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Abstract 

Intracortical brain-computer interfaces (iBCI) have the potential to restore independence for 

individuals with significant motor or communication impairments. One of the most realistic 

avenues for clinical translation of iBCI technology is to enable control of a computer cursor—i.e. 

movement-related neural activity is interpreted (decoded) and used to drive cursor function. Both 

nonhuman primate and human studies have demonstrated high-level cursor translation control 

using attempted upper limb reaching movements. However, cursor click control—based on 

identifying attempted grasp—has only been successful in providing discrete click functionality; the 

ability to maintain click during translation does not yet exist. Here we present a novel decoding 

approach for cursor click based on identifying transient neural responses that emerge at the onset 

and offset of intended hand grasp. We demonstrate in a human participant, who used the BCI 

system independently in his home, that this transient-based approach provides high-functioning, 

generalized click control that can be used for both point-and-click and click-and-drag applications.  

 

Introduction 

The loss of upper limb motor function due to injury or disease affects the ability to perform 

physical activities of daily living, including operating electronic devices. Intracortical brain-

computer interface (iBCI) systems, which interpret motor intent signals from movement-related 

brain areas, may eventually be paired with dexterous robotic limbs (Carmena et al., 2003; 

Collinger et al., 2013; Hochberg et al., 2012; Velliste et al., 2008) or electrical stimulation of 

paralyzed limbs (Ajiboye et al., 2017; Ethier et al., 2012; Friedenberg et al., 2017) to return 

“natural” upper limb motor control. While these goals are not yet fully realizable in a clinical 

implementation, it is possible with current iBCI technology to provide high performance cursor 

control for use with computer-based applications (Nuyujukian et al., 2018; Pandarinath et al., 

2017; Simeral et al., 2011; Weiss et al., 2019). Computer use provides a means of connecting to 

the world, and can greatly improve quality of life for those living with severe motor impairment by 

allowing access to web browsing, social media, electronic games, or text-based communication 

(Gilja et al., 2011; Huggins et al., 2011; Ryu & Shenoy, 2009; Wolpaw et al., 2002). 

iBCI systems for motor control—including cursor control—interpret neural activity 

recorded from movement-related brain areas during attempted or imagined limb movement (Aflalo 

et al., 2015; Hochberg et al., 2006; Wang et al., 2009; Wolpaw et al., 2002). Commonly, cursor 

translation is controlled using neural activity related to attempted arm movements; for example, 

an attempted reach to the left is converted into leftward cursor movement (typically velocity). 

Similarly, cursor click is derived from neural activity during attempted hand grasp, where grasp is 

converted to a clicked state and the absence of grasp (neutral/relaxed posture) to an unclicked 

state (Bacher et al., 2015; Kim et al., 2011; Nuyujukian et al., 2018; Simeral et al., 2011). This 
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approach provides the user with intuitive control, and can achieve performance levels suitable for 

real-world use in some applications (Nuyujukian et al., 2018). However, existing click decoding 

approaches have demonstrated only discrete click functionality, and not the ability to maintain 

click during translation. Such generalizable control is essential to achieve clinically-viable 

application of iBCI for full computer access. 

The restriction of current decoding approaches to only discrete click control arises from a 

difficulty in identifying salient, continuous neural responses that are unique to grasp. There is 

some evidence that grasp-related features of neural activity are attenuated during attempted arm 

translation (Downey et al., 2018). Previous studies utilizing click decoding avoid this complication 

by using calibration routines that separate translation and grasp phases (Kim et al., 2011). This 

simplifies the problem of isolating activity related to grasp by avoiding translation-grasp 

interactions, but also limits the functionality of the decoder.  

Here we present a novel approach to click decoding that identifies transient neural 

responses related to transitions in grasp state (i.e., grasp and release). This differs from previous 

click decoders, which instead attempt to continuously identify responses related to the grasp state 

itself (grasped or un-grasped). A participant with tetraplegia enrolled in an ongoing clinical trial 

used both types of click decoders to perform controlled tasks requiring point-and-click and click-

and-drag functionality. We found that the transient-based decoding approach provided a high 

degree of control on both tasks, whereas the existing grasp state decoder could only achieve 

point-and-click control. These results advance the performance standard for iBCI click decoding, 

and highlight the potential importance of incorporating transient cortical responses into iBCI 

decoder design.  

 

Methods 

Participant 

 The participant in this study (P2) is a man with tetraplegia caused by C5 motor/C6 sensory 

ASIA B spinal cord injury. The participant has some residual upper arm and wrist movement, but 

no hand function. Approximately five years prior to data collection for the current study, two 88-

channel microelectrode arrays (Blackrock Microsystems, Salt Lake City, UT) were implanted in 

the hand and arm areas of motor cortex. He also had two 64-channel arrays implanted in 

somatosensory cortex (Flesher et al., 2016), which were not used for this study.  Informed consent 

was obtained prior to performing any study-related procedures. 

 

Data acquisition 

 All experiments were performed using an at-home portable iBCI system (Blackrock 

Microsystems, Weiss et al., 2019). This study was conducted under an Investigational Device 

Exemption from the Food and Drug Administration and approved by Institutional Review Board at 

the University of Pittsburgh (Pittsburgh, PA), registered at ClinicalTrials.gov (NCT01894802). The 

system uses digital Cereplex-E headstages and a portable NeuroPort Signal Processor 

(Blackrock Microsystems), connected to a medical-grade tablet. As reported previously, this 

system achieves comparable performance to typical in-lab systems. Briefly, neural signals 

collected by the portable system were filtered using a 4th order 250 Hz high-pass filter, logged as 

threshold crossings (-4.5 RMS) and binned at 50 Hz. The binned counts were then convolved 

online with a 440ms decaying exponential filter to provide a smoothed estimate of firing rate.  
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Due to contact restrictions caused by the COVID-19 pandemic, the participant performed 

all sessions independently at his home, mostly under supervision from researchers via 

telecommunication. An in-house Matlab-based program (Mathworks Inc) was used to automate 

the session, progressing through decoder calibration and evaluation tasks. Caregivers were 

trained to connect the digital headstages and perform battery changes for the tablet when 

necessary. However, the participant performed all other elements of system operation using the 

tablet touchscreen, which mostly entailed running the program, selecting the task from a 

dropdown menu, and pressing on-screen buttons to progress through each phase of the task. 

Once the participant was comfortable using the system, he performed some sessions completely 

independently, with no assistance from researchers. All data was collected between 1795 and 

1909 days post-implant.  

 

Dimensionality reduction 

 Recent work in nonhuman primate neurophysiology indicates that neural population 

activity in motor cortex during upper limb movement can be captured by a relatively small number 

of correlation patterns (Churchland et al., 2012; Degenhart et al., 2020; Gallego et al., 2017; 

Sadtler et al., 2014). To mitigate concerns of overfitting during decoder training and take 

advantage of the apparent stability of low-dimensional components (Gallego et al., 2018, 2020), 

we reduced the neural activity to a 20-dimensional state space using factor analysis. On each 

session we calculated factor weights from data collected during each initial decoder calibration 

routine (observation), and then used those weights to reduce incoming data to a 20-dimensional 

state space. The activity within this reduced state space was then used to train the click decoders.  

 

Decoder calibration tasks 

 We tested two types of calibration routines for translation and click: (1) discrete click 

center-out, and (2) sustained click center-out. All decoder calibration occurred at the beginning of 

the session and consisted of two components: observation followed by partially-assisted brain 

control (see Translation decoding). During the observation period, the participant observed the 

cursor as it moved under computer control between targets on the screen and transitioned 

between click states. The participant was asked to perform covert (i.e. imagined) movements with 

his right arm corresponding to the cursor translation (e.g. move arm to the left when the cursor 

moves to the left), and attempted grasp corresponding to cursor click (i.e. grasp for click, release 

for unclick). The participant’s hand is naturally in a clenched, palmar grasp posture due to 

hypertonia, and he reported that his motor imagery for “grasp” and “release” was best described 

as isometric force production (“squeeze” and “relax”) rather than finger movements. 

 

Discrete click calibration task 

A schematic of the task is shown in Fig 1a. Each trial (40 total) began with the cursor in 

the central target. One of eight outer targets then appeared, and after a short delay (0.5s) the 

cursor moved with a bell-shaped velocity profile to the outer target. A voice then cued the 

participant to “click”, followed approximately three seconds later by “release”. During the clicked 

period, the cursor changed from an open to filled circle. After release, the cursor returned to the 

center target to begin a new trial. Due to click and release occurring consecutively at the outer 

target, this calibration task only included cursor translation while the cursor was in the unclicked 

state (Fig 1a, bottom). This calibration design closely mirrors the one used previously for 

demonstrating point-and-click control (Kim et al., 2011) 
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Sustained click calibration task 

A schematic of the task is shown in Fig 1b. The sustained click calibration was very similar 

to the discrete click calibration, except each trial did not contain both click and release cues. 

Instead, the behavior of cursor click (click or release) at the outer target was chosen at random. 

If the selected action was redundant (e.g. a potential “click” cue when the cursor was already in 

the clicked state), no cue was delivered and the trial proceeded to return to the center. Importantly, 

this calibration paradigm resulted in cursor translation during both clicked and unclicked states 

(Fig 1b, bottom).   

  

Decoder evaluation tasks 

 We aimed to test the ability of the click decoders to generalize across the two main 

functions necessary for full click function: point-and-click (discrete click), and click-and-drag. To 

improve user engagement, the tasks were stylized as helicopter-based arcade games. 

Schematics of the two tasks are shown in Figure 1c,d. During each session, the participant first 

 
Figure 1 Calibration and evaluation tasks. (a) Top: Discrete click calibration task. On each trial, the cursor moved 

to one of eight outer targets, clicked and then unclicked (with verbal “click” and “release”) cues, and then returned 

to the center. Bottom: Example cursor velocities and click state. (b) Top: Sustained click calibration task. On each 

trial, the cursor moved to one of eight outer targets, then either clicked, unclicked, or remained the same before 

returning to the center. The transition between clicked and unclicked states was randomly selected on each trial. 

Bottom: Example cursor velocities and click state. Note that unlike the discrete click calibration task, cursor 

translation occurred for both clicked and unclicked states. (c) Point-and-click evaluation task schematic. The 

participant moved the cursor from the center target to the outer target (one of eight center-out target locations; 

rightward target in this example), clicked and released, then returned to the center. (d) Click-and-drag evaluation 

task schematic. The participant moved the cursor to the outer target (rightward target in this example), clicked to 

grab it, then dragged it back to the center target (both targets overlapping) before releasing.  
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completed sixteen trials of the click-and-drag task with each decoder, followed by sixteen trials of 

the point-and-click task with each decoder. This sequence then repeated, resulting in thirty-two 

trials for each decoder/task combination.  

 

Point-and-click 

The participant began a trial by moving the unclicked cursor to the center target. An outer 

target then appeared at one of 8 radial locations and the participant moved the cursor to the 

target. Once the cursor entered the target, he attempted to click and immediately release without 

leaving the target. A trial was unsuccessful if: a click occurred before reaching the target (early 

click), the cursor left the target before release (drag out), or he remained in any single phase 

longer than twenty seconds (timeout). In the case of a drag out failure, the cursor was 

automatically returned to the center target. During the task, early clicks did not trigger immediate 

trial failure, and the participant could continue to attempt the task. However, trials with early clicks 

were retroactively judged as failed trials. 

 

Click-and-drag 

As with the point-and-click task, each trial began when the unclicked cursor entered the 

center target. An outer target (stylized as a “worried” face) then appeared at one of eight radial 

locations and the participant was tasked with clicking on the target (cursor overlapping with outer 

target), dragging it back to the center target (outer target overlapping with center target), and then 

releasing. A trial was considered unsuccessful if: a click occurred before reaching the target (early 

click), the dragged target was dropped before returning to the center (drop), or he remained in 

any single phase longer than twenty seconds (timeout). As in the point-and-click task, early clicks 

did not trigger immediate trial failure, but were judged as such post-hoc.   

 

Neural components of click (grasp) 

 To inform the development of our novel click decoder, we first aimed to identify prominent 

neural activity patterns related to click (attempted/covert grasp) observed during the discrete click 

calibration task. To do this, we performed an extensive grid search for unique activity patterns 

across all potentially relevant temporal windows encompassing grasp and release (Fig 2). For 

each step of the search we selected a window start and window end relative to each grasp event 

(100ms increments) and assigned class labels to the neural factors (class A if within window, 

class B otherwise). We then fit a linear discriminant analysis (LDA) classifier on the resulting 

dataset, thus attempting to isolate the activity observed within the selected window. Using 10-fold 

cross-validation, we obtained the resulting performance of the classifier, measured using 

Matthews Correlation Coefficient (MCC):  

𝑀𝐶𝐶 =
𝑇𝑃 ∙ 𝑇𝑁 −  𝐹𝑃 ∙ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 , 

 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 represent the true positives, true negatives, false positives, and false 

negatives, respectively. Due to its symmetry, the MCC metric provides a good indicator of 

classification performance even for highly unbalanced datasets (as is the case here for very small 

temporal windows). However, MCC can still display biases due to class imbalances (Zhu, 2020). 

To address this limitation and improve comparisons of classification performance across window 

sizes with different inherent class imbalances, we introduce a slightly adjusted version of MCC:  
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𝑀𝐶𝐶𝑎𝑑𝑗 =  
𝑀𝐶𝐶 − 𝐾

1 − 𝐾
 , 

where 𝐾 is the minimum MCC achieved across all classifications with the same class imbalance 

(i.e. window size).  

After sweeping across all windows from 1 second pre-click to ~1.5 seconds post-release, 

we observed three local maxima—indicating three separate neural responses related to 

click/grasp—which are highlighted in Fig 2. The first was a window starting around the time of 

click onset and ending around the time of release (Fig 2, purple), indicating a neural component 

related to sustained grasp. The second was a window starting just before release and ending 

about half a second after release (Fig 2, orange), and the third was a window starting just before 

click and ending about half a second after click (Fig 3, blue). These two components represent 

transient responses at the offset and onset of grasp, respectively. Note that absolute MCCadj score 

does not necessarily indicate the magnitude or salience of the associated neural response. Small 

trial-by-trial variation in the timing of an attempted action (and the corresponding neural response) 

will have a significantly greater impact on classification performance for short time windows (e.g. 

Fig 3, orange or blue) than for long windows (Fig 3, purple). However, this sensitivity to temporal 

variability is only present during offline classifier training, which assumes fixed relationships 

between the cues and the neural responses, and does not predict the performance during 

asynchronous online control.  

 

 
Figure 2 Identifying neural components related to grasp. Left: Discriminability of neural activity in various temporal 

windows around click and release. Each point represents a temporal window relative to click/release, which was 

used to assigned class labels to the neural data. The color at each point represents the performance (adjusted 

Matthews Correlation Coefficient; MCCadj) achieved by an LDA classifier in isolating neural activity from within the 

given window (10-fold cross-validated). Right: Example classification probability traces from the three local maxima 

identified through this grid search process: sustained response (purple), offset transient (orange), and onset 

transient (blue). Colored bars represent the target class labels for three sample trials. Black probability traces reflect 

the probability of class A, as output by each LDA classifier.   

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.03.20186973doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.03.20186973


7 
 

Sustained click decoder 

The sustained neural response that occurs during grasp (identified in Fig 2) has been used 

in previous approaches to click decoding, in which a classifier is used to directly output the click 

state (Kim et al., 2011; Simeral et al., 2011). We replicated this approach to provide a baseline 

comparison of existing click decoder functionality. To calibrate the decoder, we used the click 

state (clicked/unclicked) at each point in the calibration task to assign class labels and then trained 

a simple LDA classifier on the 20-dimensional neural state (factors). During online control, we 

applied the classifier at each time point (20ms) and directly mapped the output to the click state.  

 

Transient-based click decoder 

While previous approaches to click decoding utilized sustained neural responses during 

grasp, we aimed to instead use the transient responses observed at the onset and offset of grasp 

(Fig 2). To do this, we trained two independent classifiers, which then ran concurrently during 

online control to update changes in click state. To train each transient classifier, we first identified 

the optimal time window for a given session. From the results in Fig 2, we found that the transient 

responses (observed in the smoothed estimate of neural firing rates, see Data acquisition) were 

only about half a second long. These short time windows meant that idiosyncrasies in the user’s 

approach during calibration—which might vary across days or across subjects—could 

significantly impact the classification. For example, a user might attempt to grasp immediately 

upon hearing the audio cue to “click”, or might wait until visual feedback of the cursor changing 

from the unclicked to clicked state. For this reason, on each session we trained the transient 

classifiers using a limited grid-search approach similar to the one outlined in the section Neural 

components of click (grasp). However, 

rather than search the entire parameter 

space, we restricted the search to 

smaller time periods. For both grasp and 

release, we swept through a range of 

window centers (-1.0s to +1.0s relative 

to onset/offset, 0.1s increment) and 

window widths (0.2s to 2s, 0.1s 

increments). For each window, we 

computed the output probabilities from 

the resulting LDA classifier (10-fold 

cross-validation) and calculated the 

MCC for probability thresholds between 

0.1 and 0.9 (increments of 0.1). We then 

selected the time window with the 

greatest cumulative MCC (summing 

across all thresholds).   

During online control, we applied 

a simple heuristic to convert the 

transient classifier outputs to click 

function. If the cursor was unclicked and 

the grasp onset transient probability 

exceeded both 0.2 and the release 

transient probability, the cursor entered 

 
Figure 3 Translation control. Average cursor trajectories (each 

line comprises four trials) during the reach phase, separated by 

calibration routine (discrete or sustained click) and decoder 

(sustained or transient). Each subplot contains trajectories from 

all sessions, including both the point-and-click and click-and-

drag tasks.  
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the clicked state. If the cursor was in the clicked state and the release transient probability 

exceeded both 0.2 and the grasp onset transient probability, the cursor entered the unclicked 

state.  

 

Translation decoding 

The focus of this study was decoding click, rather than cursor translation. To maintain 

consistent translation performance in combination with both tested click decoders, we used an 

optimal linear estimator (OLE) approach to decode cursor velocity. We have previously used this 

kinematic decoding approach to demonstrate high-quality control for two-dimensional cursor 

movement (Weiss et al., 2019) and up to ten-dimensional arm/hand movement (Collinger et al., 

2013; Wodlinger et al., 2014).  

Following our previous approaches for kinematic decoding, we followed up each of the 

calibration routines (discrete click or 

sustained click) with a set of partially-

assisted online brain control trials. 

These trials (40 total) followed the 

same center-out format, but with 

movement velocity controlled by the 

OLE translation decoder (restricted to 

the target axis). The data collected 

during this assisted set was used to fit 

a new OLE translation decoder, but 

was not used for any aspect of click 

decoder calibration.  

 

Results 

 Participant P2 was able to 

achieve sufficient translation control 

under all conditions to make accurate 

cursor movements to the targets (Fig 

3). This allowed us to use overall task 

performance as a gauge of relative 

click functionality between the two 

tested decoders.  

Point-and-click task performance 

 During the point-and-click 

task, the sustained click decoder was 

only effective when trained on the 

discrete click calibration task (Fig 4a, 

left). This condition is equivalent to 

previous demonstrations of point-and-

click control, including the same 

training paradigm, decoding 

approach, and evaluation task (Kim et 

al., 2011). Almost all trials of this type 

 
Figure 4 Point-and-click performance. (a) Click locations (rotated 

to align across target directions) during sustained decoder trials 

trained using discrete click calibration (left) or sustained click 

calibration (right). Blue points represent click locations on 

successful trials. Black points represent the click locations on trials 

with initial clicks outside of the target. Red points represent failed 

trials in which the click occurred inside the target, but the cursor 

left the target before release. (b) Histogram of outcomes for 

sustained decoder trials following discrete click (light) and 

sustained click (dark) calibration. (c) Same as in (a) for the 

transient-based decoder. (d) Same as in (b) for the transient-

based decoder.  
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fell into two categories—success and early click—with roughly equal probability. The relatively 

low success rate in comparison to previous studies is likely because we only examined the first 

click on each trial when determining success or failure rather than allowing multiple attempts 

following an errant first click. When trained on the sustained click calibration task, the sustained 

decoder failed to provide adequate control, with a high occurrence of early clicks. This indicates 

that sustained grasp-related neural activity is not easily isolated from translation-related signals 

during simultaneous control, which matches results from a previous study from our group 

(Downey et al., 2018).  

 Unlike the sustained click decoder, the transient-based click decoder was successful at 

providing point-and-click functionality regardless of calibration routine (Fig 4c,d). It did display a 

higher incidence of “drag out” failures 

(i.e. failing to unclick before leaving 

the target). However, this can likely be 

attributed more to limitations in 

translation control than to a failure of 

click control. From the click locations 

shown in Fig 4c, the “drag out” failures 

almost exclusively occurred on trials 

where the participant clicked on the 

outer edge of the target. Thus, those 

trials appear to reflect a failure in 

stabilizing the cursor, and not 

necessarily a failure in release control. 

 

Click-and-drag task performance 

The sustained click decoder was 

unable to provide any meaningful drag 

functionality, regardless of calibration 

routine (Fig 5a,b). However, the types 

of failures depended on the calibration 

routine. When trained on discrete click 

calibration, the participant was able to 

successfully reach the outer target on 

a significant number of trials. 

However, he was unable to maintain 

click during translation back to the 

center target, and almost every trial 

ended with an early drop. This failure 

to maintain the click is a result of the 

limitations caused by the calibration 

routine. The discrete click calibration 

routine only included interleaved 

translation and click. Thus, the 

resulting classifier was not able to 

generalize to the condition in which 

translation coincided with click. When 

 
Figure 5 Click-and-drag performance. (a) Key click and release 

locations (rotated to align across target directions) during 

sustained decoder trials trained using discrete click calibration 

(left) or sustained click calibration (right). Open blue points 

represent release locations on successful trials, where the 

participant successfully dragged the outer target back to the 

center. Black points represent the click locations on failed trials 

with initial clicks outside of the target. Red points represent 

release locations on failed trials in which the participant grabbed 

the outer target, but released before reaching the center target. 

(b) Histogram of outcomes for sustained decoder trials following 

discrete click (light) and sustained click (dark) calibration. (c) 

Same as in (a) for the transient-based decoder. (d) Same as in (b) 

for the transient-based decoder.  
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trained on the sustained click calibration routine, the sustained click decoder behaved equally 

poorly, but the failures almost entirely resulted from early click—this failure type corresponds to 

false positives during grasp classification. 

 The transient-based decoder provided high click-and-drag functionality regardless of 

calibration routine (Fig 5c,d). As during the point-and-click task, the most common failure was an 

early click before reaching the target. However, especially for the decoder trained following the 

sustained click calibration routine (Fig 5c, right), the majority of early clicks occurred just outside 

of the outer target, and thus appear to reflect inadequacies in translation control rather than click 

control. The decoder trained from sustained click calibration also had a lower incidence of drops 

(17% vs 8%, Fig 5d), suggesting slightly better release control. Together, these results indicate 

that while the performance of a transient-based decoding approach is largely invariant to the 

calibration task, a calibration routine involving sustained click (i.e. translation in both clicked and 

unclicked states) may lower the incidence of both unintentional clicks (Figs 4d, 5d) and 

unintentional releases (Figs 5d).  

  

Additional control metrics 

The results in Figs. 4 and 5 reflect the strictest possible success criteria. As described in 

Decoder evaluation tasks, early click errors during task performance did not actually trigger trial 

failure. To evaluate performance in a more forgiving framework, we recalculated the overall 

performance metrics after allowing for multiple clicks (Fig S1), which is equivalent to the 

participant’s online experience while performing the tasks. For the transient decoder, this resulted 

in an increase in point-and-click success rates to 72% (discrete click calibration) and 57% 

(sustained click calibration) and click-and-drag success rates to 72% and 82%. For the sustained 

decoder, point-and-click success rates increased to 91% and 90%, but click-and-drag rates 

increased only to 5% and 16%. The most striking change in performance was the improvement 

in point-and-click performance by the sustained decoder (from 10% to 90%). However, the 

participant performed many unnecessary clicks in this condition, with 46% of successful trials 

containing at least five clicks (Fig S2). Trials with the transient decoder (trained using either 

calibration routine) contained only one or two clicks on >95% of trials, indicating that even though 

the success rate was lower than the sustained decoder, it provided more reliable and consistent 

control.  

In addition to total successes, we also investigated the temporal aspect of control achieved 

by each decoder. To summarize general performance speed, we calculated the target acquisition 

rate (number of successful trials divided by the total task time, excluding intertrial periods) for 

each sixteen-trial block of the point-and-click and click-and-drag tasks (Fig 6a). Acquisition rates 

varied considerably even within condition, which reflects cross-session variability in both click 

control and translation control. The sustained click decoder only achieved consistent, meaningful 

control on the point-and-click task, and only when trained using discrete click calibration (median 

rate of 3.6 successes/minute). This rate was not significantly different from the rate achieved by 

the transient decoder trained using discrete click (p = 0.63, Mann-Whitney U-test) or sustained 

click (p = 0.66, Mann-Whitney U-test) calibration. The variance in performance was also not 

significantly different (discrete click: p = 0.29, sustained click: p = 0.08, F-test) 

For the point-and-click task, the transient click decoder achieved a median acquisition rate 

of 3.1 successes/minute when trained using discrete click calibration, and 3.0 successes/minute 

when trained using sustained click calibration. Thus, the calibration paradigm had no effect on 

median acquisition rate (p = 0.76, Mann-Whitney U-test). However, performance on this task was 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.03.20186973doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.03.20186973


11 
 

more consistent across sessions 

when trained using discrete click 

calibration (σ=1.2 compared to σ=2.7, 

p = 0.006, F-test; open vs closed 

circles in Fig 6a). For the click-and-

drag task, the transient click decoder 

achieved a median acquisition rate of 

3.7 successes/minute when trained 

using discrete click calibration and 4.4 

successes/minute when trained using 

sustained click calibration. These 

rates were not significantly different 

from each other in median (p = 0.21, 

Mann-Whitney U-test) or cross-

session variance (p = 0.87 F-test). 

These results indicate that the 

transient decoder, unlike the 

sustained decoder, provided 

generalizable control, and allowed the 

participant to achieve consistent 

performance across tasks. 

 To better analyze the behavior 

of each click decoder during control, 

we calculated the latency of click and 

release responses across all 

successful trials on both tasks (Fig 

6b). On each successful trial we 

identified the time lag between when 

click or release was possible, and 

when it actually occurred. For both 

tasks, click latency thus represents the 

time between when the cursor entered 

the outer target and when click 

occurred. Release latency during the point-and-click task is simply the time between click and 

release, and for the click-and-drag task it is the time between completion of the drag (outer target 

coinciding with center target) and the release. The average click latencies were not different 

between the two decoders (p = 0.88 Mann-Whitney U-test), with a median click latency of 0.58 

seconds for the sustained decoder and 0.56 seconds for the transient decoder. However, the 

release latencies differed significantly (p < 10-40, Mann-Whitney U-test), with a median release 

latency of 0.12 seconds for the sustained decoder and 0.56 seconds for the transient decoder. 

Note that for the transient decoder, the release latencies mirrored the click latencies (p = 0.61, 

Mann-Whitney U-test), indicating that both resulted from similar volitional control. Sustained 

decoder release latencies were skewed significantly lower than the click latencies (p < 10-28, 

Mann-Whitney U-test). The distribution of release latencies comprised almost entirely point-and-

click trials (see breakdown of successful trials, Fig 4a,b), and indicates that for point-and-click 

function, a sustained click decoding approach can provide shorter click durations and improve the 

 
Figure 6 Control timing (a) Success rates achieved during the 

point-and-click and click-and-drag tasks for the sustained and 

transient decoders. Open circles correspond to discrete click 

calibration sessions and closed circles to sustained click 

calibration sessions. Each point represents a sixteen-trial block 

(two per session). Horizontal bars denote the median success rate 

of each group (b) Latency of click and release commands on 

successful trials from both tasks. The latency was calculated as 

the time delay between when a click/unclick event was possible 

(e.g. entering the outer target) and when it occurred.  
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speed of button clicking. However, this advantage comes at the cost of generalizability, as the 

click cannot be maintained during cursor translation.  

 

Salience of grasp-related neural responses underlying click control 

 The behavioral results from the point-and-click and click-and-drag tasks indicate that a 

transient-based approach to click decoding can provide more generalizable control of cursor click. 

Here we examined the neural response features used by each decoding approach to better 

understand the cortical control of grasp and its application to decoding.  

On each session, we aligned neural responses (during calibration) to click events and 

projected the neural activity onto the three LDA axes (see Fig 2) used by the decoders (Fig 7a,b). 

The resulting traces thus correspond to the main cortical responses observed during attempted 

grasp (see Methods). Across all sessions and calibration routines (discrete click: Fig 7a, sustained 

click: Fig 7b), we found consistent and reliable responses related to all three grasp-related 

responses: onset (blue), offset (orange) and sustained (purple) grasp. However, the salience 

(magnitude) of the responses was not 

equal, with the sustained component 

consistently weaker than either 

transient response. 

To compare response 

magnitudes across the three identified 

neural axes, we calculated on each 

trial the maximum deviation along 

each axis. Specifically, we found the 

range (difference between the 

maximum and minimum) observed on 

each trial after projecting along the 

onset, offset, and sustained axes (Fig 

7c,d). We found that both transient 

responses were consistently stronger 

than the sustained response. The 

maximum deviations along the grasp 

onset axis were greater than the 

maximum deviations along the 

sustained axis during discrete click 

calibration (median onset = 3.6 a.u. 

median sustained = 3.1; p < 10-38, 

paired t-test) and sustained click 

calibration (median onset = 3.9 a.u. 

median sustained = 2.8; p < 10-28, 

paired t-test). The maximum 

deviations along the grasp offset axis 

were also greater than the maximum 

deviations along the sustained axis for 

discrete click (median offset = 4.1 a.u. 

median sustained = 3.1; p < 10-59, 

paired t-test) and sustained click 

 
Figure 7 Salience of neural responses across key grasp-related 

dimensions (a) Projection of neural activity during discrete click 

calibration onto onset (blue), offset (orange), and sustained 

(purple) LDA axes. Light traces represent individual sessions. 

Dark traces represent cross-session averages. (b) Same as (a) 

for sustained click calibration sessions. (c) Comparison of peak 

excursions along onset and sustained axes. Open circles 

correspond to discrete click calibration trials, closed circles to 

sustained click calibration trials. (d) Same as (c), but comparing 

peak excursions along offset and sustained axes. q 
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(median offset = 4.1 a.u. median sustained = 2.6; p < 10-29, paired t-test) calibration. This result 

highlights the significance of transient cortical responses during grasp control, responses that 

were previously excluded from grasp-driven click decoding approaches.  

User-initiated application for mouse emulation 

The participant was 

encouraged throughout the 

experimental period to use the system 

for applications outside of the 

experimental tasks outlined in this 

study. After performing a calibration 

routine (as outlined in the Methods), 

he was free to select a decoder and 

use it as a mouse emulator for any 

application of his choosing. Over the 

course of the data collection period, he 

used the system for this purpose 

fifteen times. On every occasion he 

chose to use the transient-based click 

decoder over the sustained click 

decoder. One common application he performed with the decoder was digital painting, which 

requires the ability to perform discrete clicks (for selecting brushes, colors, etc.) and also the 

ability to click-and-drag (for drawing lines, etc.). An example painting showcasing this control is 

shown in Fig 8. In addition to painting, he also used the BCI system for playing card-based 

computer games that require the ability to click-and-drag.   

 

Discussion 

 This study demonstrates that transient neural responses at the onset and offset of 

(attempted) hand grasp can be used to provide generalizable click control for intracortical brain-

computer interfaces. Previous implementations of click decoding have relied on sustained cortical 

responses during grasp. While this approach can provide adequate point-and-click control if 

calibrated appropriately, it is unable to provide continuous, sustained click control during cursor 

translation. The transient-based approach that we introduce here provides both discrete (point-

and-click) and sustained (click-and-drag) functionality, and is robust across calibration tasks.   

 The results presented here are from a single participant. However, transient responses 

appear to be ubiquitous features of cortical motor control—even during sustained isometric force 

production (Intveld et al., 2018; Sergio & Kalaska, 1998; Shalit et al., 2012; Smith et al., 1975). A 

close examination of activity patterns observed during imagined or attempted hand grasp in other 

intracortical human studies reveals similar onset and offset transient spikes (Rastogi et al., 2020). 

Thus, we believe that the transient-based decoder architecture presented in this study is taking 

advantage of fundamental cortical response properties and will generalize to any iBCI application 

with well-modulated grasp-related neural activity.  

 The improvement in performance achieved by the transient click decoder can be attributed 

to two main findings. First, the transient responses at the onset and offset appear consistently 

more salient (higher magnitude) than the response corresponding to sustained grasp. The larger 

magnitude of the responses leads to improved classification and reduces the incidence of both 

false positives (unintended click or release) and false negatives (poor responsiveness). 

 
Figure 8 Digital painting by participant. Working from a connect-

the-dots pattern (left), the participant used the transient decoder 

to select and apply paint colors (point-and-click functionality) and 

to draw outlines, erase numbering, etc. (click-and-drag 

functionality).  
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Importantly, these transient responses appear to be: (1) inherent to grasp onset and offset, and 

(2) unique from each other. The participant reported that his attempted actions during click and 

unclick were squeeze (hand already in clenched posture) and relax, respectively. Thus, the 

observed transients do not appear to be part of a control modality separate from the sustained 

component (e.g. kinematics of hand closing/opening). Rather, the three response types (onset 

transient, offset transient, sustained grasp) seem to reflect three components of a singular, 

dynamic neural process underlying grasp. The lack of confusion between the two transients 

during classification also indicates that they reflect two unique components, rather than a single, 

broad response such as a global increase in firing rates.  

Second, by controlling click state transitions rather than the click state itself, the transient-

based approach largely avoids the problem of disentangling grasp-related activity from translation 

during simultaneous control. Responses in motor cortex appear to modulate with a very broad 

range of actions, regardless of the specific recording location. During attempted click-and-drag, 

the neural activity thus contains components related to both cursor translation and sustained click, 

which complicates classification of only grasp-related activity. However, the cursor is generally at 

rest at the moment of click (and release), which means that classification of click state change is 

generally equivalent across tasks, regardless of the complexity or multimodality of control before 

or after. Further studies are necessary to determine whether the transient decoder can also allow 

for click and release in the middle of active cursor translation.  

The control of click state transitions also allows for greater flexibility in modifying the 

control during use. Since click and release arise from separate classification processes, the 

thresholds can be modulated independently. For sustained click classification approaches, 

decreasing the threshold to make clicking easier necessarily makes releasing more difficult (and 

vice versa). However, for the transient click decoder, the thresholds for onset and offset can be 

adjusted independently as necessary to improve responsiveness (lower threshold), or prevent 

unintentional click state changes (higher thresholds) for both click and release. Additionally, onset 

and offset detection can be integrated into translation control to improve usability. For instance, 

leaving the target before release (drag out) was one of the most common failure modes for the 

point-and-click task. To prevent this type of error, translation control can be disabled when either 

transient click-related response (onset or offset) is detected. This immobilizes the cursor during 

click transitions and reduces the effect poor cursor stabilization, a common problem in iBCI 

(Sachs et al., 2015). Thus, a transient-based click decoding approach not only provides more 

generalizable control of click, but also allows for more customization to meet the needs and wants 

of the end user.  

 

Conclusion 

 We have demonstrated that cortical transients at the onset and offset of attempted grasp 

can be used to provide high-quality, generalizable click control for iBCI computer cursor 

applications. A participant was able to use this transient-based click decoder to achieve both 

point-and-click and click-and-drag functionality, which was not possible with previous click 

decoding approaches. The success of this transient-based approach highlights the importance of 

understanding the full range of response characteristics in motor cortex when developing 

decoding algorithms for iBCI systems. Future studies will focus on extending the dimensionality 

of click control (e.g. multiple button clicks) and translating the decoding approach to the control of 

robotic limbs to improve real-world grasp functionality.   

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.03.20186973doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.03.20186973


15 
 

Acknowledgments  

 Research reported in this publication was supported by the National Institute Of 

Neurological Disorders And Stroke of the National Institutes of Health under Award Numbers 

UH3NS107714 and U01NS108922, Defense Advanced Research Projects Agency (DARPA) and 

Space and Naval Warfare Systems Center Pacific (SSC Pacific) under Contract N66001-16-

C4051, and the UPMC Rehabilitation Institute. The content is solely the responsibility of the 

authors and does not necessarily represent the official views of the National Institutes of Health, 

DARPA, or SSC Pacific.  

 

References 

Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., Shanfield, K., Hayes-Jackson, S., 

Aisen, M., Heck, C., Liu, C., & Andersen, R. A. (2015). Decoding motor imagery from the 

posterior parietal cortex of a tetraplegic human. Science, 348(6237), 906–910. 

https://doi.org/10.1126/science.aaa5417 

Ajiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy, B. A., Miller, J. P., Walter, 

B. L., Sweet, J. A., Hoyen, H. A., Keith, M. W., Peckham, P. H., Simeral, J. D., Donoghue, J. P., 

Hochberg, L. R., & Kirsch, R. F. (2017). Restoration of reaching and grasping movements 

through brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-concept 

demonstration. The Lancet, 389(10081), 1821–1830. https://doi.org/10.1016/S0140-

6736(17)30601-3 

Bacher, D., Jarosiewicz, B., Masse, N. Y., Stavisky, S. D., Simeral, J. D., Newell, K., Oakley, E. 

M., Cash, S. S., Friehs, G., & Hochberg, L. R. (2015). Neural Point-and-Click Communication by 

a Person With Incomplete Locked-In Syndrome. Neurorehabilitation and Neural Repair, 29(5), 

462–471. https://doi.org/10.1177/1545968314554624 

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., 

& Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51–

56. https://doi.org/10.1038/nature11129 

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., 

McMorland, A. J. C., Velliste, M., Boninger, M. L., & Schwartz, A. B. (2013). High-performance 

neuroprosthetic control by an individual with tetraplegia. The Lancet, 381(9866), 557–564. 

https://doi.org/10.1016/S0140-6736(12)61816-9 

Degenhart, A. D., Bishop, W. E., Oby, E. R., Tyler-Kabara, E. C., Chase, S. M., Batista, A. P., & 

Yu, B. M. (2020). Stabilization of a brain–computer interface via the alignment of low-

dimensional spaces of neural activity. Nature Biomedical Engineering, 1–14. 

https://doi.org/10.1038/s41551-020-0542-9 

Downey, J. E., Weiss, J. M., Flesher, S. N., Thumser, Z. C., Marasco, P. D., Boninger, M. L., 

Gaunt, R. A., & Collinger, J. L. (2018). Implicit Grasp Force Representation in Human Motor 

Cortical Recordings. Frontiers in Neuroscience, 12(October), 1–7. 

https://doi.org/10.3389/fnins.2018.00801 

Ethier, C., Oby, E. R., Bauman, M. J., & Miller, L. E. (2012). Restoration of grasp following 

paralysis through brain-controlled stimulation of muscles. Nature, 485(7398), 368–371. 

https://doi.org/10.1038/nature10987 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.03.20186973doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.03.20186973


16 
 

Flesher, S. N., Collinger, J. L., Foldes, S. T., Weiss, J. M., Downey, J. E., Tyler-Kabara, E. C., 

Bensmaia, S. J., Schwartz, A. B., Boninger, M. L., & Gaunt, R. A. (2016). Intracortical 

microstimulation of human somatosensory cortex. Science Translational Medicine, 8(361), 

361ra141-361ra141. https://doi.org/10.1126/scitranslmed.aaf8083 

Friedenberg, D. A., Schwemmer, M. A., Landgraf, A. J., Annetta, N. V., Bockbrader, M. A., 

Bouton, C. E., Zhang, M., Rezai, A. R., Mysiw, W. J., Bresler, H. S., & Sharma, G. (2017). 

Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human. 

Scientific Reports, 7(1), 8386. https://doi.org/10.1038/s41598-017-08120-9 

Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., & Miller, L. E. (2018). A stable, 

long-term cortical signature underlying consistent behavior. BioRxiv, 447441. 

https://doi.org/10.1101/447441 

Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., & Miller, L. E. (2020). Long-term 

stability of cortical population dynamics underlying consistent behavior. Nature Neuroscience, 

23(2), 260–270. https://doi.org/10.1038/s41593-019-0555-4 

Gallego, J. A., Perich, M. G., Miller, L. E., & Solla, S. A. (2017). Neural Manifolds for the Control 

of Movement. Neuron, 94(5), 978–984. https://doi.org/10.1016/j.neuron.2017.05.025 

Gilja, V., Chestek, C. A., Diester, I., Henderson, J. M., Deisseroth, K., & Shenoy, K. V. (2011). 

Challenges and Opportunities for Next-Generation Intracortically Based Neural Prostheses. 

IEEE Transactions on Biomedical Engineering, 58(7), 1891–1899. 

https://doi.org/10.1109/TBME.2011.2107553 

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., 

Branner, A., Chen, D., Penn, R. D., & Donoghue, J. P. (2006). Neuronal ensemble control of 

prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164–171. 

https://doi.org/10.1038/nature04970 

Huggins, J. E., Wren, P. A., & Gruis, K. L. (2011). What would brain-computer interface users 

want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotrophic 

Lateral Sclerosis, 12(5), 318–324. https://doi.org/10.3109/17482968.2011.572978 

Intveld, R. W., Dann, B., Michaels, J. A., & Scherberger, H. (2018). Neural coding of intended 

and executed grasp force in macaque areas AIP, F5, and M1. Scientific Reports, 8(1), 1–16. 

https://doi.org/10.1038/s41598-018-35488-z 

Kim, S. P., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., Friehs, G. M., & Black, M. J. 

(2011). Point-and-click cursor control with an intracortical neural interface system by humans 

with tetraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(2), 

193–203. https://doi.org/10.1109/TNSRE.2011.2107750 

Nuyujukian, P., Albites Sanabria, J., Saab, J., Pandarinath, C., Jarosiewicz, B., Blabe, C. H., 

Franco, B., Mernoff, S. T., Eskandar, E. N., Simeral, J. D., Hochberg, L. R., Shenoy, K. V., & 

Henderson, J. M. (2018). Cortical control of a tablet computer by people with paralysis. PLoS 

ONE, 13(11). https://doi.org/10.1371/journal.pone.0204566 

Pandarinath, C., Nuyujukian, P., Blabe, C. H., Sorice, B. L., Saab, J., Willett, F. R., Hochberg, L. 

R., Shenoy, K. V., & Henderson, J. M. (2017). High performance communication by people with 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.03.20186973doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.03.20186973


17 
 

paralysis using an intracortical brain-computer interface. ELife, 6, e18554. 

https://doi.org/10.7554/eLife.18554 

Rastogi, A., Willett, F. R., Abreu, J., Crowder, D. C., Murphy, B., Memberg, W. D., Vargas-Irwin, 

C. E., Miller, J. P., Sweet, J., Walter, B. L., Rezaii, P. G., Stavisky, S. D., Hochberg, L. R., 

Shenoy, K. V., Henderson, J. M., Kirsch, R. F., & Ajiboye, A. B. (2020). The neural 

representation of force across grasp types in motor cortex of humans with tetraplegia. BioRxiv, 

2020.06.01.126755. https://doi.org/10.1101/2020.06.01.126755 

Ryu, S. I., & Shenoy, Kris. V. (2009). Human cortical prostheses: Lost in translation? 

Neurosurgical Focus, 27(1), E5. https://doi.org/10.3171/2009.4.FOCUS0987 

Sachs, N. A., Ruiz-Torres, R., Perreault, E. J., & Miller, L. E. (2015). Brain-state classification 

and a dual-state decoder dramatically improve the control of cursor movement through a brain-

machine interface. Journal of Neural Engineering, 13(1), 016009. https://doi.org/10.1088/1741-

2560/13/1/016009 

Sadtler, P. T., Quick, K. M., Golub, M. D., Chase, S. M., Ryu, S. I., Tyler-Kabara, E. C., Yu, B. 

M., & Batista, A. P. (2014). Neural constraints on learning. Nature, 512(7515), 423–426. 

https://doi.org/10.1038/nature13665 

Sergio, L. E., & Kalaska, J. F. (1998). Changes in the temporal pattern of primary motor cortex 

activity in a directional isometric force versus limb movement task. Journal of Neurophysiology, 

80(3), 1577–1583. 

Shalit, U., Zinger, N., Joshua, M., & Prut, Y. (2012). Descending systems translate transient 

cortical commands into a sustained muscle activation signal. Cerebral Cortex, 22(8), 1904–

1914. https://doi.org/10.1093/cercor/bhr267 

Simeral, J. D., Kim, S. P., Black, M. J., Donoghue, J. P., & Hochberg, L. R. (2011). Neural 

control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an 

intracortical microelectrode array. Journal of Neural Engineering, 8(2). 

https://doi.org/10.1088/1741-2560/8/2/025027 

Smith, A. M., Hepp-Reymond, M. C., & Wyss, U. R. (1975). Relation of activity in precentral 

cortical neurons to force and rate of force change during isometric contractions of finger 

muscles. Experimental Brain Research, 23(3), 315–332. https://doi.org/10.1007/BF00239743 

Wang, W., Degenhart, A. D., Collinger, J. L., Vinjamuri, R., Sudre, G. P., Adelson, P. D., Holder, 

D. L., Leuthardt, E. C., Moran, D. W., Boninger, M. L., Schwartz, A. B., Crammond, D. J., Tyler-

Kabara, E. C., & Weber, D. J. (2009). Human motor cortical activity recorded with Micro-ECoG 

electrodes, during individual finger movements. 2009 Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, 586–589. 

https://doi.org/10.1109/IEMBS.2009.5333704 

Weiss, J. M., Gaunt, R. A., Franklin, R., Boninger, M., & Collinger, J. L. (2019). Demonstration 

of a portable intracortical brain-computer interface. Brain-Computer Interfaces, 6(4), 18. 

https://doi.org/10.1080/2326263X.2019.1709260 

Wodlinger, B., Downey, J. E., Tyler-Kabara, E. C., Schwartz, A. B., Boninger, M. L., & Collinger, 

J. L. (2014). Ten-dimensional anthropomorphic arm control in a human brain-machine interface: 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.03.20186973doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.03.20186973


18 
 

Difficulties, solutions, and limitations. Journal of Neural Engineering, 12(1), 016011. 

https://doi.org/10.1088/1741-2560/12/1/016011 

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). 

Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 

767–791. https://doi.org/10.1016/S1388-2457(02)00057-3 

Zhu, Q. (2020). On the performance of Matthews correlation coefficient (MCC) for imbalanced 

dataset. Pattern Recognition Letters, 136, 71–80. https://doi.org/10.1016/j.patrec.2020.03.030 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 10, 2020. ; https://doi.org/10.1101/2020.09.03.20186973doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.03.20186973

