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Abstract 

Obesity is a major risk factor for a wide range of cardiometabolic diseases, however the impact 

of specific aspects of body morphology remains poorly understood. We combined the GWAS 

summary statistics of fourteen anthropometric traits from UK Biobank through principal 

component analysis to reveal four major independent axes summarizing 99% of genetically 

driven variation in body shape and size: overall body size, adiposity, predisposition to abdominal 

fat deposition, and lean mass. Enrichment analyses suggest that body size and adiposity are 

affected by genes involved in neuronal signaling, whereas body fat distribution and lean mass 

are dependent on genes involved in morphogenesis and energy homeostasis. Using Mendelian 

randomization, we found that although both body size and adiposity contribute to the 

consequences of BMI, many of their effects are distinct, such as body size increasing the risk of 

diseases of the veins (b ≥ 0.044, p ≤ 8.9*10-10) and cardiac arrhythmia (b = 0.06, p = 4.2*10-17) 

while adiposity instead increased the risk of ischemic heart disease (b = 0.079, p = 8.2*10-21). 

The body mass-neutral component predisposing to abdominal fat deposition, likely reflecting a 

shift from subcutaneous to visceral fat, exhibited health effects that were weaker but specifically 

linked to lipotoxicity, such as ischemic heart disease (b = 0.067, p = 9.4*10-14) and diabetes (b = 

0.082, p = 5.9*10-19). Combining their predicted effects significantly improved the prediction of 

obesity-related diseases, even when applied out-of-population (p < 10-10). The presented 

decomposition approach sheds light on the biological mechanisms underlying the remarkably 

heterogeneous nature of body morphology as well as its consequences on health and lifestyle. 
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Introduction 

Obesity is one of the main risk factors for many non-communicable diseases, such as type 2 

diabetes (T2D, reviewed in 1) and cardiovascular diseases (CVD, reviewed in 2). The 

associated disease risk and underlying biology of obesity are generally studied through the lens 

of body mass index (BMI, weight [kg] / height2 [m2]), which uses excess body mass as a 

surrogate for adiposity. This approximation provides a reasonably accurate predictor at the 

population level3,4 but is blind to many aspects of body shape and composition that may be 

critical to disease etiology. Indeed, disease risk and progression have been shown to be 

affected by the location and type of the adipose tissue in which excess calories are stored3–6. 

Abdominal obesity in particular, usually assessed using waist circumference or waist-to-hip ratio 

(WHR), is associated with increased disease risk and mortality independent of BMI3. 

Although the exact mechanisms underlying the consequences of adiposity on health have not 

been fully elucidated, the predominant hypothesis is that of adipose tissue expandability: that 

excess calories are preferentially stored in subcutaneous adipose tissue (SAT), which can 

expand with little to no deleterious impact on health7,8. When its capacity for expansion is 

exceeded, adipose cells hypertrophy, causing local inflammation, and fat is increasingly stored 

as ectopic fat in organs and as visceral adipose tissue (VAT) around organs in a process similar 

to a mild form of lipodystrophy. Ectopic and visceral fat are thought to play a central role in 

many of the direct consequences of obesity. 

Much remains unknown about the genetic and environmental factors affecting body fat 

distribution and its contribution to health outcomes. Currently available non-invasive imaging 

techniques such as magnetic resonance imaging (MRI) and dual-energy X-ray absorptiometry 

(DXA) allow the accurate measurement of adipose mass in different parts of the body and have 

significantly contributed to our understanding of the impact of different subtypes of adiposity on 
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health9,10. However, such techniques remain costly and are therefore generally restricted to 

smaller sample sizes. 

An alternative approach is the concurrent analysis of multiple traits, leveraging the co-

occurring changes in multiple phenotypes to understand the underlying causes and 

mechanisms. Analysis of variance methods, such as principal component analysis (PCA), have 

been used to investigate the complex architecture underlying body morphology, revealing the 

main axes of phenotypic variation and increasing the statistical power to detect novel loci 

affecting body morphology11. While this has improved our understanding of the genetic basis 

underlying common and distinct components of anthropometric traits, their impact on health and 

quality of life remains unknown. Other approaches such as clustering and canonical correlation 

analysis (CCA) have identified single nucleotide polymorphisms (SNPs) associated with 

healthier metabolic profiles, despite higher BMI and/or body fat percentage12–15. However, these 

hypothesis-driven approaches (i.e. identifying clusters of functionally similar SNPs based on 

both obesity measures and health outcomes) are not suited to determine the causality of these 

correlated differences or the directionality of potential causal effects because the SNP groups 

have different health consequences by construction. 

Here we followed a hypothesis-free approach to isolate independent axes of variations in 

body shape and size and investigated their health consequences. We performed a PCA on 

GWAS summary statistics of 14 anthropometric traits from the UK Biobank16 to extract 

orthogonal components, each representing different features of body shape (Figure 1). We 

show that these measures of body shape can be summarized using four principal components 

(PCs) affecting body size, adiposity, abdominal fat deposition, and lean mass, respectively. 

Enrichment analyses highlighted differences in the pathways and tissues involved in these 

composite traits, providing new insight into the underlying biological mechanisms. We then used 

robust cross-sex Mendelian randomization to assess the impact of these independent 

components on health and lifestyle. While many health and lifestyle consequences were shared 
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with individual traits, these orthogonal PCs allowed us to better disentangle the independent 

contributions of different aspects of body shape. The results can be explored using the shiny 

app which can be downloaded by following the instructions at http://wp.unil.ch/sgg/pca-mr/. 

Furthermore, the combination of these PCs improved the prediction accuracy of obesity-related 

diseases. 

Results 

PCA of genetic effects 

A schematic representation of our composite MR analysis framework is shown in Figure 1. 

We selected 14 anthropometric and bioimpedance-derived traits as the basis for the principal 

component analysis (PCA), 13 of which were available in the UK Biobank16 with genome-wide 

summary statistics made available by the Neale lab (www.nealelab.is/uk-biobank). Summary 

statistics for WHR were not available in the UK Biobank, therefore we performed a GWAS in the 

UK Biobank following the same procedure as that used by the Neale lab. SNPs which were then 

genome-wide significant (GWS, p < 5*10-8) for any trait were pruned to be independent. The 

resulting SNP x traits matrix of effect estimates was subjected to PCA. The loadings of each 

principal component (PC) were then rescaled according to the phenotypic correlation between 

these traits in the UK Biobank so as to obtain standardized effect sizes, i.e. the resulting PC 

phenotypes would have a variance of 1. SNP-PC associations were then calculated genome-

wide and SNPs for each PC were re-pruned individually.  

The top four PCs explained more than 99% of the total variance (Figure 2, Supplementary 

Table 3). PC1 (73.3% variance) represents an overall increase in body size, with positive 

weights for all traits indicating a slightly disproportionate increase in body mass compared to 

height, resulting in higher BMI as well. PC2 (19.9%) shows a decrease in height with an 
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increase in fat mass at the expense of lean mass. PC3 (3.8%) is largely BMI- and body fat 

mass-neutral, decreasing hip circumference, and increasing waist circumference and hence 

WHR, reflecting a shift in body fat from hips to waist. PC4 (2.4%) resulted in decreased height 

and increased BMI, with an increase in lean mass at the expense of fat mass. 

Performing this analysis using male- or female-specific summary statistics produced very 

similar results, though PC3 explained less variance than PC4 in men (Supplementary Tables 4-

5, Supplementary Figure 1). PCs were also robust to changes in the selection of specific traits. 

For example, excluding WHR yielded effect estimates which were highly correlated with those 

obtained using the full set of traits (all |r| > 0.99, see Supplementary Figure 2), though the 

altered explained variance also resulted in the reordering of PCs 3 and 4. 

PCs 1-3 were highly correlated with weight, BMI, and WHR, respectively, both phenotypically 

(r ≥ 0.70, Supplementary Figure 14) and in terms of their causal effects on the tested outcomes. 

The (genetically) orthogonal nature of PCs nevertheless resulted in much lower phenotypic 

correlation with each other than between traits (e.g. the phenotypic correlation between PC1 

and PC2 was only 0.36 while that between weight and BMI was 0.90, Supplementary Figure 15, 

Supplementary Table 11). Note that the phenotypic realization of PCs are not orthogonal, and 

their correlation is therefore not zero, due to differences between their environmental and 

genetic correlation. However, the MR-derived causal effect estimates of PCs are independent 

and therefore additive (though they may still be correlated), which is not the case for individual 

traits. 

For brevity and clarity, we mainly describe the PCs in comparison with BMI and occasionally 

weight or WHR. Other traits had causal effects similar to or weaker than these traits (e.g. the 

effects of body fat percentage and BMI on disease had a correlation coefficient r = 0.95, p = 

7.6*10-43) or were less relevant to obesity-related health outcomes (e.g. height). 

We found 615 independent GWS SNPs associated with PC1 (body size), 641 with PC2 

(adiposity), 354 with PC3 (predisposition to abdominal fat deposition), and 610 with PC4 (lean 
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mass). Among these, respectively 3, 83, 137, and 330 SNPs did not reach genome-wide 

significance for any individual trait. For comparison, BMI had 532 independent GWS SNPs. 

Tissue/pathway enrichment 

We tested the PCs for enrichment of genes expressed in specific tissues using the MAGMA 

method17 through the FUMA interface18 in both GTEx v819 and brain development and aging 

data from BrainSpan20. We also tested for their enrichment of molecular pathway terms from the 

DEPICT dataset21 using PASCAL22. The tissue-enrichment results of the four PCs as well as 

weight, BMI and WHR are shown in Figure 3 and listed in Supplementary Tables 6–9. 

Loci associated with both PC1 (body size) and PC2 (adiposity) were mainly enriched for 

genes expressed in the cerebellum (p ≤ 2.2*10-5) and the pituitary gland (p ≤ 5.7*10-4). Using 

data from BrainSpan20, we found PC2 to be further enriched for genes expressed in the brain 

specifically during the early to late mid-prenatal phases of development (p ≤ 6.1*10-4). 

PC3- (predisposition to abdominal fat deposition) associated SNPs were harboured by genes 

most enriched for expression in SAT (p = 3.0*10-14), followed by VAT (p = 4.2*10-10), female 

reproductive tissues (breast mammary tissue, ecto- and endocervix, and uterus, all p ≤ 2.4*10-

10), nerves (tibial, p = 2*10-15), arteries (p ≤ 2.2*10-9), and digestive system (p ≤ 8.8*10-5). Note 

that using sex-specific (e.g. male-specific) summary statistics and PC loadings with the same 

gene expression datasets produced a similar enrichment for female-specific tissues. Data from 

BrainSpan showed PC3 to be enriched for genes expressed in the late prenatal brain (p = 

9.3*10-8). 

PC4 (lean mass) showed similar enrichment to that of PC3, though stronger for the digestive 

system (p ≤ 1.6*10-10) and some female reproductive tissues (uterus, ecto- and endocervix, all p 

≤ 1.3*10-12),and weaker for adipose tissue and tibial nerve. PC4 was also enriched for genes 

expressed in the prostate (p = 2.9*10-4). In BrainSpan, PC4 also showed enrichment for genes 

expressed prenatally in the brain. 
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Loci associated with BMI showed slightly stronger enrichment than PCs 1 and 2 for genes 

expressed in the cerebellum, as well as other areas of the adult brain, including the basal 

ganglia, hippocampus, hypothalamus, amygdala, and frontal cortex. They were also enriched 

for genes expressed in the mid-prenatal brain, similar to that found for PC2, if slightly weaker. 

The analysis of molecular pathways (Supplementary Table 10) showed qualitatively similar 

enrichment for PCs 1 and 2, weight and BMI. These were mostly terms related to the brain, 

synapses, behaviour, or learning. PC3 had the most numerous enriched terms and the 

strongest enrichment overall. Most of the enriched terms were not related to brain function, but 

to embryogenesis and morphology, with many others specifically concerning adiposity, 

metabolism, and glucose homeostasis. Other terms were related to vascular or heart function, 

or hormones. PC4 showed some overlap in terms with PC3, mainly in terms related to 

embryogenesis and morphology. 

Mendelian Randomization analysis 

Cross-sex MR to avoid bias from sample-overlap 

We used inverse-variance weighted (IVW) Mendelian randomization (MR) to test for causal 

effects of the 14 anthropometric traits and PCs on disease outcomes, continuous measures of 

health, lifestyle factors, and diet, as well as the reverse. To avoid bias in the MR estimates due 

to sample overlap, we used sex-specific effects from opposite sexes for exposures and 

outcomes (male exposure - female outcome and female exposure - male outcome, using the 

same combined-sex PC loadings for exposure PCs). This produces unbiased estimates of the 

sex-specific causal effects in the sex used in the outcome, provided the strength of the 

instruments’ association with the exposure was not different between sexes. The two cross-sex 

causal effect estimates (female-to-male and male-to-female) were then meta-analysed using 

inverse-variance weighting. Where the strength of the instruments’ association with the 
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exposure differed between sexes, namely for WHR and PC3 (abdominal fat distribution), the 

meta-analyzed causal effect estimates may be biased (generally towards the null). Although the 

effect size estimates may be slightly over- or underestimated, this should not affect the type I 

error rate (see Methods). 

Disease risk 

PC1 (body size) increased the risk of many diseases (Figure 4). An increase of one standard 

deviation (SD) increased the absolute risk of diabetes by 1.7% (95% CI: 1.3–2.1), that of 

hypertension by 2.3% (95% CI: 1.4–3.2), as well as many other diseases, such as nerve 

disorders, diseases of the veins and circulatory system, and prolapsed disc (Supplementary 

Table 12). Although it also increased the risk of cardiac arrhythmias by 0.93% (95% CI: 0.71–

1.1), it did not significantly affect the risk of hypercholesterolemia or heart disease. 

PC2 (adiposity) had much stronger effects on many obesity-related diseases (Figure 4), 

where a 1 SD increase also increased the absolute risk of diabetes by 2.1% (95% CI: 1.7–2.5), 

hypertension by 6.8% (95% CI: 5.8–7.7), as well as hypercholesterolemia by 3.4% (95% CI: 

2.8–4.0) and ischaemic heart disease (IHD) by 1.8% (95% CI: 1.5–2.2). The risk of many other 

diseases, such as arthrosis and diseases of the nervous system were also increased 

(Supplementary Table 12). 

PC3 (predisposition to abdominal fat deposition), despite being weight- and BMI-neutral, was 

a risk factor for many of the same obesity-related diseases as PC2 (Figure 4, Supplementary 

Table 12). A 1 SD increase in PC3 increased the absolute risk of diabetes by 1.6% (95% CI: 

1.2–1.9), hypertension by 4.2% (95% CI: 3.3–5.0), hypercholesterolemia by 3.0% (95% CI: 2.4–

3.6), and IHD by 1.6% (95% CI: 1.2–2.0). 

PC4 (lean mass) had few consequences on health, only significantly increasing the risk of 

nerve disorders and diseases, carpal tunnel syndrome, and joint disorders (Figure 4, 

Supplementary Table 12). 
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For comparison, a 1 SD increase in BMI (5.1 kg/m2 in women, 4.2 kg/m2 in men) increased 

the risk of diabetes by 3.8% (95% CI: 3.4–4.2), hypertension by 9.9% (95% CI: 8.8–11.0), 

hypercholesterolemia by 3.0% (95% CI: 2.3–3.7), and IHD by 1.8% (95% CI: 1.4–2.2). Weight 

and WHR had similar, if somewhat weaker, effects (see Supplementary Table 12). Although in 

many cases these effects exceed those of individual PCs, they remain less than the cumulative 

(summed) effects of the four PCs. 

Continuous health outcomes 

Many continuous health indicators were affected by both PCs and traits, in a manner largely 

consistent with expectations (Supplementary Table 13). 

Consistent with the increased risk of diabetes, PCs 1-3 all increased the levels of glycated 

hemoglobin in blood, though the effect was strongest for PC2 (b = 0.13, 95% CI: 0.11–0.15). 

Glucose levels were similarly affected, though the effects were weaker. All three PCs also 

increased triglyceride levels (b between 0.095 and 0.24) and decreased HDL cholesterol (b 

between -0.22 and -0.16), but only PC1 decreased LDL cholesterol (b = -0.076, 95% CI: -

0.094– -0.059) and total cholesterol. They all increased blood pressure (systolic and/or 

diastolic), with the strongest effects from PC2 (b > 0.15). Plasma concentrations of several liver 

enzymes, such as 𝛾𝛾-glutamyltransferase (GGT) and alanine aminotransferase (ALT), were 

found to be increased as well, possibly indicating liver damage. 

PCs 1 and 2 also increased levels of cystatin C and decreased albumin, possibly indicative of 

impaired kidney function23, whereas the effects of PC3 were in the opposite direction 

(decreasing cystatin C and increasing albumin). C-reactive protein (CRP) was also increased by 

PCs 1 and 2 (b1 = 0.17, b2 = 0.25) but unaffected by PC3. PCs 1-3 all strongly decreased levels 

of sex hormone-binding globulin (SHBG) with the strongest effects from PC2 (b = -0.19, 95% CI: 

-0.21– -0.16), as well as testosterone where the effects of PCs 1 and 3 were stronger (b1 = -

0.065, b3 = -0.058). 
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PC4 mainly increased creatinine levels while decreasing CRP (b = -0.090, 95% CI: -0.11– -

0.067) and the maximum heart rate during fitness test. The levels of triglycerides and the liver 

function markers GGT and ALT were slightly decreased but only alkaline phosphatase reached 

Bonferroni-corrected significance (b = -0.068, 95% CI: -0.09– -0.046). 

The effects of BMI were comparable to a combination of PCs 1 and 2, increasing levels of 

glycated hemoglobin (b = 0.2) and glucose (b = 0.12), as well as increasing the levels of 

triglycerides while decreasing both HDL (b = -0.29) and LDL (b = -0.059) cholesterol. Systolic 

and diastolic blood pressure was also increased, as were levels of CRP (b = 0.33) and liver 

function markers such as ALT and GGT. SHBG (b = -0.24) and testosterone (b = -0.11) were 

also decreased. 

Lifestyle factors 

PC1 slightly reduced SES, as shown by increased TDI (b = 0.033, 95% CI: 0.017–0.049). 

This was accompanied by a longer working week, as well as an increase in smoking and 

alcohol consumption, particularly spirits (Figure 5, Supplementary Table 14). The duration and 

frequency of physical activity, as well as walking pace, were all decreased in favor of increased 

time spent using the computer. PC1 also increased daytime dozing and napping but decreased 

snoring. 

The effects of PC2 on SES were similar but much more pronounced (Figure 5, 

Supplementary Table 14), not only associated with increased TDI (b = 0.057, 95%CI: 0.037–

0.076) and the likelihood of having a job involving heavy physical work (b = 0.11, 95% CI: 

0.086–0.14), but strongly linked to decreased income, fluid intelligence score, and education (all 

b < -0.14). Accompanying these were lifestyle changes similar to those of PC1, increasing 

smoking and the frequency of alcohol consumption, with a decrease in wine in favor of spirits 

and alcohol being taken more often taken outside of meals. Although PC2 increased the 

duration of walks (b = 0.05, 95% CI: 0.031–0.069) and vigorous activity, the duration of walking 
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for pleasure was decreased (b = -0.044, 95% CI: -0.062– -0.025), as were several other 

measures of physical activity, namely the frequency of stair climbing and the usual walking 

pace. Unlike PC1, PC2 decreased the time spent using the computer in favor of time spent 

watching TV. 

PC3 increased alcohol intake frequency (b = 0.046, 95% CI: 0.028– 0.065) and napping 

during the day (b = 0.035, 95% CI: 0.018–0.053) (Figure 5, Supplementary Table 14). 

PC4 only associated with an increased length of the working week (b = 0.043, 95% CI: 

0.024–0.062) (Supplementary Table 14). 

The effects of BMI on lifestyle were most similar to those of PC2, linked to decreased SES 

(bTDI = 0.078) and physical activity while increasing smoking and alcohol consumption. 

Diet 

PC1 was associated with greater reported variation in diet (b = 0.052, 95% CI: 0.034–0.069) 

and increased consumption of healthy foods such as fresh fruit, vegetables, and water 

(Supplementary Table 15). Consumption of coffee was also increased (b = 0.087, 95% CI: 

0.068–0.11). 

 PC2 was similarly associated with reportedly increased variation in diet (b = 0.084, 95% CI: 

0.065–0.10), as well as salt added to food (b = 0.045, 95% CI: 0.026–0.064). Other changes in 

diet reflect increased consumption of cheaper meats, namely pork and poultry, while decreasing 

intake of grain products (bread and cereal), cheese, and dried fruits (Supplementary Table 15). 

PC3 was associated with increased bread consumption (b = 0.035, 95% CI: 0.017–0.053). 

PC4 increased fruit intake, both fresh and dried (b > 0.041), while decreasing processed 

meat intake (Supplementary Table 15). 

Effects of BMI on diet were similar to those of PC2, such as increased variation in diet (b = 

0.12, 95% CI: 0.097–0.14) and decreased intake of grain products and cheese (Supplementary 
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Table 15). In addition, some effects were similar to those of PC1, including increased vegetable 

and fruit consumption, as well as coffee intake (b = 0.11, 95% CI: 0.080–0.13). 

Sex-specific effects 

The genetic effects of the selected IVs on PCs 1, 2, and 4, as well as BMI and weight, were 

not significantly different between men and women, which made it possible to obtain unbiased 

sex-specific causal effects (see Methods). Those of PC3 (and WHR) were stronger in women 

(pPC3 = 6.9*10-46, pWHR = 1.4*10-159) and were unsuitable for this purpose. Full results are 

available in Supplementary Tables 16–23 and illustrated in Supplementary Figures 100–121. 

None of the PCs had significantly different effects on diet and lifestyle in men and women, 

though PC2 did have a tendency for stronger effects on disease risk in men (TLS slope = 1.27), 

mainly driven by diabetes (bm = 0.15, bf = 0.080, pdiff = 1.8*10-3) and IHD (bm = 0.11, bf = 0.059, 

pdiff = 4.7*10-3). However, many blood molecular traits and other continuous health outcomes 

were differently affected by PCs in men and women. 

Testosterone in particular was differently affected between sexes, strongly decreased in men 

by both PC1 (b = -0.15) and PC2 (b = -0.18), whereas in women it was unaffected by PC1 and 

increased by PC2 (b = 0.082). SHBG was similarly affected by PC2 in both sexes, but the 

decrease caused by PC1 was twice as strong in women (bm = -0.084, bf = -0.17, pdiff = 1.5*10-4). 

Other differences include PC1 causing a stronger decrease in albumin in women (bm = -

0.095, bf = -0.17, pdiff = 6.0*10-5) and increasing glycated hemoglobin only in men (b = 0.12, pdiff 

= 5.8*10-5). The effects of PC2 in men were stronger for ALT, GGT, and pulse rate, and an 

increase in total protein was only seen in men. 

The effects of BMI were again similar to those of PCs 1 and 2. The increase in glycated 

hemoglobin was also stronger in men and was accompanied a larger increase in glucose as 

well (bm = 0.16, bf = 0.083, pdiff = 5.2*10-4). LDL was decreased only in men (b = -0.099). The 

opposite effects on testosterone levels were also observed for BMI (bm = -0.24, bf = 0.072). 
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Bi-directional MR 

In addition to determining which environmental factors may affect body shape, we were 

interested in feedback loops. The stringency of the selection criteria for IVs, namely that they be 

GWS for the sex used as exposure, resulted in few exposures significantly affecting the body 

traits or PCs. Several exposures had unrealistically large estimated effect sizes (> 0.4), likely 

due to confounding, and are not considered here. For example, forced vital capacity, which is 

dependent on lung—and therefore body—size, showed strong bi-directional associations with 

most body traits. The main results are summarized here, full results are listed in Supplementary 

Tables 24–27. 

While PC1 reduced cholesterol, it was in turn reduced by LDL and total cholesterol (b ≤ -

0.068), as well as apolipoprotein A and diagnosis of hypercholesterolemia. PC1 also showed a 

positive feedback loop with cystatin C but a negative one with IGF-1, reducing IGF-1 levels in 

blood (b = -0.13, 95% CI: -0.16– -0.11) but being increased by it (b = 0.042, 95% CI: 0.024–

0.061). 

PC2 showed a positive feedback loop with CRP and mutual negative loop with creatinine. 

PC2 was also reduced by IGF-1 (b = -0.071, 95% CI: -0.089– -0.052). 

PC3 was decreased by hypertension (b = -0.07, 95% CI: -0.11– -0.035), forming a negative 

feedback loop. It also formed a positive feedback loop with diabetes (as did WHR), although this 

seems to be due to a negative effect of diabetes on hip circumference (HC, b = -0.16, 95% CI: -

0.26– -0.067) rather than an increase in waist circumference (WC). PC3 also had a positive 

feedback loop with triglycerides (from decreased HC), and mutual negative effects on 

apolipoprotein A and HDL cholesterol (from decreased WC). We also found the negative effects 

of PC3 on testosterone and SHBG to be reciprocal (b ≤ -0.058). 
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PC4 had a positive feedback loop with creatinine and was also increased by IGF-1 (b = 0.12, 

95% CI: 0.11–0.14). SHBG and testosterone both decreased PC4, though for testosterone this 

appears to have been driven by an effect in women only (b = -0.09, 95% CI: -0.11– -0.065). 

BMI increased CRP in a positive feedback loop, similar to that of PC2, and reciprocal 

negative effects with LDL and total cholesterol (b ≤ -0.035), similar to PC1. 

DXA-based measures 

DXA and MRI technologies provide increased accuracy in measurements of body 

composition and have been suggested to provide a clearer picture of obesity and its 

consequences on health24. We were able to impute many such traits based on the subset of 

~5,000 UK Biobank participants with these phenotypes (Supplementary Table 2). Several of 

these, including both trunk and android tissue fat percentages (both predicted with r2 above 

0.75), had effects on disease comparable to BMI and PC2 (correlation r ≥ 0.97) but with a 

tendency for slightly larger effects (TLS slopes of 1.17 and 1.16, respectively). However, with 

fewer GWS SNPs (~28% fewer than BMI), these phenotypes revealed no additional diseases 

affected by obesity (see Supplementary Table 28). 

Prediction of disease risk 

In addition to disentangling the causal relationship between body shape and health, these 

PCs can be used to predict disease outcomes. Furthermore, given the independence of the 

estimated PC effects, these can be used in a weighted linear combination to improve prediction 

of specific diseases, based on the estimated causal effects. We compared the accuracy of the 

PC-based estimator with both BMI and WHR for the most common obesity-related diagnoses in 

our dataset, namely diabetes, high cholesterol, and hypertension, in the same sample using 

receiver operating characteristic (ROC) curves. 
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As expected, both BMI and WHR were effective in predicting these obesity-related diseases, 

as indicated by areas under the ROC curve (AUC) ranging from 0.62 to 0.74. BMI was more 

accurate in predicting hypertension (0.66 vs. 0.64, p = 1.3*10-72), while WHR was more accurate 

for high cholesterol (0.65 vs. 0.62, p = 4.9*10-101) and slightly more for diabetes (0.74 vs. 0.73, p 

= 3.0*10-5). In all cases, the PC-based predictors significantly outperformed both BMI and WHR 

with AUCs of 0.68 for hypertension, 0.67 for high cholesterol, and 0.78 for diabetes (all p < 

2.3*10-183, Supplementary Figure 129–130, Supplementary Table 29). 

To explore the transferability of PCs, we replicated these results out-of-sample in 76,756 

non-”white British” UK Biobank participants, who had therefore been excluded from the original 

summary statistics. Despite the considerable potential for disparities between these samples, 

the AUCs for high cholesterol and hypertension were almost exactly identical to those obtained 

above (Figure 6, Supplementary Figure 131, Supplementary Table 29), with PC-based 

predictors significantly outperforming either trait (p ≤ 2.0*10-43). The accuracy of PCs and BMI in 

predicting diabetes out-of-sample decreased to 0.75 and 0.68, respectively, and although WHR 

was no less accurate out-of-sample (AUC = 0.74) it remained less accurate than PCs (p = 

5.1*10-11). 

Discussion 

By combining multiple traits through PCA, we found that more than 99% of genetically-

determined variation in body shape and size (as defined by the 14 selected traits) can be 

summarized using four PCs affecting (1) body size, (2) adiposity, (3) predisposition to 

abdominal fat deposition, and (4) lean mass. PCs 1–3 showed some similarity with weight, BMI, 

and WHR, respectively, and the latter two especially have been widely studied in the context of 

obesity. However, these traits are highly correlated and partially redundant, making it difficult to 

understand their individual contributions to health outcomes, whereas PCs are orthogonal by 
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design and their effects additive. The PCs obtained here also share some similarity with the 

average PCs (avPCs) obtained by Ried et al.11 by meta-analyzing PCs from individual-level 

phenotypic data. Specifically, avPC1 increased all body measures (though the impact of height 

was weaker than for PC1); avPC2 showed opposing directions for height and BMI/WHR (though 

WHR had much more importance than BMI); avPC3 was dominated by WHR (however both 

height and BMI were significant contributors as well); and loadings for avPC4 showed an 

increase in weight and BMI despite decreased waist and hip circumference, suggesting 

increased density of body mass and consistent with decreased body fat percentage. The 

robustness of the obtained PCs to changes in the trait selection or the use of male- or female-

specific data supports the hypothesis that these represent true biological mechanisms 

underlying the shared variance across these anthropometric traits. Furthermore, the molecular 

basis of PCs 3 and 4 in particular appear to be more homogenous, as shown by enrichment for 

genes expressed in many tissues, such as SAT and VAT but also in the digestive, reproductive, 

and vascular systems, which were not picked up by individual traits. This is also reflected in the 

much broader spectrum of pathways enriched only for these PCs. 

Leveraging the orthogonality of PCs, we can dissect the etiology of obesity-related health and 

lifestyle consequences by comparing the effects of different PCs. Both PCs 1 and 2 embody the 

excessive accumulation of body mass and their enrichment for genes expressed in the brain 

and involved in neuronal signaling is consistent with findings from BMI25 suggesting that 

behavioral changes are likely one of the major factors underpinning heritable susceptibility to 

obesity (reviewed in 26). Shared effects between PC1 and PC2 highlight diseases whose 

etiology involves elements common to both, such as metabolic overexertion in the case of 

diabetes27 or the physical burden of a larger body in the case of arthrosis28. Differences 

between their effects can provide insight into disease etiology which single traits cannot. For 

example, Hyppönen et al.29 performed a phenome-wide MR analysis to assess the effects of 

BMI on a number of diseases and found that BMI increased the risk of IHD, cardiac ar-
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/dysrhythmia, and diseases of the veins (phlebitis and thrombophlebitis), among others. 

However, our results show that these do not all arise through the same mechanisms, IHD being 

increased by PCs 2 and 3 but not PC1, consistent with the predominant role of adipose tissue-

related dyslipidemia in this disease8, whereas cardiac arrhythmia and diseases of the veins 

were only increased by PC1. BMI is also a known risk factor for prolapsed disc30, though it is 

unknown whether this occurs due to mechanical overstraining, dysregulation of the metabolic 

and immune systems, or a combination of these31. That PC1 alone increased the risk of 

prolapsed disc strongly supports the role of mechanical stress over any form of lipotoxicity. 

The decreased SES associated with PC2 is consistent with what has been reported for 

BMI32,33, although recent results suggest that this is due to residual population stratification and 

non-genetic familial effects34,35. Many other differences in lifestyle can be considered as 

concurrent with this change in SES (e.g. reduced education and income) whereas others are 

likely secondary to these (e.g. alcohol taken outside of meals36 and increased consumption of 

cheaper meats). Despite a moderate association with lower SES, PC1 was not associated with 

any of these secondary/concurrent changes, though the increased time spent using a computer 

may be indicative of white collar occupations rather than the physical jobs associated with PC2. 

The similarity of the effects of both PCs on smoking and alcohol consumption suggests 

mechanisms independent of SES. For example, increased smoking may reflect the use of 

smoking as a strategy for weight loss, leveraging the appetite suppressant effects of nicotine37, 

and is consistent with the observational correlation found between the number of cigarettes 

smoked and the risk of obesity38. Although we cannot exclude residual population stratification, 

the increased alcohol consumption found for both PC1 and PC2 suggests a directionality of 

causal effects which is rarely considered, as obesity is typically viewed as a consequence of 

alcohol consumption rather than the cause39. The lack of robust genetic instruments to explore 

the distinct effect of different alcoholic beverages render MR analysis suboptimal to resolve 

such reverse causations. The increased variation in diet and salt added to food may reflect a 
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greater desire for palatable foods, possibly due to altered or reduced activation of the reward 

system which has been shown to occur in obese individuals (reviewed in 40). The healthy 

aspects of the dietary shift from PC1, e.g. greater consumption of fruits and vegetables, could 

possibly represent attempts to eat healthier, however this is likely to be highly confounded by 

biased reporting41. The weak to non-existent effects of cholesterol and other health risks or 

diseases on these measures of body size suggests that any lifestyle changes upon disease 

diagnosis are generally minimal and likely insufficient to have a real impact. 

PC3, i.e. predisposition to abdominal fat deposition, was of particular interest as a 

hypothesis-free emergent component affecting body shape while remaining independent of its 

size or composition. This is in contrast to WHR which is highly correlated with BMI and body fat 

percentage, particularly in men42. The increased waist circumference at the expense of that of 

the hips suggests a change in body fat distribution, with a shift from subcutaneous (contributing 

to both hips and waist) to visceral adipose tissue (contributing to waist alone). This is supported 

by the enrichment for terms related to energy homeostasis and adipose tissue function, similar 

to those previously reported for WHR adjusted for BMI43, and the impacts on health which 

appear specific to lipotoxicity and are similar to what has been found for genetic variants 

affecting subcutaneous-to-visceral adipose tissue ratio12,13. The implication of genes expressed 

in adipose tissues, particularly subcutaneous, is in line with the hypothesis that adipose tissue 

function, in particular its expandability, may be a critical factor in determining the distribution and 

impact of excess adiposity7 and its study may provide pharmaceutical avenues which may 

reduce health risks associated with obesity. The enrichment of both PCs 3 and 4 (as well as 

WHR) for genes expressed in several tissues of the digestive tract is not entirely surprising44, 

however their strong enrichment for all female-specific tissues tested was unexpected. It is 

possible that these tissues, and the genes expressed therein or associated sexual hormones, 

contribute to this phenotype, which could explain the increased variance of PC3 (and more 
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generally WHR) observed in women compared to men. Additional studies will be required to 

determine how these genes and tissues are involved in the regulation of body fat distribution. 

The additivity implied by the independence of the PCs’ causal effects provides a 

straightforward estimation of disease risk through linear combination, which proved more 

accurate than single trait-based prediction. Although causal effects are not ideally suited for 

within-sample outcome prediction, since they do not take advantage of non-causal correlates, 

their basis in causality proved reliable even out-of-population. The reason for the drop in 

accuracy seen for out-of-population PC- and BMI-based prediction of diabetes is unclear, 

though a number of factors may contribute, such as ethnicity-dependent differences in 

susceptibility, lifestyle, or ascertainment bias45, which exceed the scope of this study. 

The systematic application of MR over a broad range of phenotypes carries the risk of 

violating its assumptions. Despite the steps taken to avoid any such violations or mitigate their 

impact, some sources of bias may remain inherent to the methods employed. GWAS effect 

estimates themselves have been shown to be biased due to population effects, such as parental 

effects, population stratification, and assortative mating46. Although such biases may be present 

in the exposure, they would only bias MR estimates if they affect the outcome in a similar 

fashion34,35, which is difficult to test in a real setting. This study is also subject to other limitations 

of the MR approach, such as the estimated univariable causal effects summarizing the 

consequences of a lifetime exposure of a difference in phenotype at the population level. For 

example, the effect of 1 SD difference in weight (~14kg) in the population is not equivalent to a 

sole gain/loss of 14kg, since this difference in the population distribution will be accompanied by 

a difference in average height as well (as illustrated by PC1 loadings). The causal effect being 

modeled linearly, it also averages what may be different effects in different strata of the 

population, i.e. if the causal effect is non-linear. For example, the effects of BMI on all cause 

mortality have been shown to be non-linear47, although the linearity of effects on specific 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2021. ; https://doi.org/10.1101/2020.09.03.20187567doi: medRxiv preprint 

https://paperpile.com/c/BNFHTv/B9Psl
https://paperpile.com/c/BNFHTv/xJfG2
https://paperpile.com/c/BNFHTv/kafhu+bxqkZ
https://paperpile.com/c/BNFHTv/LT0u
https://doi.org/10.1101/2020.09.03.20187567
http://creativecommons.org/licenses/by/4.0/


21 

21 

diseases such as diabetes remains unclear48. In the case of non-linear effects, the MR causal 

effect estimates can be interpreted as an average effect at the population mean. 

In summary, we established a scale-preserving method for the linear combination of traits at 

the summary-statistics level, mimicking a GWAS performed on a standardized composite trait 

but circumventing the need for individual-level data. Furthermore, this allows the combination of 

traits across different cohorts, since the covariance of effect size estimates between different 

traits can be estimated from summary statistics via cross-trait LD score regression intercept49. 

We also showed that cross-sex MR can reduce the bias by avoiding sample overlap, while 

preserving much of the statistical power from a potential one-sample MR using the full sample, 

still relying only on publicly available summary statistics. Applying these to the principal 

components of anthropometric traits, body size, adiposity, abdominal fat distribution, and lean 

mass, we showed that their distinct effects on health- and lifestyle-related outcomes can aid in 

understanding the etiology of the consequences of obesity. These components can be 

visualized and their effects on hundreds of outcomes compared through the shiny app which 

can be downloaded following the instructions at http://wp.unil.ch/sgg/pca-mr/. Finally, we 

showed their effectiveness in predicting obesity-related diseases, opening new avenues to 

classify individuals into more fine-scale obesity subtypes and identify personalized health risks. 

Although we identified four principal components here, larger sample sizes or more detailed 

anthropometric traits may achieve a finer scale identification of obesity subtypes. 

Methods 

Data and phenotype selection 

We used GWAS summary statistics data derived from the UK Biobank16, a cohort of 

approximately 500,000 participants aged 37–73 (median 58), recruited between 2006 and 2010. 
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Phenome-wide GWAS in UK Biobank data were performed and the summary statistics made 

available by the Neale Lab (http://www.nealelab.is/uk-biobank) for 3 different sex groups: men, 

women, and both sexes combined. This includes effect estimates for 13.7 million SNPs which 

were tested for association with 4,203 unique phenotypes across 361,194 unrelated, white 

British individuals (167,020 men, 194,174 women). All were adjusted for age, age2, sex, 

age*sex, age2*sex, and the top 20 genetic PCs to correct for population stratification. We 

excluded SNPs from the HLA region (chr6: 28,477,797–33,448,354, 

www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37). For continuous phenotypes, we 

used effect estimates for the inverse rank-normalized trait. Summary statistics for WHR were 

calculated in the UK Biobank across a similar sample of 378,139 unrelated, white British 

individuals (175,155 men, 202,984 women) and correcting for the same covariates after inverse 

rank-normalization. For binary traits, we divided the effect estimates and standard errors by the 

square root of the variance of the trait (that of the analyzed sample where provided, otherwise 

across a similar subset of the UK Biobank). As such, all effects are expressed on the standard 

deviation (SD) scale and comparable with continuous traits. The linear models used to estimate 

the SNP-binary trait association provide well calibrated p-values, as long as rare SNPs (MAF < 

0.1%) are not evaluated for a trait with highly imbalanced case fraction (< 10%) or as long as 

the product of MAF and disease prevalence exceeds 0.0001 50. Since we analyzed diseases 

only with >1% prevalence, any SNPs with MAF>1% are safe to use as instruments. he largest 

fraction of low-frequency (MAF<1%) IVs were observed for height (88/1704 SNPs, i.e. 5.2% vs. 

max 2.8% for other traits/PCs) and the lowest disease prevalence were between 1–2%. Still the 

resulting causal effects from MR analysis between height and these diseases did not change 

appreciably upon the exclusion of IVs below 1% MAF (Supplementary Figure 122). 

In total, 232 phenotypes that had at least one GWS SNP (p < 5*10-8) were divided into 5 

mutually exclusive categories: body measures (14 phenotypes), continuous measures of health 

(37 phenotypes), dietary habits (19 phenotypes), diseases (108 phenotypes), and lifestyle 
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factors (54 phenotypes), which are briefly described below. The full list of selected phenotypes 

can be found in Supplementary table 1. 

Body measures included BMI, height, weight, hip and waist circumference and WHR, as well 

as bioimpedance-derived fat and lean mass estimates in arms, legs, trunk, and overall body fat 

percentage. For arms and legs, summary statistics were available for left and right sides. As 

these were almost identical, the statistics for the left side alone were used. Basal metabolic rate 

was also included in body measurements as it is derived from bioimpedance measures. 

Continuous health outcomes included the biomarker panel of the UK Biobank, including 34 

biomarkers measured in either blood or urine, as well as systolic and diastolic blood pressure 

(BP), heart rate at rest and during effort, and forced vital capacity (FVC). 

Dietary habits were obtained from a food frequency questionnaire (FFQ). UK Biobank also 

includes more specific questions such as 24-hour recall (food consumed in the last day) which 

is more reliable but less representative, as well as specific questions such as the type of bread 

or milk typically consumed, however these were not included in the present analysis. 

Disease summary statistics in the UK Biobank were available for self-reported disease 

status, ICD-10-classified hospital diagnoses, and diseases curated by the Neale Lab in 

collaboration with the FinnGen consortium (www.finngen.fi). We included data from both self-

reported answers and the FinnGen curated diseases, excluding the raw ICD10 diagnoses which 

were considered less informative. We included any diseases which had a prevalence of at least 

1% in the analyzed sample. 

Lifestyle included both environmental factors and lifestyle choices, mainly relating to physical 

activity, alcohol consumption, smoking, sleep, work, and socio-economic status. 

We restricted SNPs to those in common between the summary statistics from Neale and the 

UK10K reference panel used for LD pruning. We also removed SNPs with a minor allele 

frequency below 0.001, resulting in 9,675,947 SNPs. For each trait, SNPs were pruned 

separately using plink v1.90b6 with the UK10K European LD panel to obtain independent MR 
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instruments. SNPs were considered independent if separated by more than 10Mb or the linkage 

disequilibrium was r2 < 0.01. 

High-accuracy body composition measurements 

In addition to bioimpedance measurements, the UK Biobank provides other body composition 

phenotypes derived from more accurate methods, namely DXA and MRI. Unfortunately, the 

sample sizes for these phenotypes were too low (~5,000 individuals) for their inclusion as body 

phenotypes in the PCA. We did, however, investigate whether approximating these traits 

through linear combination of other available traits (with regression weights calculated in the UK 

Biobank) could provide a hypothesis-driven alternative to the hypothesis-free PCA approach. 

We were able to estimate 57 body composition measurements using the same 14 

anthropometric and bioimpedance-based traits with varying accuracy (see Supplementary Table 

2). 18 out of 57 had an r2 above 80%, including abdominal SAT, and another 18 had r2 above 

70%, including VAT. Others, such as bone mass and liver fat percentage could not be 

accurately approximated using the included traits. 

Principal component analysis 

Principal component analysis (PCA) was performed on a matrix of effect estimates of 

independent SNPs on the 14 body traits described above. We selected all SNPs with a 

genome-wide significant (GWS) effect (p < 5*10-8) on at least one of the body traits and pruned 

them using the same procedure as for single traits (distance > 10Mb or r2 < 0.01). SNPs were 

prioritized according to the highest rank within any significantly associated trait, i.e. for each 

trait, all SNPs significantly associated with it were ranked by p-value; then each SNP was 

attributed a priority based on the highest rank obtained with any significantly associated trait. 

This was done to avoid the well-powered traits (e.g. height) overshadowing other traits and 
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driving the SNP selection. Any missing effect estimates in the resulting matrix were set to 0. 

Data was neither centered nor scaled prior to the PCA, as the effect estimates were 

standardized and should therefore have zero mean and their variance for a given trait is 

informative (distantly related to trait heritability). 

PCA was then performed on the resulting matrix of genetic effects to obtain the PC loadings, 

which were then used to calculate SNP-PC associations across the entire genome. These were 

then individually pruned to obtain the final set of SNPs for each PC. 

Although the SNP-phenotype associations are standardized (effects are on an SD/SD scale), 

a linear combination of effects would yield non-standard effects since the resulting traits do not 

have a variance of 1. To maintain comparable effects between PCs and traits, the PC loadings 

should be scaled such that the resulting βs would represent SNP effects on composite traits 

with unit variance, which would typically involve performing the rotation on the phenotypes, 

standardizing, and rerunning a GWAS on the resulting composite trait with variance 1. Instead, 

we can consider the linear regression coefficients for trait j calculated as: 

𝛽𝛽𝒋𝒋�  = (𝐺𝐺𝑇𝑇𝐺𝐺)
−1
𝐺𝐺𝑇𝑇𝒚𝒚𝒋𝒋, 

where yj is the vector of values for trait j and G is the genotype matrix, and a weighted sum of 

n variables: 

𝑦𝑦𝐶𝐶  =  𝑤𝑤1𝑦𝑦1+. . . +𝑤𝑤𝑛𝑛𝑦𝑦𝑛𝑛, 

 where wj is the weight for trait j. The effect size for the composite trait can then be calculated 

as: 

𝛽𝛽𝐶𝐶�  = (𝐺𝐺𝑇𝑇𝐺𝐺)
−1
𝐺𝐺𝑇𝑇𝒚𝒚𝑪𝑪  = (𝐺𝐺𝑇𝑇𝐺𝐺)

−1
𝐺𝐺𝑇𝑇(𝑤𝑤1𝑦𝑦1+. . . +𝑤𝑤𝑛𝑛𝑦𝑦𝑛𝑛)  

= 𝑤𝑤1𝛽𝛽1
� +. . . +𝑤𝑤𝑛𝑛𝛽𝛽𝑛𝑛

�  

The expected  variance of variable yC can be written as51 
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𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝐶𝐶)  =  𝑤𝑤𝑇𝑇𝐾𝐾𝐾𝐾, 

where K is the covariance matrix of the n traits composing yC, which in the case of 

standardized trait variables, is the correlation matrix. Knowing the variance of the composite 

trait, we can simply rescale the vector of weights such that the expected variance in the 

composite output variable yC is equal to one, resulting in standardized effect sizes. Applying this 

to the PC loadings, we rescaled the weights as follows: 

𝑣𝑣𝑖𝑖 = 𝑤𝑤𝑖𝑖

�𝑤𝑤𝑖𝑖
𝑇𝑇𝐾𝐾𝑤𝑤𝑖𝑖

, 

where wi and vi  are the unadjusted and adjusted (trait) loading vectors for PC i, respectively, 

and K is the pairwise phenotypic correlation matrix of body trait phenotypes, which was 

calculated on a subset of the UK Biobank similar to that used for the summary statistics (i.e. 

unrelated white British individuals) and the phenotypes were corrected for the same covariates 

as used by the Neale lab prior to calculating the correlation. The effect estimates were then 

calculated using these adjusted loadings, i.e. 

𝛽𝛽𝚤𝚤� = 𝐵𝐵� ∗ 𝑣𝑣𝑖𝑖, 

where 𝐵𝐵�  is the matrix of genetic effects on the 14 anthropometric traits. The corresponding 

standard errors were calculated following the formula for a weighted sum of random variables51: 

𝜎𝜎�𝑖𝑖,𝑗𝑗2 = 𝑤𝑤𝑖𝑖𝑇𝑇 ⋅ 𝛴𝛴𝑗𝑗 ⋅ 𝐾𝐾 ⋅ 𝛴𝛴𝑗𝑗 ⋅ 𝑤𝑤𝑖𝑖, 

where 𝜎𝜎�𝑖𝑖,𝑗𝑗 is the standard error for the association of SNP j with PC i and Σj is a diagonal 

matrix with the standard error of the association of SNP j with each trait. Since we use only UK 

Biobank summary statistics, the correlation between effect estimates simplifies to the 

phenotypic correlation between the traits. The advantage of this approach is that we do not 

need to calculate the composite trait and run a GWAS but can directly compute the association 

summary statistics. 
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Tissue specificity and pathway enrichment 

We tested PC- and trait-associated SNPs for enrichment of tissue-specific genes using the 

MAGMA tool for gene set analysis17 through the FUMA v 1.3.5e interface18 using the default 

parameters, with a Bonferroni-adjusted p-value threshold. We used gene expression data in 54 

tissues from GTEx v819 as well as brain development and age data from BrainSpan20. 

We used the molecular pathway gene sets defined by DEPICT21 and tested for enrichment 

using PASCAL22. As with all pathway enrichment methods, we assume that most regulatory 

variants for a given gene are in close (50kb) physical proximity to the gene body, hence we may 

ignore more distant regulatory variants. 

Mendelian randomization 

We used inverse-variance weighted (IVW) Mendelian randomization (MR) to estimate causal 

effects of body traits and PCs on all non-body traits, as well as the reverse. MR mimics a 

randomized controlled trial (RCT) where the treatment corresponds to the random allocation of 

an exposure-associated allele, called an instrumental variable (IV)52. MR relies on three key 

assumptions to infer causality: 1, the IV is associated with a change in the exposure; 2, the IV is 

independent of the outcome, except through its association with the exposure; 3, the IV is 

independent of any confounders of the exposure-outcome association. If these assumptions are 

verified, MR provides an unbiased estimate of the causal effect of the exposure on the outcome 

and can be done using summary statistics data alone. We used IVW MR as default method for 

all our analyses, but we compared IVW causal effect estimates to those obtained from weighted 

median-based MR to ensure robustness. 
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Cross-sex Mendelian randomization 

In our case, the use of summary data from the UK Biobank for both the exposure and 

outcome effect sizes (i.e. full sample overlap) would lead to a bias in MR causal effect estimate 

in the direction of the observed correlation of the phenotypes53. To circumvent this, we used the 

existing summary statistics for two non-overlapping samples from the Neale Lab, those for men 

and women separately. Each sex was used as exposure on the other as outcome and then both 

causal effect estimates were meta-analyzed (using inverse variance weighting). This removed 

the correlation between the error terms of the effect estimates of IVs on exposure and outcome, 

significantly reducing the bias from sample overlap, while minimizing loss of power. This would 

lead to a slight bias away from zero even when there is no true difference in the genetic effects 

on the exposure in men and women, given that: 

 

�𝛼𝛼 ∗ 𝛽𝛽𝑚𝑚/𝛽𝛽𝑓𝑓 + 𝛽𝛽𝑓𝑓/𝛽𝛽𝑚𝑚
2

� ≥ |𝛼𝛼|, 

where ⍺ is the common causal effect (for men and women), βm and βf are the coefficients of 

association for a given IV with the exposure for men and women, respectively. This bias 

increases if there is a difference between sexes in the strength of association with the exposure, 

but its magnitude remains small. For example, if the SNP effects on the exposure were 

consistently 1.37 times stronger in one sex, the relative theoretical bias would only be 5%. In 

practice, however, the IVs were filtered for genome-wide significance in each sex prior to being 

used as exposure, resulting in fewer IVs being selected in the sex with weaker effects (on the 

exposure). This reduced power and increased variance in the overestimated causal effect, 

which was correspondingly down-weighted by the IVW meta-analysis. For example, we found 

PC3 to have a strong sex-specificity, with effects on exposure tending to be ~2.2 times stronger 

in women, which would theoretically lead to a 34% bias away from the null. However, this 
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yielded 242 GWS IVs in women but only 33 in men. This increased the variance in the male 

exposure - female outcome causal effect estimate by a median of 6.8-fold, resulting in a 

corresponding down-weighting of the overestimated causal effect. In this example, we expect a 

meta-analyzed estimate which is biased towards the null by ~32% (since the IVW causal effect 

estimate is expected to be (((6.1/7.1)*(1/1.7) + (1/7.1)*1.7)*𝛼𝛼=0.68*𝛼𝛼). Importantly, since the 

bias is multiplicative, this introduces no bias in the absence of causal effect, indicating it will not 

affect the type I error rate. 

Although the PCs were constructed using combined-sex summary statistics, the selected IVs 

were filtered for genome-wide significance in the sex-specific summary statistics prior to MR 

analysis to avoid weak instrument bias inflating causal effect estimates. This may slightly 

exacerbate Winner’s curse, inflating the SNP-exposure association, which would result in a 

small bias towards the null. In the presence of a true causal effect, however, the SNP-outcome 

association (being assessed in the same sample) may be proportionally increased, which would 

mitigate this bias. Such biases are difficult to correct for without using 3 independent samples. 

For each sex, the GWS IVs associated with the exposure formed the initial set of IVs. Those 

with significantly larger effects on the outcome than on the exposure were removed, as these 

would indicate a violation of MR assumptions (likely reverse causality and/or confounding). The 

effect sizes being on a standardized scale, they were compared directly using a one-sided t-test 

and removed if the magnitude of the effects in the outcome were significantly greater (p < 0.05). 

To avoid unreliable causal effect estimates, MR was only performed if at least 10 IVs remained. 

This was done using the TwoSampleMR R package v0.5.454. 

The MR causal effect estimates from individual IVs were tested for heterogeneity using 

Cochran’s Q test: 

𝑄𝑄𝑖𝑖 =
(𝛽𝛽𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜−𝛽𝛽𝑀𝑀𝑀𝑀∗𝛽𝛽𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒)2

𝜎𝜎𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜
2 +𝛽𝛽𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒

2 ∗𝜎𝜎𝑀𝑀𝑀𝑀
2 +𝛽𝛽𝑀𝑀𝑀𝑀

2 ∗𝜎𝜎𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒
2 +𝜎𝜎𝑀𝑀𝑀𝑀

2 ∗𝜎𝜎𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒
2 , 
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where βiexp and βiout are the coefficients of association of SNP i with the exposure and 

outcome, respectively, with σiexp and σiout the corresponding standard errors, and βMR and σMR 

are the MR estimate and standard error of the causal effect of the exposure on the outcome. 

The test statistic Qi follows a 𝜒𝜒2 distribution with 1 degree of freedom. If any of the IVs used had 

an associated p < 10-3, the most heterogeneous one (with the lowest p-value) was removed. If 

at least 5 IVs remained, the MR was then repeated with the remaining IVs. In practice, few 

SNPs were filtered as outliers (on average less than 1%), though we also explored alternative 

methods for dealing with heterogeneity, namely performing no filtering, using weighted median 

MR with or without filtering, or using exact Q statistics55 instead of Cochran’s Q (see 

Supplementary figures 123–128). All of these produced similar effect estimates, though those 

from weighted median MR tended to be ~6% lower and lacked the statistical power to find many 

effects. 

Due to the standardized scales of IV effect estimates, the resulting causal effects are on a 

scale representing the SD change in the outcome for a change of 1 SD in the exposure. 

To account for multiple testing, we adjusted the p-value threshold with Bonferroni correction 

for the number of tests within the exposure-outcome category pair. For example, the p-value 

threshold for the effect of BMI (body phenotype) on T2D (disease) is 0.05 / (number of body 

phenotypes * number of diseases). 

Sex-specific Mendelian randomization 

In most cases, we were instead able to obtain unbiased causal effect estimates using the 

exposure summary statistics from the opposite sex on those of the sex of interest in the 

outcome. This relies on the strength of the association between the IVs and the exposure to be 

identical (or at least not systematically different) between sexes. We tested this using both 

paired Wilcoxon signed-rank test on the absolute genetic effects of the IVs and total least 

squares (TLS) regression. Exposures with non-significant results for both tests were considered 
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identical in both sexes for this purpose and the summary statistics for the opposite sex were 

used for the exposure. 

Comparison of causal effects 

To test the significance of a difference in effects of two exposures on a given outcome, we 

used a two-sided Z-test56. We accounted for multiple testing using Bonferroni correction, 

adjusting for the total number of tests, i.e. the number of significant effects of either exposure on 

the category outcomes. For example, to test whether the effects of BMI on T2D were different 

from those of WHR, the significance threshold would be 0.05 / total number of diseases 

significantly affected by either BMI or WHR. 

In some cases, it was useful to compare the causal effects of two exposures on all outcomes 

of a category (e.g. the effects of weight on disease risk compared to those of PC1) or the same 

exposure in different experimental settings (comparison of methods or sex-stratified analyses). 

In these cases, we obtained the slope estimate using TLS regression with no intercept, which 

considers error in both axes rather than ordinary least squares (OLS) which minimizes only the 

vertical offset. The standard error on the angle of the regression line (rather than the slope, 

which is not symmetrical and dependent on the phenotype placed on the y-axis) was computed 

using a jackknife procedure, which was then used to compare the obtained estimate with the 

null hypothesis that the true causal effects were identical (i.e. an angle of 45° or a slope of 1). 

The TLS procedure was performed using the deming R package v1.457. 

Prediction of disease risk 

The accuracy of disease prediction was assessed in-sample in the UK Biobank across 

371’523 unrelated, white British individuals (199,699 women, 171,824 men) for diabetes, high 

cholesterol, and hypertension. PCs were calculated based on the 14 scaled and centered 

anthropometric traits for each individual. These were then combined in a disease-specific linear 
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combination based on the estimated causal effect on the disease. Rather than ignoring PCs 

with non-significant effects, the effect estimates were inverse variance weighted to account for 

the uncertainty of the effect: 

𝑑𝑑 =  ∑4𝑖𝑖=1
𝛾𝛾𝑖𝑖𝑝𝑝𝑖𝑖
𝜎𝜎𝑖𝑖
2 , 

where 𝛾𝛾i and 𝜎𝜎i are the estimated causal effect of PC i on the disease of interest and its 

standard error, respectively, and pi is the individual’s phenotypic realization of that PC. 

The accuracy of this predictor was assessed using receiver operating characteristic (ROC) 

curves by comparing the area under the curve (AUC) with those of BMI and WHR. The 

significance of the difference between the AUCs for each predictor was determined using 

DeLong’s test in the pROC R package (version 1.16.2)58. 

Out-of-sample prediction accuracy was assessed in a sample of 76,756 UK Biobank 

participants (42,407 women, 34,349 men) who were not flagged as 

“in.white.British.ancestry.subset” in the sample QC file. This includes individuals who either did 

not self-report ‘white British’ or whose genetic ancestry (as determined by the genomic PCs) 

was dissimilar from other white British individuals. This sample thereby excluded all the 

individuals included in the original analysis and any relatives in the UK Biobank. Simulating a 

clinical setting, the phenotypes were scaled according to the original distribution, i.e. the mean 

and SD of the original sample were used to scale individuals without relying on the distribution 

in the second sample. Using the values of the second distribution for scaling changed little (the 

AUC increased by at most 4.4*10-4). 
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Figures 

 

Figure 1. Overview of the methods. Summary statistics for anthropometric traits from the UK 

Biobank were pruned for independence before being subjected to principal component analysis 

(PCA). PC-associated SNPs were tested for enrichment in genes expressed in certain tissues 

or in pathways. The genetic effects on the resulting components were scaled to obtain effect 

sizes corresponding to a trait with a variance of 1 (standardized). Mendelian randomization was 

used to determine the impact of these composite traits on lifestyle and health outcomes. Using 

these effect estimates, individual risk was predicted in the UK Biobank and accuracy compared 

to BMI and WHR. 
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Figure 2. The contributions of each trait to the first four genetic PCs. The explained 

variance of each PC is included in parentheses along with the descriptive name used in the 

main text. The loadings presented here are those typically used in PCA, scaled such that the 

sum of the squared weights is equal to 1 (as opposed to the scaling used to obtain composite 

traits with a variance of 1). This provides a consistent scale and makes PCs more easily 

comparable with each other.  
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Figure 3. Body size and accumulation of body fat were mainly enriched for genes 

expressed in the brain, while the others were enriched for a broader range of tissues. 

Enrichment of traits and principal components (PCs) for tissue-specific gene expression 

(negative log 10 p-values). Genome-wide SNP effect p-values were analyzed using MAGMA on 

GTEx v8 data (54 tissues). Results not significant after Bonferroni correction are masked in 

white. Traits with no significant enrichment results are hidden for clarity (full results are available 

in Supplementary Table 6).  
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Figure 4. Single and composite traits increase the risk of multiple diseases. MR causal 

effects of traits and principal components (PCs) on a selection of diseases on a standardized 

scale. The 95% confidence interval of the effect is indicated in brackets. Effects which were not 

significant at the Bonferroni-corrected threshold (p < 4.3*10-5) are colored in white. The full list of 

effects can be found in Supplementary table 12.  
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Figure 5. Single and composite traits affect many aspects of lifestyle. MR causal effects of 

traits and principal components (PCs) on a selection of lifestyle factors on a standardized scale. 

The 95% confidence interval of the effect is indicated in brackets. Effects which were not 

significant at the Bonferroni-corrected threshold (p < 7.1*10-5) are colored in white. The full list of 

effects can be found in Supplementary table 14.  
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Figure 6. PCs improve prediction of obesity-related diseases out-of-population. ROC 

curves for PC-, BMI-, and WHR-based prediction of diabetes, hypercholesterolemia, and 

hypertension out-of-sample/-population. The indicated p-values for the difference between the 

PC- and single trait-based curves were obtained using the DeLong method. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2021. ; https://doi.org/10.1101/2020.09.03.20187567doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.03.20187567
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	PCA of genetic effects
	Tissue/pathway enrichment
	Mendelian Randomization analysis
	Cross-sex MR to avoid bias from sample-overlap
	Disease risk
	Continuous health outcomes
	Lifestyle factors
	Diet
	Sex-specific effects
	Bi-directional MR
	DXA-based measures
	Prediction of disease risk


	Discussion
	Methods
	Data and phenotype selection
	High-accuracy body composition measurements
	Principal component analysis
	Tissue specificity and pathway enrichment
	Mendelian randomization
	Cross-sex Mendelian randomization
	Sex-specific Mendelian randomization
	Comparison of causal effects
	Prediction of disease risk


	Acknowledgements
	Author contributions
	Figures

