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Highlights 

• PBMCs showed no differential transcriptomic signature between depressed cases 

and healthy controls suggesting that the cellular source of the immune signature 

seen in depression may be from a different cell group. 

• There was significant evidence of accelerated biological ageing in major depression 

compared to healthy controls.  

 

Abstract 

Background 

The increasingly compelling data supporting the involvement of immunobiological 

mechanisms in Major Depressive Disorder (MDD) might provide some explanation of the 

variance in this heterogeneous condition. Peripheral blood measures of cytokines and 

chemokines constitute the bulk of evidence with consistent meta-analytic data implicating 

raised proinflammatory cytokines such as IL6, IL1β and TNF. Among the potential 

mechanisms linking immunobiological changes to affective neurobiology is the accelerated 

biological ageing seen in MDD, particularly via the senescence associated secretory 

phenotype (SASP). However, the cellular source of immunobiological markers remains 

unclear.   

Aims 

Pre-clinical evidence suggests a role for peripheral blood mononuclear cells (PBMC), thus 

here we aimed to explore the transcriptomic profile using RNA sequencing in PBMCs in a 

clinical sample of people with various levels of depression and treatment response 

comparing it with that in healthy controls (HCs).  

Method 

Transcriptomic analysis of peripheral blood mononuclear cells. 

Results 

The data showed no robust signal differentiating MDD and HCs. There was, however, 

significant evidence of elevated biological ageing in MDD vs HC.  

Conclusions 

Future work should endeavour to expand clinical sample sizes and reduce clinical 

heterogeneity. The exploration of RNA-seq signatures in other leukocyte populations and 

advances in RNA sequencing at the level of the single cell may help uncover more subtle 

differences. However, currently the subtlety of any PBMC signature mitigates against its 

convincing use as a diagnostic or predictive biomarker.  
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Introduction 

 

Major Depressive Disorder (MDD) remains one of the most aetiologically opaque of human 

disorders, yet one that continues to exert a powerfully negative toll on human health - physical 

as well as mental.  MDD is both heterogeneous in its phenotypic expression and complex is 

its genetic and physiological correlates. Among the latter there are increasingly compelling 

data supporting the involvement of immunobiology in MDD. However, the mechanisms 

underpinning this relationship remain unclear. Peripheral blood measures constitute the bulk 

of evidence with consistent meta-analytic data implicating raised proinflammatory cytokines. 

The most comprehensive genome-wide association study (GWAS) to date on MDD used 7 

major cohorts and identified 44 independent loci and 153 genes1. Forty-five of these were in 

the extended major histocompatibility complex (MHC), which is central to acquired immunity 

and to leukocyte interactions. 

Whole-transcriptome studies offer another variant of genome-wide search for disease-related 

mechanisms by measuring mRNA expression levels of each gene in a relevant tissue. RNA 

sequencing (RNA-seq) uses next-generation sequencing to provide a quantitation of RNA or 

gene expression. Recent studies have used this method in MDD. One of the largest examined 

a total sample of 922 people (463 with MDD and 459 health controls) and sequenced RNA 

from whole blood2. A relatively small number of genes were found to be associated with MDD 

(29) at a very relaxed false discovery rate (FDR) threshold of 0.25. With the more customary 

and restrictive FDR threshold of 0.05, no significant genes were found. They also showed 

modest enrichment for the IFN α/β pathway, which included three significant genes at 

FDR<0.25.  

A number of potential mechanisms have linked immunobiological changes to affective 

neurobiology. Among these is the accelerated biological ageing seen in MDD. Immune cell 

senescence has a well-documented effect on both epigenome and transcriptome3. MDD has 

also been linked to the senescence associated secretory phenotype (SASP), a dynamic 

secretory molecular pathway indicative of cellular senescence4. This speaks to a more 

elaborate biology linking cell biology, transcriptome and inflammatory proteins produced by 

the cell. 

The cellular source of immunobiological markers in depression remains a key unanswered 

question. PBMCs are a key source of peripheral cytokines and pre-clinical models have 

suggested some PBMC subsets can enter the brain and contribute to onset of sickness 

behaviour in the context of stress. McKim et al showed that IL1β-producing monocytes were 

recruited into the brain during stress and associated with increased levels of behavioural 

anxiety5. Menard et al confirmed McKim et al’s findings showing monocyte recruitment to 

vessels and ventricular space within the brain6. Recruited monocytes can release 
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proinflammatory cytokines such as IL6 into parenchyma to act locally on neurons and glia.  

Garré et al used a viral model to show that defective cortical dendritic spine remodelling, and 

subsequent memory impairment were due to circulating CX3CR1+ monocyte-derived TNF7. 

Importantly, they showed that these exogenous monocytes, and not microglia, were 

necessary for these effects.  

Given the weight of the preclinical evidence suggesting a role for PBMCs, we aimed to explore 

the transcriptomic profile using RNA-seq in PBMCs in a clinical sample of people with various 

levels of depression and treatment response and compare with that in healthy controls.  

We aimed to answer the following research questions. 

1) Is there evidence of differential gene expression between healthy controls and MDD 

or between healthy controls and sub-types of MDD? 

2) Is there evidence of elevated immune ageing MDD compared to healthy controls? 
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Methods 

 

Participants. This was a non-interventional study, conducted as part of the Wellcome Trust 

Consortium for Neuroimmunology of Mood Disorders and Alzheimer’s disease (NIMA). There 

were five clinical study centres in the UK: Brighton, Cambridge, Glasgow, King’s College 

London, and Oxford. All procedures were approved by an independent Research Ethics 

Committee (National Research Ethics Service East of England, Cambridge Central, UK; 

approval number 15/EE/0092) and the study was conducted according to the Declaration of 

Helsinki. All participants provided informed consent in writing and received £100 

compensation for taking part. 

 

Sample and eligibility criteria. We recruited four groups of participants: treatment-resistant 

depression, treatment-responsive depression, untreated depression, and healthy volunteers.  

Eligibility criteria can be viewed in full in Supplementary Information. 

Patients were assigned to one of three subgroups or strata, per protocol:  

 

(i) treatment-resistant (DEP+MED+) patients who had total Hamilton Depression 

Rating Scale (HAM-D) score > 13 and had been medicated with a monoaminergic 

drug at a therapeutic dose for at least six weeks;  

(ii) treatment-responsive (DEP-MED+) patients who had total HAM-D < 7 and had 

been medicated with a monoaminergic drug at a therapeutic dose for at least six 

weeks; and  

(iii) untreated (DEP+MED-) patients who had HAM-D > 17 and had not been 

medicated with an antidepressant drug for at least six weeks.  

 

Questionnaire assessments. Psychological symptoms and childhood adversity were 

assessed by administration of questionnaires as previously described8 (see Supplementary 

Information). Baseline depression severity was rated using the 17-item HAM-D. 

  

Sampling and isolation of PBMCs 

Whole blood was collected in K2EDTA tubes (BD, USA) by peripheral venepuncture and 

allowed to cool to room temperature for a minimum of 45 minutes. PBMCs were collected from 

the interphase following density gradient centrifugation. RNA was extracted using the 

RNeasyMini Kit (Qiagen, Germany) as per the manufacturer’s instructions. RNA was eluted 

in 50ul RNase-free H2O and stored at -80°C before being sent for sequencing.  
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RNA-sequencing and processing.  

PBMC samples were taken from four separate population groups as follows: 44 healthy 

controls, 94 MDD treatment-resistant, 47 MDD treatment-responsive, 46 MDD untreated 

patients. All PBMC samples had an RNA Integrity Number (RIN) ≥ 8 and were analysed for 

gene expression levels by RNA-Seq to an average depth of 54.5 million read pairs. Reads 

were trimmed using Cutadapt 1 (version cutadapt-1.9.dev2)9. The reference used for mapping 

was the Homo sapiens genome from Ensembl, assembly GRCh38, annotation version 84. 

Reads were aligned to the reference genome using STAR 2 (version 2.5.2b)10. Reads were 

assigned to features of type ‘exon’ in the input annotation grouped by gene_id in the reference 

genome using featureCounts 3 (version 1.5.1). Strandedness was set to ‘reverse’ and a 

minimum alignment quality of 10 was specified. After filtering for only protein coding genes, 

we observed a median of 40 million exonic aligned reads per sample (>85%). 

 

RNA-sequencing differential expression analysis. Differential expression analysis was 

performed using DESeq2 (version 1.18.1)11. The count matrix was initially filtered to include 

only coding genes, with a mean of > 1 read per sample. For the comparisons of binary clinical 

covariates (e.g. gender, tobacco) one group was compared to the other. For continuous 

clinical covariates (e.g. age, BMI) the patients in the lower quartile were compared to those in 

the upper quartile. No additional covariates were used in the DEseq2 model when comparing 

clinical covariates. For the comparisons between HC group and the MDD groups the 15 clinical 

covariates (Figure 1b) identified as having > 5 significant associated genes (adjusted p < 

0.01) and “batch” were included as covariates in the model. To control for extreme outlier 

values typical in large and heterogeneous datasets, a Cooks cut-off of 0.2 was used. All other 

parameters were left to default. Significance was set at an adjusted p of < 0.01. For full details 

see the Supplementary Information. 

 

Deconvolution analysis. The per sample distribution of cell types was estimated by 

Cibersort12, using the Deseq2 normalised expression values (no additional covariates) as the 

mixture file, and the LM22 (22 immune cell types) signature gene file. Quantile normalisation 

was disabled. All other parameters were left to default. 

 

RNA-sequencing randomised cases and controls. The 231 samples were randomised 

using the r function “sample” (without replacement), and were then split into two random 

groups, one with 44 samples and one with 187 samples (in line with the real group distribution 

and n). These two groups were then differentially compared using DESeq2 as described 

above. For full details see the Supplementary Information. 
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Co-expression analysis. The co-expression network cluster analysis was based on the 

analysis performed by Le et al15 and used their code as a template. The method is detailed in 

full in Supplementary Information. Briefly, a correlation tree was generated from the 

expression matrix based on Pearson correlation coefficients and a topological overlap matrix. 

Clusters were identified by cutting the tree at a height of 0.95. To identify any clusters with 

significantly different gene expression between HC and MDD samples, a metagene for each 

cluster was generated using per gene Z-scores. For each cluster the mean expression z-score 

across all genes in that cluster was calculated, for each sample. The resultant scores for the 

HC samples were compared to that of the MDD samples using an unpaired, two-tailed T-test. 

p values were adjusted using the Benjamini-Hochberg procedure. 

 

Expression microarray analysis. The GSK-HiTDiP MDD16 microarray data was downloaded 

from GEO (GSE98793) and the 22 samples that were reported to have failed QC were 

removed. The expression data was then quantile normalised using Limma17. Unannotated 

probe sets were removed. To control for genes represented by several different probe sets, 

Jetset18 was used to select the probe set for each gene with the highest Jetset score. This 

resulted in 20,191 valid probe sets. Differential expression analysis was performed between 

the HC and MDD groups using Limma, and included batch, age, gender and anxiety as 

additional covariates. All other parameters were left to default. The quantile normalised 

expression values were corrected for batch using Limmas “removeBatchEffect” function. 

 

RNA-sequencing biological age meta-genes. A list of PBMC age associated genes was 

identified by using Deseq2 to compare the samples of lowest to highest quartile of age, as 

described above. Next the expression values (non-corrected but outlier capped) for the PBMC 

age related genes were scaled (per gene z-score), with the sign inversed for genes that were 

downregulated with age. Finally, the mean scaled value (across all sig genes) per sample was 

calculated. This value was considered as the samples biological age. The samples biological 

age was then plotted against the samples chronological age, and the spearman correlation 

value determined. To optimise this metric, we repeated over a range of adjusted p and log2fold 

change cut-offs and selected the combination with the greatest correlation with patient age. 

For full details see the Supplementary Information. 
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Results 

 

Table 1. Selection of samples and clinical characteristics. 

 Control 

(n=44) 

MDD 

Resistant 

(n=94) 

MDD 

Responder 

(n=47) 

MDD 

Untreated 

(n=46) 

P-Value Total 

(n=231) 

Age (Years) 

Mean  

(SD) 

 

36.6  

(7.12) 

 

37.9  

(7.49) 

 

37.8  

(8.11) 

 

36.9  

(8.50) 

 

0.74A 

 

37.5  

(7.73) 

Sex  

Male 

Female 

 

11 

(25.0%) 

33 

(75.0%) 

 

28 

(29.8%) 

66 

(70.2%) 

 

15 (31.9%) 

32 (68.1%) 

 

15 

(32.6%) 

31 

(67.4%) 

 

 

0.9B 

 

69 

(29.9%) 

169 

(70.1%) 

BMI (kg/m2) 

Mean  

(SD) 

Missing 

 

25.5  

(4.97) 

2 (4.5%) 

 

27.6  

(7.33) 

2 (2.1%) 

 

27.9  

(5.49) 

1 (2.1%) 

 

26.4  

(4.73) 

0 (0%) 

 

0.18A 

 

27.0  

(6.13) 

5 (2.2%) 

Hamilton 

Score 

Mean 

(SD) 

 

 

0.86 

(1.23) 

 

 

18.16 

(3.71) 

 

 

4.09  

(2.75) 

 

 

20.09 

(2.69) 

 

 

<0.0001C 

 

 

12.38  

(8.58) 

Alcohol Use 22 

(50.0%) 

62 

(66.0%) 

32 (68.1%) 32 

(69.6%) 

0.2B 148 

(64.1%) 

Tobacco Use 13 

(29.6%) 

36 

(38.3%) 

13 (27.7%) 15 

(32.6%) 

0.6B 77 

(33.3%) 

Drug Use 

(any) 

23 

(52.3%) 

43 

(45.7%) 

27 (57.5%) 21 

(45.7%) 

0.5B 114 

(49.4%) 

Life Events 

Questionnaire 

Z-score 

Mean  

(SD) 

Missing 

 

 

 

-0.499 

(0.541) 

0 (0%) 

 

 

 

0.167 

(1.090) 

3 (3.2%) 

 

 

 

0.012 

(0.991) 

0 (0%) 

 

 

 

0.138 

(1.033) 

1 (2.2%) 

 

 

 

0.0021A 

 

 

 

0.000 

(1.000) 

4 (1.7%) 

Infections 

Missing 

7 

(15.9%) 

0 (0%) 

30 

(32.3%) 

1 (1.1%) 

17 (36.2%) 

0 (0%) 

15 

(32.6%) 

0 (0%) 

0.1B 69 

(30.0%) 

1 (0.4%) 

Chalder 

Fatigue Scale 

Mean 

(SD) 

Missing 

 

 

11.57 

(3.19) 

0 (0%) 

 

 

21.09 

(5.54) 

1 (1.1%) 

 

 

14.61 

(5.35) 

1 (2.1%) 

 

 

19.65 

(5.23) 

3 (6.5%) 

 

 

<0.0001C 

 

 

17.64 

(6.33) 

5 (2.2%) 

Beck’s 

Depression 

Inventory 

Mean 

(SD) 

Missing 

 

 

 

1.48 

(1.57) 

2 (4.5%) 

 

 

 

24.74 

(9.69) 

3 (3.2%) 

 

 

 

9.19 

(8.25) 

0 (0.0%) 

 

 

 

21.36 

(7.30) 

2 (4.3%) 

 

 

 

<0.0001C 

 

 

 

16.45 

(12.2) 

7 (3.0%) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 5, 2020. ; https://doi.org/10.1101/2020.09.04.20165340doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.04.20165340
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Childhood 

Trauma 

Score 

Mean 

(SD) 

Missing 

 

 

62.40 

(4.85) 

1 (2.3%) 

 

 

62.09 

(10.48) 

5 (5.3%) 

 

 

62.44 

(8.68) 

4 (8.5%) 

 

 

62.07 

(7.49) 

2 (4.3%) 

 

 

0.9924C 

 

 

62.21 

(8.63) 

12 

(5.2%) 

State-Trait 

Anxiety 

Inventory 

Mean 

(SD) 

Missing 

 

 

 

91.67 

(8.40) 

2 (4.5%) 

 

 

 

88.50 

(8.93) 

4 (4.3%) 

 

 

 

86.79 

(8.99) 

5 (10.6%) 

 

 

 

88.74 

(10.72) 

4 (8.7%) 

 

 

 

0.1181C 

 

 

 

88.83 

(9.28) 

15 

(6.5%) 

Snaith-

Hamilton 

Pleasure 

Scale 

Mean 

(SD) 

Missing 

 

 

 

 

16.68 

(3.86) 

0 (0%) 

 

 

 

 

32.56 

(7.30) 

3 (3.2%) 

 

 

 

 

22.65 

(6.86) 

1 (2.1%) 

 

 

 

 

31.62 

(5.68) 

1 (2.2%) 

 

 

 

 

<0.0001C 

 

 

 

 

27.27 

(9.02) 

5 (2.2%) 

P-Value in bold denotes significance after Bonferroni correction. Test type: A = one-way 

ANOVA; B = Pearson's Chi-squared Test; C = Poisson regression. 
 

 

Quality control and identification of confounding variables. 

The NIMA samples were deeply sequenced and aligned to the human genome, exhibiting a 

high per sample alignment and feature counts rate (> 85% alignment, median of 40 million 

exonic reads, per sample). Deconvolution analysis12 showed the distributions of cell types to 

be consistent between the samples and typical of PBMCs (Figure 1A). Deseq2 Differential 

expression analysis identified fifteen potentially confounding clinical covariates (each with > 5 

significant genes each at adjusted p < 0.01) from a panel of 87 (Figure 1B), with Age, Gender 

and BMI showing the strongest effects by an order of magnitude (1,244, 625 and 203 

significant genes respectively). The expression profiles for the Age, Gender and BMI 

associated genes were consistent across all samples (Figure 1C) and the most differential 

genes (Figure 1D) were consistent with the relevant biology (e.g. the most significant gender 

related genes were UTX and HYA which are X and Y linked19, 20). We therefore concluded 

firstly that the data was of a high quality both technically and experimentally, and secondly 

that, given the size of the observed effect in the primary data, it was appropriate to control for 

the fifteen confounding clinical covariates in the downstream analysis. 

 

There is no robust evidence for a differential expression signature between HC and 

MDD in PBMCs 

We used differential expression analysis to characterise any differences between HC and 
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each of the MDD groups (MDD, treatment-resistant, treatment-responsive and untreated), 

using an adjusted p cut-off of < 0.01, and including all 15 confounding clinical covariates plus 

batch as interaction terms. One significantly different gene was evident between HC and MDD 

(HIST1H2AE, adjusted p = 0.008) and none between HC and MDD responders, MDD resistant 

or MDD untreated (Supplementary Table 1-4). We additionally tried reduced differential 

models - without BMI, with Age, BMI and Gender only and with Batch only, however it made 

no meaningful difference to these results. Observing only one significant gene suggested that 

either 1) the adjusted p-value threshold was too strict, or 2) the adjusted p-value threshold 

was reasonable, and we were observing type I error at HIST1H2AE. When we viewed the per 

sample expression at HIST1H2AE (Figure 2A) it showed the difference in expression between 

HC and the MDD groups to be highly subtle. This was also true for the two genes of lowest p-

value (non-significant) for each of the four comparisons (Figure 2A-D).  

 

Figure 2E highlights the two most significant genes from each of two comparisons of 

randomised cases and controls. Randomised groups are labelled G1-G4. At the 250 most 

highly significant genes for each comparison the distributions of p-values were almost 

identical to that of randomised cases and controls (Figure 2F). This was in stark contrast to 

age, gender and BMI. These observations suggested that relaxing the adjusted p-threshold 

would not increase the number of true positives. We next estimated the number of false 

positives expected in this dataset at a range of adjusted p thresholds by generating 50 

differential expression comparisons using randomised cases and controls and taking the 

median and maximum numbers of significant genes (Figure 2G). The results showed that 

we would expect on average three false positives at adjusted p < 0.01, suggesting that it 

was not unlikely for HIST1H2AE to be false positive in this case. Though it is difficult to 

prove a negative outright, the balance of probabilities suggest that the data more strongly 

supported the absence of a HC vs MDD differential expression signature in PBMCs. 

 

There is no evidence for clusters of highly correlating genes that are altered in MDD 

compared to HC. 

We next considered the possibility that a HC vs MDD differential signature in PBMCs could 

be too subtle to detect using single gene interactions. This could occur for example if it 

originated from a subset of cells within the population. Several transcriptomic studies have 

shown21-24 that subtle signatures can be reliably detected by collapsing clusters of highly 

correlating genes into representative metagenes for differential expression analysis. This acts 

to reduce noise and multi-sample correction stringency at the expense of single gene 

resolution. To do so we removed genes with low expression (mean > 10, in the Combat 

corrected data) or with exceptionally high coefficient of variability (standard deviation / mean 
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< 0.15), to reduce the chance that correlations could be driven by technical variability15. Next, 

we generated a gene co-expression matrix from the remaining 5,356 genes and plotted it as 

a hierarchically clustered heatmap (Figure 3A). The heatmap showed clear structure and 

confirmed the existence of several clusters of highly correlating genes. To identify the 

correlation clusters, we used the method as described in Le et al15 (Supplementary 

Information). We identified 48 gene clusters with at least 50 genes in each. To validate these 

clusters, we plotted them as expression heatmaps (Figure 3B), which confirmed the highly 

correlating nature of the genes in each. Next, we set out to determine whether the expression 

at cluster metagenes differed between HC and MDD. We generated per cluster metagenes 

and compared the metagene expression for HC samples to MDD samples. We observed no 

significant difference (p < 0.25, unpaired, two tailed t-test with Benjamini-Hochberg correction) 

between HC and MDD in any cluster (data not shown). Boxplots of the six clusters of lowest 

p-value (non-significant) highlighted the absence of any convincing biological differences at 

each cluster (Figure 3C). We therefore concluded that there was no evidence for clusters of 

highly correlating genes that are altered in MDD compared to HC in this dataset. 

 

False positive genes were not random in PBMC data.  

We observed in our 50 differential comparisons involving randomised cases and controls that 

the most significant genes included genes of immune function (such as TNF and IFIT2) more 

frequently than we expected. This raised the possibility that false positives genes might 

preferentially be immune genes when looking at PBMCs.  

 

To test this hypothesis, for each gene we took the mean p-value across the fifty randomised 

comparisons, then selected the 50 most highly significant genes by mean p-value. We ran 

over representation analysis on the genes (using DAVID with GO biological processes) and 

found nine significantly enriched (< 5% FDR) gene ontologies (Table 2). All were immune 

related with the top three being “response to virus”, “type I interferon signaling pathway” and 

“cellular response to interleukin-1” and included the genes IFIT1, IFIT2, IFIT3 and CCL8. This 

suggested that false positives are not random in these data and show a significant bias 

towards immune functions. This further supported that it would not be reasonable to relax the 

adjusted p threshold when comparing HC to MDD, as it would likely introduce an erroneous 

immune signal that could be confused for bona-fide.  
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Relative to patient age biological age is significantly greater in MDD patients than HC 

To explore whether MDD patients showed increased biological ageing compared to HC, we 

estimated the biological age of each sample by taking the mean expression value (z-score) 

across all the age-related genes (see Methods and Supplementary Methods for full details) 

and plotted it against chronological age (Figure 4A). As expected, we observed a strong 

positive and significant linear correlation between biological and chronological age (Spearman 

Correlation Coefficient (SCC) = 0.72, p < 0.01). To determine whether MDD or HC patients 

showed altered biological ageing (relative to chronological age) we performed a linear 

regression using the model biological age ~ chronological age (Figure 4A). Next, we counted 

the number of HC or MDD patients above or below the regression line and found a subtle (HC 

-  26 below (59%), 18 above (41%), MDD – 92 below (49%), 95 above (51%)) but significant 

difference (p <0.01, Fisher’s exact test). To illustrate the difference in distribution, we used the 

residuals – i.e. the distance along the y-axis of each dot from the regression line (Figure 4B). 

Finally, to validate the result we replicated the analysis using the GSK-HiTDiP MDD16 whole 

blood microarray data. The results were comparable to PBMCs (Figure 4A-B), with the MDD 

patients showing significantly elevated biological ageing relative to chronological ageing (HC 

-  35 below (61%), 22 above (39%), MDD – 48 below (42%), 65 above (58%)),  p<0.01, Fisher’s 

exact test). 
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Discussion 

In this large, well-controlled and deeply sequenced data-set, we find no evidence for a 

differential expression signature in PBMCs between HC and MDD – as a whole or in the 

subtypes described; nor is there evidence for clusters of highly correlating genes that are 

altered in MDD compared to HC. We also found that biological age relative to chronological 

age is significantly greater in MDD patients than in HC. 

 

Our differential analysis showed only one gene to differ significantly (adjusted p < 0.01) 

between HC and MDD and none between HC and MDD sub-groups. Further investigation 

concluded that, given the concurrence between the distribution of p values for random 

samples and the HC and MDD group comparisons, the very low difference in expression 

between HC and MDD groups at these genes, and the numbers of expected false positives at 

this adjusted p-threshold, this was most likely a false positive, unlikely to be biologically 

meaningful, and that there was no justification for relaxing the p value threshold in this data. 

To test whether any HC vs MDD signature might be too subtle to detect at the single gene 

level, we generated 48 gene co-expression clusters and compared the metagenes between 

HC and MDD. We observed no significant differences in any cluster, or any convincing 

biological differences. We therefore concluded that the data more strongly supported the 

absence of a HC vs MDD differential expression signature in PBMCs. 

 

In addition, when we randomised cases and controls fifty times and performed over 

representation analysis, we found the most significant false positives to not be random but to 

have a significant immune phenotype, including “response to virus” and “type I interferon 

signalling pathway”. This further justified not relaxing the adjusted p threshold in this data, as 

doing so would likely introduce an erroneous immune signature that could be interpreted as 

bona fide. 

 

These results are, in many ways, comparable to previous transcriptomic studies in whole blood 

which also found no signature at adjusted p < 0.05 using larger sample numbers2. One 

strength of our approach is that we control for age, gender and BMI in our sample selection. 

In our opinion, we could not justify relaxing our adjusted p threshold. However, other studies 

identified signatures at adjusted p values ranging from p < 0.1 to p < 0.25.  

 

A further strength of our study is that we present the per sample expression values for all 

genes of interest. We would argue that as other data2,26 presented signatures that were 

detectable only at adjusted p > 0.05 using around 1,000 samples each, these signatures are 

likely to be subtle. However, the omission of per sample expression data at the genes of 
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interest, makes it difficult to establish how subtle and so it is difficult to form a robust opinion 

of how biologically meaningful these expression differences are. 

 

As mentioned in the introduction, evidence for an inflammatory protein signature in MDD is 

substantial. This is particularly the case for the proinflammatory cytokine IL-6, with several 

meta-analyses confirming this. There is also a longitudinal association between MDD and IL-

627, yet the tissue source of cytokines remains unclear. Our data strongly suggest that in this 

sample of MDD, the source of cytokines is unlikely to be PBMCs. Reflecting on other 

potential sources; neutrophils are increasingly seen as important for fine regulation of the 

immune-inflammatory response, outnumbering PBMCs by one or two orders of magnitude28. 

Neutrophils produce a large variety of chemokines and cytokines upon stimulation and can 

differentially switch phenotypes, displaying distinct subpopulations in different 

microenvironments29. If neutrophils confer the cytokine signature, it would be expected that 

gene expression studies of whole blood would capture their contribution. Another potential 

cell source are endothelial cells. These are ubiquitous in both brain and periphery. 

Recently, Blank et al demonstrated a specific role in relation to aspects of depression-

relevant behaviour in mice by showing that downstream signalling of brain endothelial cells 

induces fatigue and cognitive impairment via impaired neurotransmission in the 

hippocampus30. However, assessing the individual contribution of endothelial cells in 

humans would be technically very challenging. Nevertheless, considering findings presented 

in a recent GWAS of MDD, it is important to consider that peripheral tissues may have less 

of an overall contribution than the brain. Wray et al integrated their GWAS data with 

functional genomic data, comparing their findings with bulk tissue RNAseq from genotype 

tissue expression (GTEx)1. Here only brain tissue showed enrichment, with the areas 

showing the most significant enrichment being cortical. This was in contradistinction to other 

tissue types including whole blood. 

 

The issue of body mass in MDD is complex. Wray et al found significant positive genetic 

correlations with body mass1 and Mendelian randomization (MR) analysis was consistent 

with BMI being causal or correlated with causal risk factors for depression. Also, negative 

MR results provide important evidence of no direct causal relationship between MDD and 

subsequent changes in BMI. Adipose tissue actively secretes cytokines and obesity is itself 

associated with changes in the secretome of adipocytes leading to increased production of 

proinflammatory cytokines31. This raises the possibility that adipocytes may be a potential 

source of inflammatory cytokines acting as a tissue “reservoir”. Careful consideration should 

be applied when deciding whether BMI should be treated as a confounding variable in MDD 
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or incorporated as part of disease pathogenesis.    

 

We demonstrated that MDD samples showed significantly elevated biological age compared 

to HC. Although significant, the effect was relatively subtle, comparable to that identified in 

CpG methylation data. Diniz et al (2019) found MDD exhibited greater molecular senescence 

in young and middle-aged adults by examining the impact of MDD on the senescence 

associated secretory phenotype (SASP), a dynamic secretory molecular pathway indicative of 

cellular senescence4. More severe episodes of depression present with higher SASP indices 

and a significant interaction between current MDD episode and overweight, thus comorbid 

current MDD plus being overweight had the highest SASP index. While we have not correlated 

with direct measures of senescence such as SASP indices or epigenetic markers, we would 

argue that our finding is consistent with the literature and points to a potentially interesting 

biology.  

 

The strengths of this study lie in the high-quality RNA and large clinical dataset, sequenced 

to an average depth of > 54.5 million reads, which aligned with >70% of the reads mapping 

to exons. Thus, a deeply sequenced, well-controlled clinical sample. The limitations of this 

study relate to heterogeneity inherent in MDD. Within our study, there was also some 

heterogeneity within the assessing of prior medications as this was done using retrospective 

self-reporting, albeit based on a comprehensive structured instrument completed by an 

interviewer.  

 

Conclusion 

This study was a detailed and careful examination of the transcriptomic signal in PBMCs in 

MDD and HCs. The lack of a significant differentiating signal between MDD and HCs was 

confirmed by the randomisation of the cases and controls. There was, however, evidence of 

elevated biological ageing relative to patient age in MDD vs HC. Future work should 

endeavour to expand clinical sample sizes, reduce MDD heterogeneity and account for 

confounds from the outset. Advances in RNA-seq at the level of the single cell may help 

uncover further, more subtle differences. However, the subtlety of any signature mitigates 

against convincing use as a diagnostic or predictive biomarker, and tissue enriched data is 

strongly indicative of brain tissue being the most informative in this regard. 
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Figure 1. Quality control and identification of confounding variables. A) Distribution of 

immune cell types across all 231 PBMC samples. Cell types are shown on the x-axis, and 

the percentage of the cell population that is described by each cell type is shown on the y-

axis. Each box represents all 231 samples. B)  Bar chart showing the number of significantly 

different genes (DESeq2 adjusted p value < 0.01) across all clinical parameters with at least 

5 significant genes. C) Gene expression heatmaps highlighting the size and consistency of 

the confounding effects of Age (left), Gender (middle), and BMI (right) on the PBMC RNA-

seq data. Samples are given by column and differentially expressed genes (adjusted p < 
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0.01) by row. Colour intensity indicated row scaled (z-score) gene expression, with blue as 

low and yellow as high. D) Gene expression boxplots of the most significantly different gene 

between youngest and oldest (ROBO1), male and female (ZFY), and lowest and highest 

BMI (CA1). Sample groups are shown on the x-axis and gene expression values (Corrected 

DESeq2 normalised counts) on the y-axis. 

 

Figure 2. There is no evidence for a classical differential expression signature between 

HC and MDD in PBMCs. A) Gene expression boxplots highlighting the most significantly 

different genes between HC and MDD. Sample groups are shown on the x-axis and gene 

expression values (DESeq2 normalised counts) on the y-axis. B) As A) however for HC vs the 

MDD treatment-resistant group. C) As A) however for HC vs the MDD treatment-responsive 

group. D) As A) however for HC vs the MDD untreated group. E) As A) however for the two 

most significant genes from each of two comparisons of randomised cases and controls. 

Randomised groups are labelled G1-G4. F) Distribution of differential expression p-values 

highlighting the consistency between HC vs MDD and randomised cases and controls. The 

250 most significant genes for each comparison are shown on the x-axis (ranked from lowest 

to highest) and the p value (as -log10) on the y-axis. Lines are given for the three confounding 

variables Gender (‘male vs female’), Age (‘youngest vs oldest’), BMI (‘lowest vs highest’), HC 

vs the four MDD types (MDD, MDD treatment-resistant, MDD treatment-responsive and MDD 

untreated), and for the average of 50 comparisons of randomised cases and controls 

(‘random’). G) Bar charts highlighting the number of differentially expressed genes that were 

expected to be false positives by adjusted p threshold, based on 50 iterations of randomised 

cases and controls. The adjusted p threshold is given on the x-axis and the median (left) and 

maximum (right) number of expected false positives on the y-axis.  

 

 

Figure 3. There is no evidence for clusters of highly correlating genes that are altered 

in MDD compared to HC. A) Gene co-expression heatmap highlighting the presence of 

clusters of highly correlating genes in PBMC data. The x and y-axis show the 5,356 highly 

correlating genes. The colour intensity indicates the spearman correlation value between two 

given genes with blue as low and yellow as high. To highlight the presence of co-expression 

clusters the heatmap has been hierarchically clustered on both axes using Spearman 

distances, with UPMGA agglomeration and mean reordering. B) Gene expression heatmaps 

for six gene co-expression clusters, highlighting the consistency between the expression 

pattern of all genes within a cluster across all 231 samples. Samples are given by column 

and cluster genes by row. Colour intensity indicated row scaled (z-score) gene expression, 

with blue as low and yellow as high. C)  Gene expression boxplots for the six clusters with 
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the lowest p-value (T-test) for HC vs MDD. Showing sample group on the x-axis and the 

cluster metagene expression (mean z-score) on the y-axis. All clusters are non-significant 

with adjusted p > 0.25. 

 
 
Figure 4. Relative to patient age biological age is greater in MDD patients than in HC. 

A) Scatterplots for PBMC RNA-seq data (left) and whole blood expression microarray data 

(right), showing the correlation between chronological age (x-axis) and biological age (y-axis) 

as defined by the mean expression z-score across all age-related genes, per sample. A linear 

regression line, alongside the Spearman Correlation Coefficient (SCC) and associated p-value 

is shown. B) Density plots of the residuals from the linear regressions in A). A positive residual 

indicates a sample above the regression line and negative below.  
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