overwhelmed by a large number of patients. For example, in Lombardy,214

Italy, ICU capacity reached its limit in early March, requiring urgent steps215

9
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and outside assistance [2]. Similar events occurred in Madrid [12], Wuhan216

[4], the city of New York [3], and other locations around the world.217

We report here the development and validation of a multistate survival218

analysis model of patient clinical course throughout admission, discharge,219

and possibly death. Our model is based on the complete set of COVID-19220

patients in Israel, tracked day-by-day; we note we had a very small number221

of patients with missing data (28 out of 2703).222

We show that using very simple and easily available patient character-223

istics, a machine learning methodology based on a set of Cox regression224

models can accurately predict healthcare utilization for a given patient ar-225

rival process and can be used to simulate utilization under di↵erent patient226

influx scenarios. This can in turn be used to accurately plan resource allo-227

cation and the opening or closing of COVID-19 wards. We further provide228

an anonymized version of the dataset used to develop the model, a web-229

application for patient level predictions, and an R software package that can230

help planners fit a multi-state model to their own data, or use the model we231

fit to the Israeli data.232

Interestingly, we find that scenarios such as the arriving patients being233

much younger or in milder clinical state do not greatly a↵ect total hospital234

utilization, possibly because some of these populations have longer hospi-235

talization times; on the other hand, both scenarios a↵ect critical-care bed236

utilization. We further observe that an eldercare nursing home outbreak237

scenario leads to substantially higher total utilization and critical care uti-238

lization, underscoring the need to protect these communities not only in239

terms of preventing mortality, but also from the point of view of lowering the240

strain on hospital resources.241

Many models exist for predicting the dynamics of COVID-19 case num-242

bers and numbers of hospitalized patients. These models are usually based243

on some variation of the basic susceptible-infected-recovered (SIR) model244

[13, 14], where the number of hospitalized patients are included as a compo-245

nent in the dynamic model.246

Our model di↵ers from these models in several aspects: (i) Settings in247

which the chance of experiencing one event is altered by the occurrence of248

other events are known as competing and semi-competing risks, and caution249

is needed in analyzing such data. In semi-competing risks a subject can250

experience both a nonterminal and terminal event where the terminal event251

(e.g., death) censors the nonterminal event (e.g. being in a critical state), but252

not vice-versa. Patient clinical course data consist of competing and semi-253
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competing risks. Ignoring (semi-) competing risks in time-to-event analyses254

can lead to substantially biased risk predictions [11, 15]. In this work we use255

a multi-state model as an excellent fit for the competing and semi-competing256

risks data of the COVID-19 patient hospitalization course. (ii) Heterogene-257

ity within and between patients is important, as bed utilization is in part258

determined by a long tail of some patients who require significantly longer259

stays than others. (iii) Our model has the capability of modeling patients on260

an individual basis and takes into account how long each patient has already261

been in the hospital. Thus, our model will take into account the case-mix and262

heterogeneous histories of the patients currently hospitalized when making263

predictions about future utilization. We also emphasize that our model is dif-264

ferent in its scope: we do not aim to model the spread of the disease and the265

number of future infections. Our focus is on estimating hospital-utilization266

under di↵erent patient arrival processes, while taking into account the load267

caused by currently hospitalized patients.268

Another line of work related to ours are models for predicting outcomes269

for individual patients [16]. Viewed through this lens, our model is distinctive270

in two ways: it provides time-to-event (release, deterioration, death) predic-271

tions, and it is based on a very small number of covariates (age, sex, and one272

of three patient clinical states). For example, Liang et al. [17] report AUROC273

of 0.88 for predicting critical illness or death using 10 covariates selected from274

72 potential predictors. Bello-Chavolla et al. [18] report a concordance of 0.83275

using 7 covariates based mostly on comorbidities. We conjecture that the ac-276

curacy achieved by our model while using minimal, easily obtainable data as277

input might be explained by the fact that patients’ clinical states are at least278

partially a mirror for more granular clinical measures and comorbidities not279

available to us.280

Our model has several limitations. First, it is based on data from the281

first wave of patients in Israel. As treatment strategies and hospitalization282

policies di↵er over time and between health systems and hospitals, we can-283

not guarantee that LOS statistics will be the same across all locales and284

times. Thus, when possible we encourage planners to use the attached soft-285

ware package and fit it to their own hospitalization data. We will update286

the software package and app as more updated data will become available287

from the Israeli registry. A second limitation is that our model must rely288

on predictions for who will the incoming patients be. If arriving patient289

populations – both patient type and patient numbers – will di↵er signifi-290

cantly from the scenarios taken into account, the model’s predictions will be291
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wrong. We thus recommend that planners evaluate multiple hypotheticals292

for incoming patients, testing for scenarios such as the ones we presented in293

the Results section above. A third limitation is that the model does not take294

into account patients’ comorbidities [19, 20, 21]. On the one hand, our model295

achieves good results while analyzing only a limited number of covariates as296

input; on the other hand, it is possible that using comorbidities could en-297

hance the model’s performance. We also wish to point out that researchers298

with access to patient-level comorbidity data can easily incorporate it into a299

multistate model using the software we provide. A fourth limitation is that300

we used the patients’ clinical state as reported by the attending physician at301

the point of care. Although the Israeli MOH directed physicians to report302

clinical state using the definitions above, individual physicians and medical303

centers might not have adhered exactly to these guidelines. We note that304

despite this possible ambiguity, empirically we find that the clinical state as305

reported is indeed predictive for individual patients.306

5. Conclusions307

We found that a very small set of covariates (age, sex and patient being in308

one of three clinical states), along with a day-by-day tracking of patients’309

clinical state, are enough for accurate predictions of mortality, length-of-310

hospitalization and critical illness. These accurate predictions enable us to311

build a tool that lets healthcare managers accurately plan resource allocation312

for COVID-19 patient care in the face of potentially large patient surges.313
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Table 1: Demographics and clinical characteristics of patients in the Israeli COVID-19
registry who were Hospitalized between March 1st and May 2nd.

Characteristic
Total, mean
(SD) [range]

Critical
by May 2nd

In-hospital mortality
by May 2nd

Still hospitalized
on May 2nd

No. 2,675 8 (100%) 437 (16.34%) 200 (7.48%) 311 (11.63%)

Female, No. (%) 1,171 (43.78%) 146 (33.41%) 89 (44.5%) 130 (42%)

Age, mean (SD) y 55.3 (21.7) 71 (16.35) 80.66 (12.78) 65.5 (20.01)

Age, No. (%):

< 20 106 (3.96%) 3 (0.69%) 0 (0%) 8 (2.57%)

20-29 316 (11.81%) 4 (0.92%) 0 (0%) 15 (4.82%)

30-39 272 (10.17%) 14 (3.2%) 2 (1%) 20 (6.43%)

40-49 330 (12.34%) 19 (4.35%) 3 (1.5%) 15 (4.82%)

50-59 401 (15%) 57 (13.04%) 6 (3%) 36 (11.58%)

60-69 458 (17.12%) 79 (18.08%) 20 (10%) 56 (18%)

70-79 412 (15.4%) 118 (27%) 50 (25%) 80 (25.72%)

80+ 380 (14.21%) 143 (32.72%) 119 (59.5%) 81 (26.05%)

Initial state:

Moderate 2048 (76.56%) 113 (25.8%) 50 (25%) 164 (52.73%)

Severe 432 (16.14%) 129 (29.5%) 66 (33%) 83 (26.69%)

Critical 195 (7.29%) 195 (44.6%) 84 (42%) 64 (20.58%)

References323

[1] World Health Organization, Situation report - 18 situation324

in numbers total and new cases in last 24 hours, https:325

//www.who.int/docs/default-source/coronaviruse/situation-reports/326

20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57 10, 2020. Accessed:327

May 10th, 2020.328

9Probabilities are based on Monte Carlo results, with weighted bootstrap 95% confi-
dence interval.
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Table 2: Probability of death and probability of becoming critical by patient type (state
at time of hospitalization, age, sex).

Probability of in-hospital mortality Probability of becoming critical

Incoming state, age Male Female Male Female

Moderate, 55 0.9%9

(0.2%, 1.5%)
1.3%
(0.4%, 2.3%)

5.9%
(4.6%, 7.3%)

4.1%
(2.5%,5.7%)

Moderate, 65 2.2%
(1.2%, 3.2%)

2.6%
(1.2%, 4%)

8.5%
(6.9%, 10.1%)

6.1%
(4.1%,8%)

Moderate, 75 5.8%
(3.4%, 7.8%)

5.3%
(3%, 7.6%)

12.9%
(10.5%, 15.2%)

9.9%
(6.9%,12.8%)

Moderate, 85 15.1%
(8.9%, 21.2%)

12.2%
(7.6%, 16.7%)

17.9%
(13.9%, 21.9%)

13.4%
(8.9%,17.9%)

Severe, 55 4.3%
(0%, 9.5%)

7.5%
(1.2%, 13.7%)

24.1%
(18.7%, 29.4%)

18.5%
(12.8%,24.2%)

Severe, 65 9.6%
(3.9%, 15.2%)

12.6%
(4.3%, 20.8%)

31.9%
(26.7%, 37.0%)

25.6%
(20.1%,31.1%)

Severe, 75 21.4%
(14.9%,28%)

21.7%
(12.6%,30.9%)

40.4%
(35%, 45.7%)

32.3%
(26.7%,37.9%)

Severe, 85 44.3%
(32.3%,56.3%)

38.9%
(28.8%,48.9%)

46.7%
(39.3%, 56.3%)

38.5%
(31.1%,45.8%)

Critical, 55 15.3%
(3.5%, 27.2%)

29.9%
(10.8%, 49%)

100% 100%

Critical, 65 29.9%
(17.9%,41.9%)

41.4%
(25.5%,57.2%)

100% 100%

Critical, 75 54.6%
(42.9%,66.3%)

54.9%
(42.6%,67.1%)

100% 100%

Critical, 85 82.9%
(74.4%,91.3%)

75.4%
(65.2%,85.7%)

100% 100%
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Table 3: Number of deaths (in-hospital mortality) within a random subset of 330 validation
set (held-out) patients. “Observed” is true number of deaths, “Expected” is prediction
by the model. “Younger”, “Milder” and “NH Outbreak” are hypothetical scenarios, see
Methods above.

Hypothetical scenarios

Days Observed Expected Younger Milder NH
Outbreak

5 7 6.5 0.6 3.7 8.2

10 16 16.6 1.9 11.7 22.6

15 20 20.4 2.5 15 28.3

20 23 22.8 3 17.3 32.1

25 24 25.4 3.4 19.7 36.5

30 25 25.9 3.5 20.1 37

35 26 26.6 3.7 20.6 37.7
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Prediction for hypothetical scenarios

Figure 3: Observed total hospitalized (top) and critical (bottom) patients, and predicted
total number of hospitalized patients. under the following scenarios (i) “younger”: rate
and state of incoming patients are the same as in Israel during the weeks from March 15th
to May 2nd, but with patients in their 50s and 60s instead of 60+; (ii) “milder”: rate and
age of incoming patients are the same as in Israel during the weeks from March 15th to
May 2nd, but all patients incoming only in moderate and severe state, none at critical, and
(iii) “Nursing home (NH) outbreak” where we assume that in addition to the arrival of
patients as happened in Israel from March 15th to May 2nd there is a single week during
which there are 4 times as many incoming patients aged 70+, arriving in various clinical
states. Gray vertical lines are point-wise 10%-90% confidence predictions.
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1 Models and Methods

1.1 Introduction

The hospitalization course of each patient is described as a multi-state process, depicted

in Figure S1. A patient enters the hospital at one of the following three clinical states:

moderate, severe or critical. During the course of hospitalization a patient can move among

the transient clinical states: Critical, denoted by C; Moderate or Severe, denoted by M/S;

and Discharged, denoted by Di. Our multi-state model combines Moderate and Severe,

during hospitalization, due to the small number of observed transitions from and to each

of these states, separately. The state Di is considered as a transient state rather than a

terminal state since frequently patients in a milder state were released from hospital to a

dedicated quarantine for COVID-19 patients, with some later experiencing deterioration

leading to re-hospitalization; in Figure S1 we see there were 102 transitions from state Di

to state M/S. The terminal state Deceased is denoted by De.

Our multi-state model allows the following six transitions

C ! M/S C ! De M/S ! De M/S ! C M/S ! Di Di ! M/S .

Three transitions were excluded from the model due to small sample size: The dataset

includes 10 records of transition C ! Di, no records of Di ! De, and 2 records of Di ! C.

Hence, these three transitions were excluded from the multi-state model. Each possible

transition is characterized by a transition-specific Cox proportional hazard model with an

unspecified transition-specific baseline hazard function, �0·,· and a transition-specific vector

�·,· of regression coe�cients. Specifically, for t > 0, the corresponding Cox proportional

hazard functions are

�C,M/S(t|Z) = �0C,M/S(t) exp(�
T
C,M/SZ) , (1)

�C,De(t|Z) = �0C,De(t) exp(�
T
C,DeZ) , (2)

�M/S,Di(t|Z) = �0M/S,Di(t) exp(�
T
M/S,DiZ) , (3)

�M/S,C(t|Z) = �0M/S,C(t) exp(�
T
M/S,CZ) , (4)
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�M/S,De(t|Z) = �0M/S,De(t) exp(�
T
M/S,DeZ) , (5)

and

�Di,M/S(t|Z) = �0Di,M/S(t) exp(�
T
Di,M/SZ) , (6)

where Z is a vector of covariates, possibly with time-dependent covariates. For simplicity

of notation, we use Z instead of Z(t) whenever confusion is unexpected. Although Z is

shared by the six models above, it does not imply that identical covariates must be used

in these models, since the regression coe�cient vectors, �·,·, are transition dependent, and

one can set any specific coe�cient to 0 in order to exclude the corresponding covariate.

The covariates included in the Cox models were: age, sex, state at time of hospitalization

(three categories: Moderate, Severe, or Critical), a binary variable equal to 1 if the patient

previously was in a critical state and 0 otherwise, the cumulative number of days in hospital

at entry time to the current state, and the interaction between age and each of the other

covariates listed above. The models of transitions M/S ! De and Di ! M/S are slightly

di↵erent due to only a few events with a critical clinical state at time of hospital admission

and a few events with previous visits in critical state. Therefore, for these two models, the

binary covariate taking the value of 1 if the patient previously visited the critical state is

excluded, and the covariate for clinical state at time of hospitalization was redefined as a

binary covariate indicating Moderate versus Severe/Critical.

1.2 Estimation

Estimating the above hazard functions (1)–(6) involves several major issues (beside right

censoring), which we describe below: multi-state process, left truncation, competing risks

and recurrent events.

Multi-state process: We describe the hospitalization path of each patient as a multi-

state process, starting at states C or M/S. Each patient may visits a transient state (C,

M/S or Di) multiple times before reaching a terminal state (De).

Left truncation: Consider, for example, a patient who entered the hospital at state

M/S and moved to state C at the 10th day of hospitalization. The contribution of such a

patient to transitions from state C (back to M/S or to De) starts only at the 10th day of

hospitalization. Hence, when estimating the model of a certain transition from origin state
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Figure S1: Multi-State Model: Data as of May 2, 2020, n = 2675. We model a COVID-19
patients disease course as moving between 4 possible clinical states: (i) moderate or severe,
(ii) critical, (iii) discharged and (iv) deceased. We combined the two clinical states moderate
and severe into a single model state due to statistical considerations; however, we keep a
distinction between the two by a covariate indicating whether the patient first entered at
mild/moderate clinical state or at a severe clinical state. Numbers next to arrows indicate
number of observed transitions; each patient can make several clinical state transitions,
and may visit a transient clinical state more than once. The dataset includes 10 records of
transitions C ! Di, no records of Di ! De, and 2 records of Di ! C. Hence, these three
transitions were excluded from the multi-state model.

(e.g. C) to a target state (e.g. De), those who entered the origin state during the course

of hospitalization are left-truncated by their entering day to that origin state.

Competing risks (competing events): Given that a patient is, for example, at state

C, there are two possible transitions: C ! M/S and C ! De. Since only one of these

transitions can occur at each point in time, M/S and De are competing events in the sense

that at each time point, the occurrence of one type of event will prevent the occurrence of

the other. Similarly, given that a patient is at state M/S, the events Di, C and De are

competing events.

Recurrent events: A patient may visit states C, M/S and Di multiple times. For

example, 13 patients had the following hospitalization path

M/S ! C ! M/S ! C ! M/S ! Di ,
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and 68 patients had

M ! Di ! M/S ! Di .

All the observed paths and their frequencies are provided in Table S1. When the event of

interest can occur more than once in a patient, the events are termed recurrent events.

We overcame all the above challenges and provided consistent estimators (under mild

regularity conditions) for the six Cox proportional hazard models. Specifically, by ex-

tending the approach of Andersen et al. (1991), it can be shown that maximizing the

likelihood function in terms of the six Cox models can be done by maximizing the likeli-

hood of each transition separately, while using the risk-set correction for dealing with left

truncation (Klein & Moeschberger, 2006); treating competing transitions as right censor-

ing (Kalbfleisch & Prentice, 2011); and adopting Andersen-Gill approach for dealing with

recurrent events so the robust standard errors account for correlated outcomes within a

patient (Andersen & Gill, 1982).

1.3 Predictions

Based on our multi-state model, we accurately predict at the patient level, given age, sex

and state at time of hospitalization, the following quantities:

1. The chance of in-hospital mortality (state De).

2. The chance of being at a critical state (state C).

3. The total length of stay (LOS) in hospital (not including time in a dedicated out-of-

hospital quarantine).

4. The total length of stay in critical state (LOSCS).

The above quantities can be predicted at the first day of hospitalization and also during

the course of hospitalization, while correctly taking into account the accumulated hospital-

ization history.

Weighted estimators of the area under the Receiver Operating Characteristic curve

(AUROC) were used to evaluate death and critical-visit predictions for binary classifica-

tions (i.e. yes/no in-hospital mortality and yes/no previously visiting critical state). The
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weights eliminate the bias due to exclusion of censored observations, and were defined as 1

over the probability of being uncensored (Robins & Finkelstein, 2000). The weights were

estimated by a Kaplan-Meier estimator of the censoring survival function. Weighted AU-

ROC estimates were calculated by the R package WeightedROC (Hocking, 2020). Brier

scores were used as measures of prediction accuracy.

Based on the above predictions, we go one step further and provide predictions at the

hospital level, in the following manner:

1. Snapshot: Assume that at a given calendar day, we are given the current state and

hospitalization history of all the COVID-19 patients currently at a specific hospital.

Beyond predicting the above quantities for each patient, we also predict the total

number of patients at the hospital, and at a critical clinical state in particular, for each

day over the next 8 weeks. Namely, we provide predictions on the total occupancy

on a calendar scale which are only due to the currently hospitalized patients.

2. Arrival: Given as input the arrival process of patients to the hospital at each day,

including the number of arriving patients, their age, sex and state at time of hospi-

talization, we predict the total number of patients at hospital, and at critical state

in particular, for each day of the next 8 weeks. Here we provide a prediction for the

total occupancy on a calendar scale, for any possible hypothetical arrival scenario.

3. Arrival plus Snapshot: At a given calendar day, we are given the current state

and hospitalization history of all the COVID-19 patients currently at the hospital

along with an arrival process of the patients to be hospitalized starting the next day

up to a pre-specified time period. Again, we predict the total number of patients at

hospital, and at critical state in particular, on a calendar scale.

1.4 Monte Carlo Estimator of Length of Stay

Since our hospitalization model consists of a multi-state model with recurring events (i.e.

a patient can visit a transient state multiple times) the closed form marginal probabilities

required for predictions are intractable. Instead we use a Monte Carlo (MC) approach for

estimating all the required quantities listed above (Section 1.3).
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Assume a prediction is desired for a new patient with baseline covariates (i.e. age,

sex, and clinical state at time of hospitalization) denoted by X. The MC-based prediction

procedure can be summarized as follows. Given X, sample a large number (e.g. 20,000) of

hospitalization paths, and use these paths for estimating the required quantities. Specifi-

cally, the probability of death is estimated by the proportion of paths ended at state De;

the probability of visiting state C is estimated by the proportion of paths visited state

C; the expected total length of stay is estimated by the mean length of the paths (not

including time at state Di); and the expected length of stay in state C is estimated by the

mean time spent in state C over all the paths. The next subsection provides a detailed

description of path sampling.

1.5 Path Sampling - Technical Details

Let JC and JN denote the current and next states, respectively. Assume a patient entered

the hospital at state JC = j⇤ with a vector of baseline covariates X. The goal is to provide a

MC estimator of the length of hospitalization givenX and j⇤. Let Z(t) be a time-dependent

vector of covariates such that Z(t) = (XT , X̃(t)T )T , where X̃(t) is a time-dependent vector

of covariates that are known at the entrance to the new state. Details of X̃(t) in our setting

are provided at the end of Section 1.1. Assume Kj⇤ possible transitions from state j⇤. For

each state j, j = 1, . . . , Kj⇤ ,

Pr(T  t, JN = j|JC = j⇤, Z(0) = Z)

=

Z t

0

exp
�
�T
j⇤,jZ

�
�0j⇤,j(u) exp

8
<

:�
Kj⇤X

k=1

⇤0j⇤,k(u) exp
�
�T
j⇤,kZ

�
9
=

; du ,

where �j⇤,j, �0j⇤,j and ⇤0j⇤,j are the vector of regression coe�cients, the baseline hazard

function and the cumulative baseline hazard function of transition j⇤ ! j, respectively.
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Then,

Pr(JN = j|JC = j⇤, Z(0) = Z)

=

Z 1

0

exp
�
�T
j⇤,jZ

�
�0j⇤,j(u) exp

8
<

:�
Kj⇤X

k=1

⇤0j⇤,k(u) exp
�
�T
j⇤,kZ

�
9
=

; du

and

Pr(T  t|JN = j, JC = j⇤, Z(0) = Z)

=

R t

0 exp
�
�T
j⇤,jZ

�
�0j⇤,j(u) exp

n
�
PKj⇤

k=1 ⇤0j⇤,k(u) exp
�
�T
j⇤,kZ

�o
du

R1
0 exp

�
�T
j⇤,jZ

�
�0j⇤,j(u) exp

n
�
PKj⇤

k=1 ⇤0j⇤,k(u) exp
�
�T
j⇤,kZ

�o
du

.

We start by describing the sampling procedure of the next state. Let ⌧j⇤,j be the largest

observed event time of transition j⇤ ! j. Then, the next state is sampled from a Kj⇤

multinomial distribution with probabilities pj|j⇤,Z where, for j = 1, . . . , Kj⇤ ,

cPr(JN = j|JC = j⇤, Z(0) = Z)

=
X

tm⌧j⇤,j

exp
⇣
b�T
j⇤,jZ

⌘
b�0j⇤,j(tm) exp

8
<

:�
Kj⇤X

k=1

b⇤0j⇤,k(tm�1) exp
⇣
b�T
j⇤,kZ

⌘
9
=

; ,

the summation is over the distinct observed event times of transition j⇤ ! j and

pj|j⇤,Z =
cPr(JN = j|JC = j⇤, Z(0) = Z)

PKj⇤
j0=1

cPr(JN = j0|JC = j⇤, Z(0) = Z)
. (7)

Once we sampled the next state, denoted by j0, the time to be spent at state j⇤ should be

sampled based on

cPr(T  t|JN = j0, JC = j⇤, Z(0) = Z)

=

P
tmt exp

⇣
b�T
j⇤,j0Z

⌘
b�0j⇤,j0(tm) exp

n
�
PKj⇤

k=1
b⇤0j⇤,k(tm�1) exp

⇣
b�T
j⇤kZ

⌘o

P
tm⌧j⇤,j0

exp
⇣
b�T
j⇤,j0Z

⌘
b�0j⇤,j0(tm) exp

n
�
PKj⇤

k=1
b⇤0j⇤,k(tm�1) exp

⇣
b�T
j⇤,kZ

⌘o .(8)
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This could be done by sampling U ⇠ Uniform[0, 1], equating

U = cPr(T  t|JN = j0, JC = j⇤, Z(0) = Z)

and solving for t. Denote the sampled time by t0 and update Z(t0). In case j0 = De, the

sampling path ends here. Otherwise, the current state is updated to JC = j0, and the

following state is sampled by pj|j0,Z , where for j = 1, . . . , Kj0

pj|j0,Z =

P
t0<tm⌧j0,j

exp
⇣
b�T
j0,jZ

⌘
b�0j0,j(tm) exp

n
�
PKj0

k=1
b⇤0j0,k(tm�1) exp

⇣
b�T
j0,kZ

⌘o

PKj0
j⇤⇤=1

P
t0<tm⌧j0,j⇤⇤

exp
⇣
b�T
j0,j⇤⇤Z

⌘
b�0j0,j⇤⇤(tm) exp

n
�
PKj0

k=1
b⇤0j0,k(tm�1) exp

⇣
b�T
j0,kZ

⌘o .

(9)

An exceptional state is JC = Di, where one can either move back to M/S or stay at Di.

Given the new sampled state, denoted by j̆, the time to be spent at j0 is sampled by

cPr(T  t|JN = j̆, JC = j0, Z(t0) = Z)

=

P
t0<tmt exp

⇣
b�T
j0,j̆

Z
⌘
b�0j0,j̆(tm) exp

n
�
PKj0

k=1
b⇤0j0,k(tm�1) exp

⇣
b�T
j0,kZ

⌘o

P
t0<tm⌧j0,j̆

exp
⇣
b�T
j0,j̆

Z
⌘
b�0j0,j̆(tm) exp

n
�
PKj0

k=1
b⇤0j0,k(tm�1) exp

⇣
b�T
j0,kZ

⌘o ,(10)

and then by solving for U = cPr(T  t|JN = j̆, JC = j0, Z(t0) = Z). The sampled path is

completed once state De is sampled or state Di is sampled and the next sampled state is

again Di, or after sampling 9 states, whichever comes first. We set the maximum number

of transitions to 9 as observed in our dataset (see eTableS1).

1.6 Predictions at the Patient Level - Technical Details

We consider the following three types of predictions. Type A is prediction at time of hos-

pitalization, Type B is prediction at the entrance to any new clinical state, and prediction

Type C is done during the stay at a certain state. Let Z(t) consist of age, sex, clinical state

at time of hospitalization, the cumulative number of days in hospital up to the entrance

to the current state, an indicator variable equal to 1 if previously visited Critical state

and 0 otherwise, and the interactions of each of these covariates with age.
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Type A. Given age = a, sex = s (s is either 1 or 0) and state at time of hospitalization

j⇤, the vector of covariates for prediction at time of hospitalization is given by

Z(t) = Z(0) = {a, s, I(j⇤ = M), I(j⇤ = S), 0, 0, a · s, a · I(j⇤ = M), a · I(j⇤ = S), 0, 0}

and Eq’s (7) and (8) provide the estimated probabilities of the next state j and the prob-

ability of transitioning by day t given the transition j⇤ ! j and Z(0).

Type B. Given age = a, sex = s, state at hospitalization j⇤, the patient now entered state

j0, the cumulative number of days in hospital up to the entrance to the current state equals

t0, the vector of covariates for predictions is

Z(t0) = {a, s, I(j⇤ = M), I(j⇤ = S), t0,W, a · s, a · I(j⇤ = M), a · I(j⇤ = S), a · t0, a ·W}

where W = 1 if previously visited C, and 0 otherwise. Hence, Eq’s (9) and (10) provide

the estimated probabilities of the next state j and the probability of transitioning by day

t given the transition j⇤ ! j0 and Z(t0).

Type C. Given Z(t0) as in Type B, and given that the patient is at state j0 for already d

days, the following are the updated predictions where we take into account the d days in

current state but there is no change in the vector of covariates Z(t0). Specifically, the next

state probability pj|j0,Z,d, j = 1, . . . , Kj0 , is given by

pj|j0,Z,d =

P
t0+d<tm⌧j0,j

exp
⇣
b�T
j0,jZ

⌘
b�0j0,j(tm) exp

n
�
PKj0

k=1
b⇤0j0,k(tm�1) exp

⇣
b�T
j0,kZ

⌘o

PKj0
j⇤⇤=1

P
t0+d<tm⌧j0,j⇤⇤

exp
⇣
b�T
j0,j⇤⇤Z

⌘
b�0j0,j⇤⇤(tm) exp

n
�
PKj0

k=1
b⇤0j0,k(tm�1) exp

⇣
b�T
j0,kZ

⌘o ,

where summations are over the observed event times of the respective transition. Given

the new sampled state, denoted by j̆, the time to be spent at j0 is predicted by

cPr(T  t|JN = j̆, JC = j0, Z(t0) = Z, d)

=

P
t0+d<tmt exp

⇣
b�T
j0,j̆

Z
⌘
b�0j0,j̆(tm) exp

n
�
PKj0

k=1
b⇤0j0,k(tm�1) exp

⇣
b�T
j0,kZ

⌘o

P
t0+d<tm⌧j0,j̆

exp
⇣
b�T
j0,j̆

Z
⌘
b�0j0,j̆(tm) exp

n
�
PKj0

k=1
b⇤0j0,k(tm�1) exp

⇣
b�T
j0,kZ

⌘o .
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1.7 Weighted Bootstrap Standard Error for Prediction at the

Subject Level

Denote the total number of patients in the training data n. Our goal is estimating the

standard error (SE) of predictions of a new patient with baseline covariate Xo. The follow-

ing is a weighted bootstrap procedure (Kosorok, 2007) for SE estimation of our proposed

MC-based estimators:

1. Sample n weight values from an exponential distribution with mean 1, and assign a

weight value to each patient in the training sample.

2. Estimate the six Cox PH models (1)–(6) with the weights sampled in Step 1.

3. Given Xo, sample 20, 000 MC paths, and based on the 20,000 paths compute all the

desired quantities according to Section 1.4.

4. Repeat Steps 1–3 B times.

The empirical variances of the B estimates are the weighted bootstrap SEs estimates. For

example, the empirical variance of the B death probability estimates is the SE estimate of

the estimated death probability of this new patient.

1.8 Prediction at the Health-System Level

As described above, for prediction at the patient level, for any given vector of covariates

one should run a large number of MC paths, summarize the MC runs and obtain the

distributions of LOS in hospital, of LOSCS, etc. Predictions at the hospital level for

Snapshot, Arrival or Snapshot plus Arrival (see Section 1.3 for details) require a di↵erent

MC approach, as follows:

1. Sample one hospitalization path for each patient at the starting date for Snapshot

patients and at the patient hospitalization date for Arrival patients.

2. Summarize the paths over all the patients during the predefined period. For example,

count the number of patients in the hospital at each day.
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3. Repeat Steps 1–2 above a large number of times (e.g. 10,000), and summarize over

these repeats. For example, get the mean or various quantiles of the number of

patients in the hospital at each day.

2 Results

Data analysis was conducted in R (R Core Team, 2020). Table S2 – Table S4 provide the

regression coe�cients of each of the transition models (1)–(6). The following are summaries

of the various MC predictions.

2.1 Prediction at the Patient Level

Table S5 provides death probabilities for various patient types defined by sex, age and state

at time of hospitalization. Prediction is based on 20,000 MC paths for each patient type

along with weighted-bootstrap 95% confidence intervals. As expected, death probability

increases with age and with state severity at time of hospitalization. Table S6 gives the

probability of being at critical state during hospitalization by patient types along with

weighted-bootstrap 95% confidence intervals. The 10%, 25%, 50%, 75% and 90% quantiles

of LOS in days and weighted-bootstrap standard errors, by patient type are given in Ta-

ble S7. Quantiles of LOSCS in days, given being in critical state with weighted bootstrap

standard errors are presented in Table S8 by patient type. Plots of the cumulative distri-

bution function of LOS by patient types are provide in Figure S2. All the above results

are based on 20,000 MC paths for the estimates of each patient type, and 500 weighted

bootstrap samples, each with 20,000 MC paths, for the standard error estimates for each

patient type.

The AUROC and Brier Score results, based on 8-fold cross validation, are presented in

Table S10 (more details on the 8-fold cross validation study in the next section). The mean

AUROC and Brier Scores estimates for death prediction over the eight held-out subsets

are 0.955 (SE=0.035) and 0.043 (SE=0.011); the respective AUROC and Brier score of

predicting critical clinical state visit are 0.880 (SE=0.040) and 0.049 (SE=0.013).
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2.2 Prediction at the Health System Level - Random Subset of

Patients 8-fold Cross Validation

The entire dataset was randomly partitioned into 8 groups of about 330 patients each. Each

time the model was trained with one group omitted (held-out), and our prediction tool was

used to provide predictions for the patients of the held-out group. We demonstrate the

results of one held-out random group in Figure S3 for the arrival process and two snapshots,

at April 1st and 15th. Evidently, our prediction tool performs very well in terms of absolute

error. Similar conclusions are obtained from Figure S4 which provides the summary over

the 8 held-out groups. Tables S9 presents the mean absolute errors (MAE) of each held-out

group and over the eight groups. MAE is defined as the mean of the absolute daily-based

di↵erences between observed and predicted number of patients; the means are over 64,

32 and 18 days, for the Arrival and the two Snapshot settings, respectively. “ALL” (in

Tables S9) refers to MAE between the mean curves of the estimated and predicted curves

of the 8 held-out random groups, and “Mean” (SE) are the means and SEs of the 8 MAEs.

The results show excellent prediction performances with small mean MAE. In particular,

4.72 (SE=1.07) and 1.68 (SE=0.40) for LOS and LOSCS of Arrival; 3.15 (SE=1.20) and

1.47 (SE=0.56) for LOS and LOSCS of April 1st Snapshot; and 3.13 (SE=1.07) and 1.98

(SE=0.93) for LOS and LOSCS of April 15th Snapshot.

2.3 Prediction at the Health System Level - Hospital Holdout

We further evaluate the model by training on a sample where patients from each hospital

in turn are held-out and not included in the training dataset. Figure S5 and Figure S6

demonstrate our ability to predict for the two hospitals with the largest patient population

in our sample, hospitals H5 and H7 (we were asked to avoid identifying the hospital names).

Evidently, load predictions for H5 are satisfactory, but not so for H7. It shows that when

using our model for predicting at the hospital level, it is preferable to include patients from

the predicted hospital in the training data thus avoiding possible hospital-specific biases.

Table S11 and Table S12 show the mean absolute error, ROC AUC and Brier Scores for

predicting death and visiting critical state for each hospital. In some hospitals, the number

of deceased or number of patients with visits at Critical are very small, so results should
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be interpreted with caution.

2.4 Prediction at the Health System Level - Hypothetical Sce-

narios

Assume we would like to predict the hospitalized load in a certain health-care system in a

given period of time using the Snapshot plus Arrival approach (see Section 1.3 for details).

Three hypothetical scenarios were constructed based on the observed arrival process of a

random hold-out sample of size 330 (specifically, we used the first random subset described

in Section 2.2 and Figure S3):

1. “Younger”: patients of age 60 and above within the held-out sample were replaced

by patients of ages between 40–50 with probability 2/3, and between 50–60 with

probability 1/3. Given the age group of a new patient, the specific age, sex and

clinical state at time of hospitalization were sampled based on the distribution of

Israeli COVID-19 patients.

2. “Milder”: patients at the critical clinical state at time of hospitalization were left at

the critical state or replaced by Severe or Moderate patients, each with probabilities

1/3. Given the state at time of hospitalization of a new patient, the specific age and

sex were sampled based on the distribution of Israeli COVID-19 patients.

3. “Elder Care Nursing Home Outbreak”: On the 5th week from the beginning

of the arrival process, and only for this week, the number of patients at age 70 and

above was multiplied by four. Age and sex of the new patients were sampled based

on the Israeli population distribution, and the state at time of hospitalization was

sampled based on the distribution of Israeli COVID-19 patients.

The model was trained by the data not including the random held-out sample, and pre-

diction was performed with 10,000 MC paths as described in Section 1.8. The results are

presented in Figure S7 as well as in Figure 2 of the main paper. Table S13 (same as Table

3 of main paper) shows the number of observed death based on the actual data of the

held-out sample, versus the expected number of deaths for each of the above hypotheti-

cal scenarios. The high similarity between the observed and expected number of deaths
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demonstrate that our proposed model is well calibrated. Under the “Younger” scenario

the number of deaths decreases dramatically, the decrease is moderate under the “Milder”

scenario, and as expected, an outbreak at elder care nursing home yields a substantial

increase in number of deaths.
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Table S1: Summary of the observed hospitalization course (observed paths): Di - Dis-
charged, M/S - Moderate/Severe, C - Critical, De - Deceased. A patient enters the hos-
pital at a moderate, severe or critical clinical state, and can move among the transient
clinical states during the course of hospitalization. The longest observed path consists of 9
transitions.

path frequency
1 M/S 148
2 M/S Di 1977
3 M/S Di M/S 19
4 M/S Di M/S Di 68
5 M/S Di M/S Di M/S 1
6 M/S Di M/S Di M/S Di 5
7 M/S Di M/S Di M/S Di M/S Di M/S Di 1
8 M/S Di M/S C 2
9 M/S Di M/S De 2
10 M/S Di C 1
11 M/S Di C M/S Di 1
12 M/S C 49
13 M/S C Di 4
14 M/S C M/S 25
15 M/S C M/S Di 61
16 M/S C M/S Di M/S Di 1
17 M/S C M/S C 8
18 M/S C M/S C M/S 4
19 M/S C M/S C M/S Di 13
20 M/S C M/S C M/S Di M/S 1
21 M/S C M/S C M/S C 1
22 M/S C M/S C M/S C M/S 1
23 M/S C M/S C M/S C M/S C 1
24 M/S C M/S C M/S C De 1
25 M/S C M/S C De 3
26 M/S C M/S De 2
27 M/S C De 64
28 M/S De 44
29 C 42
30 C Di 6
31 C M/S 12
32 C M/S Di 33
33 C M/S Di M/S 1
34 C M/S C 3
35 C M/S C M/S 2
36 C M/S C M/S Di 6
37 C M/S C M/S C 1
38 C M/S C M/S C M/S 2
39 C M/S C M/S C M/S Di 2
40 C M/S C M/S C M/S C 1
41 C M/S C M/S C De 2
42 C M/S C M/S De 1
43 C M/S C De 3
44 C M/S De 4
45 C De 74
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Table S2: Results of Cox survival analysis models of transitions from Critical state: STH:
state at time of hospitalization (Moderate/Severe/Critical); HistCrt equals 1 if visited
Critical state previously; Cum. Days is the number of days in hospital at entry to current
state. The reported values are the regression coe�cients (robust SE, p-value if smaller than
0.05). Results are based on 460 state visits (a patient can visit the state multiple times).
Next states: 140 to Deceased state, 220 to Moderate/Severe state, and 10 to Discharged
state.

Transition to Deceased Transition to Moderate/Severe
estimate (SE, pvalue) estimate (SE, pvalue)

Age 0.022 (0.023) 0.006 (0.009)
Sex (Male) -3.156 (1.329, 0.018) 0.278 (0.614)
STH (Severe) -0.799 (1.841) -0.471 (0.775)
STH (Critical) -1.410 (1.761) 0.543 (0.758)
Cum. Days 0.059 (0.253) 0.057 (0.078)
HistCrt (yes) 3.499 (3.921) 3.180 (1.451, 0.028)
Age:sex (Male) 0.037 (0.017, 0.028) -0.011 (0.009)
Age:STH (Severe) 0.012 (0.024) 0.006 (0.011)
Age:STH (Critical) 0.021 (0.022) -0.011 (0.011)
Age:Cum. Days -0.0008 (0.003) -0.0008 (0.001)
Age:HistCrt (yes) -0.055 (0.046) -0.030 (0.019)
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Table S3: Results of Cox survival analysis models of transitions from Moderate/Severe
state: STH: state at time of hospitalization (Moderate/Severe/Critical); HistCrt equals 1
if visited Critical state previously; Cum. Days is the number of days in hospital at entry
to current state. The reported values are the regression coe�cients (robust SE, p-value
if smaller than 0.05). Results are based on 2771 state visits (a patient can visit in the
state multiple times). Next states: 53 to Deceased state, 295 to Critical state, and 2233 to
Discharged state. Some covariates are not used in some of the models, see 1.1.

Transition to Deceased Transition to Critical Transition to Discharged

estimate (SE, pvalue) estimate (SE, pvalue) estimate (SE, pvalue)

Age 0.103 (0.026, 0.0000) 0.029 (0.006, 0.000) -0.015 (0.002, 0.000)

Sex (Male) -3.039 (2.351) 0.045 (0.531) -0.307 (0.145, 0.034)

STH (Severe/Critical) 4.278 (2.544) - -

STH (Severe) - 1.945 (0.589, 0.001) 0.205 (0.186)

STH (Critical) - 1.275 (1.710) 0.598 (0.899)

Cum. Days -0.872 (0.532) 0.010 (0.070) -0.010 (0.027)

HistCrt (yes) - 1.643 (1.301) -0.183 (0.660)

Age:sex (Male) 0.037 (0.028) 0.005 (0.007) 0.005 (0.002, 0.028)

Age:STH(Severe/Critical) -0.037 (0.030) - -

Age:STH (Severe) - -0.010 (0.008) -0.009 (0.003, 0.002)

Age:STH (Critical) - -0.003 (0.0M/S) -0.0132 (0.014)

Age:Cum. Days 0.010 (0.006) 0.000 (0.0009) 0.0002 (0.0004)

Age:HistCrt (yes) - -0.016 (0.018) -0.003 (0.010)

Table S4: Results of Cox survival analysis models of transition from Discharged state
to Moderate/Severe state: STH: state at time of hospitalization (Moderate vs. Se-
vere/Critical); Cum. Days is the number of days in hospital at entry to current state.
The reported values are the regression coe�cients (robust SE, p-value if smaller than 0.05).
Results are based on 1820 state visits (a patient can visit in the state multiple times). Next
states: 0 at Deceased state, 2 at Critical state, and 103 at Moderate/Severe state.

estimate (SE, pvalue)
Age 0.043 (0.010, 0.0000)
Sex (Male) 0.294 (0.763)
STH (Severe/Critical) 0.648 (1.525)
Cum. Days 0.287 (0.081, 0.0004)
Age:sex (Male) 0.0017 (0.012)
Age:STH (Severe/Critical) 0.007 (0.022)
Age:Cum. Days 0.003 (0.001, 0.0099)
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Table S5: Death probability by patient type (state at time of hospitalization, age, sex) based
on 20,000 MC paths for each patient type (weighted bootstrap 95% confidence interval).

Patient Type Male Female
Moderate, 15 0.000 (0.000,0.002) 0.001 (0.000,0.004)
Moderate, 25 0.001 (0.000,0.003) 0.002 (0.000,0.006)
Moderate, 35 0.002 (0.000,0.005) 0.004 (0.000,0.009)
Moderate, 45 0.003 (0.000,0.007) 0.007 (0.000,0.014)
Moderate, 55 0.009 (0.00,0.02) 0.013 (0.00,0.02)
Moderate, 65 0.022 (0.01,0.03) 0.026 (0.01,0.04)
Moderate, 75 0.058 (0.03,0.09) 0.053 (0.03,0.08)
Moderate, 85 0.151 (0.09,0.21) 0.122 (0.08,0.17)

Severe, 15 0.005 (0.00,0.01) 0.009 (0.00,0.03)
Severe, 25 0.010 (0.00,0.03) 0.017 (0.00,0.05)
Severe, 35 0.016 (0.00,0.04) 0.027 (0.00,0.06)
Severe, 45 0.023 (0.00,0.06) 0.046 (0.00,0.09)
Severe, 55 0.043 (0.00,0.09) 0.075 (0.01,0.14)
Severe, 65 0.096 (0.04,0.15) 0.126 (0.04,0.21)
Severe, 75 0.214 (0.15,0.28) 0.217 (0.13,0.31)
Severe, 85 0.443 (0.32,0.56) 0.389 (0.29,0.49)

Critical, 15 0.023 (0.00,0.11) 0.061 (0.00,0.22)
Critical, 25 0.043 (0.00,0.15) 0.099 (0.00,0.28)
Critical, 35 0.069 (0.00,0.19) 0.153 (0.00,0.34)
Critical, 45 0.083 (0.00,0.22) 0.224 (0.00,0.42)
Critical, 55 0.153 (0.04,0.27) 0.299 (0.11,0.49)
Critical, 65 0.299 (0.18,0.42) 0.414 (0.26,0.57)
Critical, 75 0.546 (0.43,0.66) 0.549 (0.43,0.67)
Critical, 85 0.829 (0.74,0.91) 0.754 (0.65,0.86)
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Table S6: The probability of being at critical state during hospitalization by patient type
(state at time of hospitalization, age, sex) based on 20,000 MC paths for each type (weighted
bootstrap 95% confidence interval).

Patient Type Male Female
Moderate, 15 0.011 (0.00,0.02) 0.008 (0.00,0.01)
Moderate, 25 0.016 (0.01,0.02) 0.011 (0.00,0.02)
Moderate, 35 0.025 (0.02,0.03) 0.019 (0.01,0.03)
Moderate, 45 0.037 (0.02,0.05) 0.029 (0.02,0.04)
Moderate, 55 0.059 (0.05,0.07) 0.041 (0.03,0.06)
Moderate, 65 0.085 (0.07,0.10) 0.061 (0.04,0.08)
Moderate, 75 0.129 (0.11,0.15) 0.099 (0.07,0.13)
Moderate, 85 0.179 (0.14,0.22) 0.134 (0.09,0.19)

Severe, 15 0.060 (0.02,0.10) 0.045 (0.00,0.10)
Severe, 25 0.084 (0.04,0.13) 0.067 (0.01,0.13)
Severe, 35 0.127 (0.08,0.18) 0.091 (0.03,0.16)
Severe, 45 0.175 (0.12,0.23) 0.131 (0.07,0.20)
Severe, 55 0.241 (0.19,0.29) 0.185 (0.13,0.24)
Severe, 65 0.319 (0.27,0.37) 0.256 (0.20,0.31)
Severe, 75 0.404 (0.35,0.46) 0.323 (0.27,0.38)
Severe, 85 0.467 (0.39,0.56) 0.385 (0.31,0.46)
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Table S7: Quantiles of length of stay in days, by patient type (sex, age and state at time
of hospitalization), based on 20,000 MC paths for each patient type (weighted bootstrap
standard error).

Patient Type 10% 25% 50% 75% 90%
Male, 15, Moderate 1 (0.37) 3 (0.37) 5 (0.37) 8 (0.53) 13 (0.92)
Male, 25, Moderate 2 (0.49) 3 (0.00) 5 (0.45) 9 (0.47) 14 (0.88)
Male, 35, Moderate 2 (0.41) 3 (0.00) 6 (0.19) 10 (0.48) 16 (0.95)
Male, 45, Moderate 2 (0.01) 3 (0.17) 6 (0.19) 11 (0.49) 18 (0.97)
Male, 55, Moderate 2 (0.00) 4 (0.33) 7 (0.17) 12 (0.58) 21 (0.69)
Male, 65, Moderate 2 (0.00) 4 (0.00) 7 (0.50) 13 (0.52) 24 (1.06)
Male, 75, Moderate 2 (0.00) 4 (0.48) 8 (0.50) 15 (0.66) 28 (1.44)
Male, 85, Moderate 2 (0.32) 5 (0.49) 8 (0.54) 16 (0.94) 29 (2.05)

Male, 15, Severe 1 (0.28) 3 (0.50) 5 (0.58) 8 (0.92) 14 (2.49)
Male, 25, Severe 1 (0.50) 3 (0.20) 6 (0.56) 10 (1.07) 18 (3.14)
Male, 35, Severe 2 (0.29) 3 (0.39) 6 (0.52) 12 (1.29) 25 (3.54)
Male, 45, Severe 2 (0.00) 4 (0.27) 8 (0.56) 16 (1.59) 36 (4.26)
Male, 55, Severe 2 (0.00) 4 (0.49) 9 (0.69) 21 (1.45) 42 (2.76)
Male, 65, Severe 2 (0.49) 5 (0.46) 11 (0.88) 26 (2.01) 45 (1.62)
Male, 75, Severe 3 (0.10) 6 (0.36) 12 (0.10) 28 (2.08) 47 (1.75)
Male, 85, Severe 3 (0.26) 6 (0.47) 10 (0.10) 23 (2.77) 42 (5.89)

Male, 15, Critical 6 (1.21) 9 (2.22) 16 (4.09) 26 (6.87) 41 (6.60)
Male, 25, Critical 6 (1.16) 11 (2.13) 19 (3.78) 31 (6.34) 42 (4.79)
Male, 35, Critical 7 (1.05) 13 (1.92) 22 (3.39) 37 (5.17) 45 (3.03)
Male, 45, Critical 8 (0.92) 14 (1.79) 25 (3.04) 42 (3.51) 47 (2.08)
Male, 55, Critical 8 (0.95) 15 (1.78) 28 (2.49) 44 (2.55) 48 (1.65)
Male, 65, Critical 6 (0.69) 13 (1.58) 26 (2.39) 45 (1.79) 51 (1.76)
Male, 75, Critical 3 (0.79) 8 (0.86) 20 (2.08) 40 (4.71) 48 (1.85)
Male, 85, Critical 2 (0.47) 4 (0.83) 9 (1.25) 21 (3.09) 37 (5.84)

Female, 15, Moderate 1 (0.00) 2 (0.20) 4 (0.24) 7 (0.52) 10 (0.87)
Female, 25, Moderate 1 (0.10) 2 (0.50) 5 (0.50) 8 (0.54) 12 (0.88)
Female, 35, Moderate 1 (0.40) 3 (0.00) 5 (0.34) 9 (0.55) 14 (0.86)
Female, 45, Moderate 2 (0.31) 3 (0.00) 6 (0.17) 10 (0.50) 17 (0.97)
Female, 55, Moderate 2 (0.00) 3 (0.50) 7 (0.37) 12 (0.49) 20 (1.04)
Female, 65, Moderate 2 (0.00) 4 (0.00) 8 (0.46) 13 (0.49) 22 (1.17)
Female, 75, Moderate 2 (0.22) 4 (0.49) 9 (0.49) 15 (0.78) 26 (1.52)
Female, 85, Moderate 3 (0.39) 5 (0.37) 9 (0.51) 17 (1.15) 29 (1.85)

Female, 15, Severe 1 (0.00) 2 (0.22) 4 (0.48) 7 (0.84) 11 (1.92)
Female, 25, Severe 1 (0.20) 3 (0.49) 5 (0.53) 8 (0.87) 14 (2.34)
Female, 35, Severe 2 (0.47) 3 (0.00) 6 (0.49) 10 (1.07) 20 (2.54)
Female, 45, Severe 2 (0.10) 4 (0.46) 7 (0.47) 13 (1.10) 25 (2.59)
Female, 55, Severe 2 (0.00) 4 (0.17) 8 (0.54) 17 (1.22) 31 (2.54)
Female, 65, Severe 3 (0.49) 5 (0.33) 10 (0.62) 21 (1.34) 39 (3.14)
Female, 75, Severe 3 (0.14) 6 (0.36) 11 (0.96) 24 (1.89) 42 (3.29)
Female, 85, Severe 3 (0.50) 6 (0.46) 12 (1.20) 25 (2.75) 37 (4.90)

Female, 15, Critical 5 (1.02) 9 (1.24) 15 (2.38) 26 (4.63) 39 (7.74)
Female, 25, Critical 5 (1.13) 9 (2.17) 16 (4.13) 27 (6.97) 42 (7.02)
Female, 35, Critical 6 (1.00) 10 (1.94) 18 (2.41) 30 (3.59) 42 (6.05)
Female, 45, Critical 5 (1.10) 10 (1.83) 19 (3.17) 32 (5.41) 44 (3.60)
Female, 55, Critical 5 (1.02) 9 (1.65) 20 (2.41) 34 (3.97) 45 (1.91)
Female, 65, Critical 4 (1.03) 8 (1.55) 18 (2.73) 34 (3.96) 45 (1.87)
Female, 75, Critical 3 (0.64) 6 (1.07) 15 (2.91) 31 (4.23) 47 (1.86)
Female, 85, Critical 2 (0.68) 5 (0.91) 9 (1.86) 24 (4.77) 42 (5.62)
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Table S8: Quantiles of length of stay in critical state in days, given being in critical, by
patient type (sex, age and state at time of hospitalization), based on 20,000 MC paths for
each patient type (weighted bootstrap standard error).

Patient Type 10% 25% 50% 75% 90%
Male, 15, Moderate 2 (0.69) 5 (1.43) 10 (2.66) 19 (4.85) 31 (6.48)
Male, 25, Moderate 2 (0.64) 5 (1.28) 10 (2.36) 20 (4.25) 32 (4.91)
Male, 35, Moderate 2 (0.56) 5 (1.04) 10 (1.96) 21 (3.34) 30 (4.10)
Male, 45, Moderate 2 (0.49) 6 (0.92) 12 (1.83) 22 (2.78) 32 (3.11)
Male, 55, Moderate 3 (0.49) 5 (0.81) 11 (1.24) 22 (1.84) 33 (2.31)
Male, 65, Moderate 2 (0.44) 5 (0.70) 12 (1.21) 21 (1.83) 32 (1.94)
Male, 75, Moderate 2 (0.14) 4 (0.56) 11 (1.15) 20 (1.69) 30 (2.50)
Male, 85, Moderate 2 (0.48) 4 (0.67) 9 (1.45) 17 (2.37) 27 (3.07)

Male, 15, Severe 3 (1.07) 7 (2.37) 14 (4.81) 26 (6.84) 36 (6.71)
Male, 25, Severe 3 (0.95) 6 (2.03) 14 (3.92) 25 (5.67) 37 (5.47)
Male, 35, Severe 3 (0.79) 7 (1.78) 14 (3.15) 26 (4.55) 37 (4.11)
Male, 45, Severe 3 (0.63) 7 (1.41) 15 (2.46) 26 (3.40) 36 (3.07)
Male, 55, Severe 3 (0.56) 7 (1.87) 15 (1.72) 25 (2.45) 34 (2.25)
Male, 65, Severe 3 (0.40) 6 (0.98) 14 (1.49) 24 (2.17) 33 (2.13)
Male, 75, Severe 3 (0.50) 6 (0.76) 13 (1.27) 23 (1.75) 31 (2.01)
Male, 85, Severe 2 (0.50) 4 (0.69) 10 (1.68) 19 (2.48) 28 (2.68)

Male, 15, Critical 2 (0.62) 5 (1.45) 11 (2.96) 19 (4.71) 30 (6.37)
Male, 25, Critical 3 (0.64) 6 (1.38) 12 (2.55) 23 (4.09) 33 (5.56)
Male, 35, Critical 3 (0.61) 7 (1.24) 14 (2.26) 25 (3.28) 37 (4.35)
Male, 45, Critical 4 (0.55) 8 (0.96) 16 (1.66) 27 (2.73) 39 (3.23)
Male, 55, Critical 4 (0.63) 8 (1.04) 17 (1.45) 29 (2.00) 40 (2.67)
Male, 65, Critical 4 (0.62) 8 (0.88) 17 (1.29) 30 (2.13) 40 (3.51)
Male, 75, Critical 3 (0.48) 6 (0.63) 14 (1.44) 26 (1.99) 37 (2.85)
Male, 85, Critical 2 (0.43) 4 (0.73) 8 (0.90) 18 (2.33) 30 (2.71)

Female, 15, Moderate 1 (0.85) 4 (1.50) 10 (3.69) 21 (5.66) 28 (7.07)
Female, 25, Moderate 2 (0.66) 4 (1.36) 9 (3.08) 15 (5.04) 22 (6.35)
Female, 35, Moderate 2 (0.52) 4 (0.98) 9 (2.16) 16 (3.81) 25 (5.21)
Female, 45, Moderate 1 (0.57) 3 (0.70) 8 (1.63) 16 (2.84) 24 (4.02)
Female, 55, Moderate 2 (0.46) 3 (0.43) 7 (1.09) 14 (1.74) 24 (2.52)
Female, 65, Moderate 1 (0.47) 3 (0.26) 7 (0.84) 13 (1.37) 21 (1.77)
Female, 75, Moderate 1 (0.48) 3 (0.22) 7 (0.78) 13 (1.27) 22 (1.72)
Female, 85, Moderate 1 (0.43) 3 (0.24) 7 (0.92) 13 (1.48) 21 (2.12)

Female, 15, Severe 3 (1.06) 7 (2.31) 14 (4.52) 26 (6.50) 35 (6.46)
Female, 25, Severe 2 (0.86) 5 (1.91) 12 (3.83) 24 (5.64) 35 (5.89)
Female, 35, Severe 2 (0.74) 5 (1.56) 11 (2.98) 22 (4.73) 32 (5.11)
Female, 45, Severe 2 (0.55) 5 (1.13) 11 (2.34) 20 (3.48) 30 (4.28)
Female, 55, Severe 2 (0.33) 4 (0.67) 9 (1.32) 17 (2.10) 27 (2.77)
Female, 65, Severe 2 (0.32) 4 (0.66) 9 (1.01) 16 (1.58) 25 (2.17)
Female, 75, Severe 2 (0.30) 4 (0.53) 8 (0.98) 15 (1.50) 23 (2.01)
Female, 85, Severe 1 (0.47) 3 (0.35) 7 (1.14) 14 (1.64) 22 (2.21)

Female, 15, Critical 2 (0.80) 5 (1.80) 11 (3.68) 20 (6.36) 32 (7.86)
Female, 25, Critical 2 (0.68) 5 (1.64) 11 (3.15) 21 (5.45) 32 (6.91)
Female, 35, Critical 3 (0.66) 5 (1.34) 11 (2.48) 21 (4.39) 33 (5.62)
Female, 45, Critical 3 (0.60) 5 (0.99) 11 (1.99) 21 (3.48) 32 (4.56)
Female, 55, Critical 3 (0.55) 5 (0.75) 11 (1.46) 20 (2.47) 31 (3.02)
Female, 65, Critical 2 (0.54) 5 (0.70) 10 (1.33) 20 (2.18) 31 (2.89)
Female, 75, Critical 2 (0.54) 5 (0.55) 9 (1.07) 18 (2.07) 28 (2.88)
Female, 85, Critical 2 (0.43) 4 (0.60) 7 (0.84) 15 (2.34) 25 (3.04)
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Table S9: Random subset of patients holdout: Mean absolute error (MAE) for predicting
number of hospitalized and number of critical patients over each held-out group and over
the eight random groups together under the evaluation setups described in subsection 1.3.
Group Arrival Arrival Snapshot Snapshot Snapshot Snapshot

Number All Critical Apr 1st, All Apr 1st, Critical Apr 15st, All Apr 15th, Critical

1 3.79 2.07 3.52 1.83 3.78 2.73

2 4.09 2.03 2.03 1.79 1.73 1.97

3 5.99 1.81 4.20 1.19 3.37 3.72

4 6.35 1.58 5.46 0.81 3.39 2.06

5 5.32 1.41 2.19 1.22 4.89 1.17

6 3.48 2.14 2.32 2.27 2.84 2.11

7 3.94 1.04 2.32 0.71 1.63 1.03

8 4.86 1.33 3.14 1.90 3.39 1.04

All 4.11 1.29 2.41 0.75 2.68 1.25

Mean (SE) 4.72 (1.07) 1.68 (0.40) 3.15 (1.20) 1.47 (0.56) 3.13 (1.07) 1.98 (0.93)

Table S10: Random subset of patients holdout: ROC AUC and Brier Score of death predic-
tion and critical-state-visit prediction by held-out group. Critical-state-visit prediction is
not including patients started at critical state. The mean ROC AUC and Brier Scores esti-
mates for death prediction over the eight held-out subsets are 0.955 (SE=0.035) and 0.043
(SE=0.011); the respective numbers of visiting-critical prediction are 0.880 (SE=0.040) and
0.049 (SE=0.013).

Death Prediction Visiting-Critical Prediction
group group number of number in critical
number size deceased AUC Brier (started in critical) AUC Brier
1 330 26 0.966 0.047 20 (29) 0.899 0.034
2 331 29 0.936 0.056 23 (28) 0.862 0.048
3 329 19 0.980 0.038 32 (22) 0.958 0.030
4 329 20 0.978 0.028 30 (23) 0.860 0.051
5 331 24 0.977 0.030 34 (23) 0.828 0.053
6 330 28 0.958 0.057 33 (17) 0.904 0.072
7 330 19 0.876 0.038 22 (20) 0.849 0.049
8 330 28 0.971 0.052 32 (22) 0.876 0.055
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Table S11: Hospital holdout: Mean absolute error (MAE) for each held-out hospital for
predicting number of hospitalized and number of critical patients under the evaluation
setups described in subsection 1.3.

Number of All Critical Snapshot Snapshot Snapshot Snapshot

Patients Patients Patients Apr 1st Apr 1st Apr 15st Apr 15st

Hospital (MAE) (MAE) All (MAE) Critical (MAE) All (MAE) Critical (MAE)

H1 298 8.51 2.24 3.57 1.44 4.57 1.19

H2 166 6.48 0.82 4.10 0.66 3.83 1.15

H3 142 3.91 1.55 1.57 0.64 1.14 1.29

H4 105 3.78 1.01 1.65 1.96 1.53 1.46

H5 343 5.55 1.67 2.68 1.29 5.74 2.08

H6 111 2.11 0.75 2.02 0.63 2.15 0.92

H7 373 11.44 7.06 7.11 8.58 10.40 7.74

H8 215 5.71 2.61 7.79 1.10 2.41 3.66

Table S12: Hospital holdout: ROC AUC and Brier Score of death prediction and critical-
state visit prediction for each held-out hospital. Critical-state-visit prediction does not
include patients who started hospitalization at critical state.

Death Prediction Visiting-Critical Prediction

Number of Number of Number in Critical

Hospital Patients Deceased AUC Brier (started in Critical) AUC Brier

H1 298 16 0.856 0.043 22 (18) 0.699 0.045

H2 166 5 0.986 0.020 7 (10) 0.999 0.021

H3 142 11 0.976 0.048 16 (11) 0.917 0.092

H4 105 8 0.946 0.053 8 (4) 0.953 0.052

H5 343 26 0.982 0.044 35 (34) 0.892 0.059

H6 111 8 0.913 0.047 12 (7) 0.801 0.066

H7 373 26 0.970 0.046 43 (27) 0.897 0.046

H8 215 23 0.959 0.039 29 (23) 0.951 0.047
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Table S13: Predicted number of deaths (in-hospital mortality) within a random subset
of 330 held-out patients: based on Arrival plus Snapshot prediction results of hypothetical
scenarios, prediction starts on the 15th day of the observed arrival process. The num-
bers are the observed and predicted number of deaths for each hypothetical scenario from
hospitalization day up to day t in hospital, t = 5, 10, . . . , 35.

Day t Observed Expected Younger Milder NH Outbreak
5 7 6.5 0.6 3.7 8.2
10 16 16.6 1.9 11.7 22.6
15 20 20.4 2.5 15.0 28.3
20 23 22.8 3.0 17.3 32.1
25 24 25.4 3.4 19.7 36.5
30 25 25.9 3.5 20.1 37.0
35 26 26.6 3.7 20.6 37.7
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Figure S2: The cumulative distribution function of the length of hospitalization by patient
types (sex, state at time of hospitalization and age). Each curve is based on 20,000 MC
paths.
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Figure S3: Prediction results of one held-out random group of patients. Left figures: uti-
lization predictions for the entire held-out sample. Right figures: utilization predictions
for critical patients among the held-out sample. Top figures: Arrival-type predictions of
the entire held-out set based on the observed arrival process. Middle figures: Snapshot-
type predictions for patients at the hospital on April 1st. Bottom figures: Snapshot
predictions for patients in the hospital on April 15th. For description of Arrival and Snap-
shot see Section 1.3.
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Figure S4: Prediction results summarized over all 8 held-out random groups of patients.
Left figures: utilization predictions for the entire held-out sample. Right figures: uti-
lization predictions for critical patients among the held-out sample. Top figures: Arrival-
type predictions of the entire held-out set based on the observed arrival process. Middle
figures: Snapshot-type predictions for patients at the hospital on April 1st. Bottom
figures: Snapshot predictions for patients in the hospital on April 15th. For description
of Arrival and Snapshot see Section 1.3.
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Figure S5: Prediction results - H5 Hospital is held out and predicted based on all other
Israeli Hospitals. Left figures: utilization predictions for the entire held-out sample.
Right figures: utilization predictions for critical patients among the held-out sample.
Top figures: Arrival-type predictions of the entire held-out set based on the observed
arrival process. Middle figures: Snapshot-type predictions for patients at the hospital
on April 1st. Bottom figures: Snapshot predictions for patients in the hospital on April
15th. For description of Arrival and Snapshot see 1.3.
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Figure S6: Prediction results - H7 Hospital is held out and predicted based on all other
Israeli Hospitals. Left figures: utilization predictions for the entire held-out sample.
Right figures: utilization predictions for critical patients among the held-out sample.
Top figures: Arrival-type predictions of the entire held-out set based on the observed
arrival process. Middle figures: Snapshot-type predictions for patients at the hospital
on April 1st. Bottom figures: Snapshot predictions for patients in the hospital on April
15th. For description of Arrival and Snapshot see 1.3.
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Figure S7: Arrival plus Snapshot prediction results of hypothetical scenarios: 330 random
patients were held-out and prediction started on the 15th day of the observed arrival process
(denoted as Day 1 in the figures). Top figure: utilization predictions based on the entire
held-out sample. Bottom figure: utilization predictions for critical patients among the
held-out sample. Gray vertical lines are point-wise 10%-90% confidence predictions.
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