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Abstract 

Seasonality plays an essential role in the dynamics of many infectious diseases. In this study, we use
statistical  methods to  show how to detect the presence of  seasonality  in a pandemic at  the beginning of  the
seasonal  period  and  that  seasonality  strongly  affects  SARS-coV-2  transmission.  We  measure  the  expected
seasonality effect in the mean transmission rate of SARS-coV-2 and use available data to predict when a second
wave of  the COVID-19 will  happen.  In  addition,  we measure  the  average  global  effect  of  social  distancing
measures. The seasonal force of transmission of COVID-19 increases in October in the Northern hemisphere and
in April in the Southern hemisphere. These predictions provide critical information for public health officials to
plan their actions to combat the new coronavirus disease and to identify and measure seasonal effects in a future
pandemic.  

1. Introduction 

During the  COVID-19 pandemic,  many public  authorities  made their  decisions  based on predictions
drawn from epidemiological compartmental models. The most famous of these models is also one of the simplest,
the basic SEIR model. It can be seen as a qualitative epidemic model, as it is useful to understand the qualitative
behavior of the dynamics of an epidemic. However, using such a simple model to make quantitative predictions
mainly for long term variables, such as the total size of epidemics, seems like an oversimplification.1 

The real world COVID-19 pandemic is a complex phenomenon in which many other factors must be
considered to obtain qualitative understanding and quantitative predictive power. The exponential growth of a
SEIR model is better suited to model a single epidemic in a homogeneous closed system like a small town. The
dynamics of interconnected open systems with several cities and several countries, as we have in a pandemic,
requires more sophisticated models such as meta-population models or agent-based models. 5 The existence of
several  subgroups  with  considerably  different  epidemiological  characteristics,  such  as  mobility,  makes  the
homogeneous assumption obsolete. The social distancing measures used to decrease the transmission rates around
the world added more difficulty  to  these predictive models.  Many other factors  also appear to  influence the
dynamics of the COVID-19 pandemic, but there is a well-known essential epidemiological phenomenon that is
lacking in most of the models used by scientists and health officials so far: COVID-19 seasonality.

Many infectious diseases and particularly viral infectious diseases with respiratory transmission have a
seasonal  pattern  of  transmission  at  some  level.2,3 This  implies  that  there  is  a  period  of  the  year  when  the
transmission rate is the highest and major epidemics are observed in this period in contrast with a complementary
period of the year when the transmission rate is significantly lower. 

Influenza viruses, pneumonia, rotavirus, cholera, measles, dengue and other coronavirus viruses are some
of the many infectious diseases where seasonality has an important effect on the transmission rate.2-10 

Seasonality  should  not  be  confused  with  temperature.  Although  temperature  is  an  important  factor
positively correlated with seasonality, there are many other factors that also influence this complex phenomenon.
Climate  factors,  host  behavior  factors  and  biological  factors,  among others,  can  be associated  with  seasonal
forces: precipitation, human mobility, school calendar, immunity and many others.1,2,5,6 In addition, these factors
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vary from place to place and therefore must be put in a relative perspective. For example, an average temperature
of 15 degrees Celsius is associated with winter days in tropical areas, on the other hand, it is associated with
summer days in higher latitudes. Hence, when quantifying the relationship between temperature and seasonal
transmission force with data from various locations, careful analysis is necessary.4

Respiratory  syndromes have a  common pattern  in  which  the  transmission rate  is  typically  higher in
autumn and winter and lower in spring and summer.3,4 Note that the months with the highest number of cases are
reversed in the Northern and Southern hemispheres. 

When considering the seasonal forces in modeling the dynamics of the disease, we usually have that the β
transmission rate will be given not by a constant positive real number as in the basic SEIR model, but by a non-
constant function of time βt.  For clarity, consider that βt assumes only two values βmax and βmin, where βmax > βmin >
0. That is, we divide the year into two periods, one where the transmission force is greater, with a transmission
rate  βmax, and another  period where  the transmission force is  lower  with  βmin transmission  rate.  We can also
associate other epidemiological parameters with βmax and βmin  such as the basic reproduction number R0. If R0 is
measured during a high season period where  β(t) =  βmax,  then we will obtain R0 = R0max.  However, if  R0 is
measured outside the seasonal period, β(t) = βmin and we will obtain R0=R0min, where R0max > R0min. 

The  seasonality  is  fundamental  in  the  dynamics  of  seasonal  diseases  and  it  is  vital  for  long-term
forecasts.1 Estimating the βt transmission function by obtaining estimates for the seasonal period and for βmax  and
βmin parameters or for associated parameters such as R0max and R0min is crucial for the public health authorities in
planning  and  preventing  a  seasonal  disease.1In  particular,  second  wave  forecasts  are  notably  influenced  by
seasonality (see details in the supplementary appendix).  

2. Results

We show below that COVID-19 transmission is highly affected by seasonality. We initially estimated that
COVID-19 global mean seasonal period coincides with the mean seasonal period of other respiratory syndromes,
particularly  with  the  mean  seasonal  H1N1 period,  which  runs  from  the  October  to  March  in  the  Northern
hemisphere and from April to September in the Southern hemisphere.10 In these seasonal periods, the transmission
rate is higher and larger epidemics are expected. Formally, we call the time interval where β = βmax of seasonal
period. We define the seasonal moment of reversal as the beginning of the seasonal period, that is, the expected
moment when the β increases from βmin to βmax. 

However, there is some natural variability in data from endemic diseases. Thus, we also use data from
another pandemic, where we can find epidemiological data from several countries in a synchronized way. The
2009 H1N1 pandemic data for Northern and Southern hemispheres are shown in Figure 1, taken from the World
Health Organization database.11 We can see that the October was indeed a seasonal moment of reversal for the
H1N1 pandemic, as we can see an increase in the number of cases in the Northern hemisphere during this month.
Thus, we estimate this to be the next moment of reversal for the COVID-19 pandemic and we set April 15 and
October 15 as approximate dates when the COVID-19 transmission rate changes in both hemispheres. 

It is important to emphasize that this global seasonal period is an average of the seasonal periods of the
countries around the world. The seasonal period varies from one location to another and the global seasonal period
can be seen as an expected value for a country chosen at random. Therefore, in some places the transmission rate
will increase before this expected period, while in others it will increase after the expected seasonal period.
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Figure 1 – Seasonality of the 2009 H1N1 Pandemic: From the curve of the Southern hemisphere, we observed a
consistent increase in the number of cases since the beginning of the data, in week 17, corresponding to the second half
of April. From the curve of the Northern hemisphere, we can see that week 41, which corresponds to the second week
of October. Although, in week 36, the first of September, it can be already seen an increase in the number of cases.
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Likewise, we can expect a second seasonal period for COVID-19 in the Northern hemisphere starting in September in
some countries and a general spread in October. Graphics obtained from WHO website.12

In addition, it is very important to distinguish the seasonal period where transmission is greatest from the
epidemic period, where the number of cases is highest. They are highly correlated with seasonal diseases, but the
seasonal period usually starts earlier and influences the epidemic period although the former does not determine
the latter.  Many other factors  influence the size and duration of epidemic periods,  such as the proportion of
susceptible populations. The seasonal period begins when epidemics accelerate, that is, we look at the variation in
the number of cases and not at the number of cases themselves. Meanwhile, in the epidemic period we look at the
number of cases itself. Typically, seasonal periods start a few weeks before the epidemic periods and end a few
weeks later, especially when the proportion of susceptible population is small. 

Before obtaining estimates for the seasonal effect on the COVID-19 transmission, we first estimate the
effect of the social distancing measures. In this pandemic, social distancing measures have been widely adopted,
influencing the transmission rate of Sars-Cov2 in most countries in the world. As we expected the reversal of
seasonality to occur in April, it is crucial to take into account the effect of social distancing measures to properly
estimate seasonal effects. 

Measuring the effect of Social Distancing 

In addition to its intrinsic importance, we estimate the effect of global social distancing measures in order
to discriminate from the seasonal effect because coincidentally the social distancing measures were taken at the
end of March which is very close to April where we expect the reversal moment of seasonality.

For each one of the 50 countries with the greatest epidemics from March 1 to May 1, we have collected
the dates when they began to adopt social distancing interventions. This data was obtained from two different
websites  for  each  country  from various  sources  on  the  internet.  Details  can  be  found in  the  supplementary
appendix.

The average start date for social distancing measures was March 19, with a standard deviation 6.6 days.
The countries in the Northern and Southern hemispheres had similar starting dates, with both means on March 19.
We take the mean effect of social distancing (MESD) as the difference between the slopes for periods of 10 days
before and after the adoption of the measures. Formally, let B be the slope of the regression line from the mean
rate of cases from March 17 to March 26. Let A be the slope of the regression line from the mean rate of cases
from March 27 to April 5. The one week gap from March 19 and the beginning of this interval is due to the fact
that there is a delay between the adoption of a control measure and its impact on reported cases, as the disease has
a median incubation period of 4 days and there are some days of delay between the laboratory test and its result.
The total delay varies between countries but we consider 7 days as a rough estimate of the total delay. The length
of the interval is 10 days because the social distancing measures started very close to the expected seasonality
period that should be somewhere in April. Therefore, we must consider it as small as possible to avoid confusion
between the social distancing effect and seasonality effect. We define MESD = A-B. 

Figure 2 shows the graph of the global average COVID-19 case rates with the regression lines before and
after  March  19.  We obtain  slope  estimates  and  95% confidence  intervals  given  by  B= 0.2143  (CI=[0.1720,
0.2567]), A=0.0379 (CI= [-0.0135, 0.0893]). MESD= -0.1765, which represents a relative reduction of 82.3%.
Note that A and B are not independent. The closer the regression lines are from each other we can suppose more
positively correlated A and B are. As the upper limit 0.0893 for A is less than the lower limit 0.1720 for B we
reject the hypothesis that A = B at 95% confidence level. Thus, there is consistent statistical evidence that the
social distancing measures have decreased, at least for the short term, the global average growth rate of COVID-
19’s cases with an estimated relative reduction of 82.3% in the speed of growth. 
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To ensure that  the seasonality  effect  is  not  confusing this  analysis,  we do the same analysis  for  the
Northern and Southern  hemispheres to  see if  there  is  a  different  behavior in  both groups.  For  the  Northern
hemisphere B=0.2610, A = 0.0431 and MESD= -0.2178 which represents a relative reduction of 83.5%. For the
Southern hemisphere, B=0.0681, A = 0.0130 and MESD= -0.0552, which represents a relative reduction of 81.0%.
Hence, the qualitative behavior was the same in both hemispheres in the periods immediately before and after the
adoption of social distancing measures and we conclude that the reduction in the global growth rate at the end of
March was not due to seasonality. For more details, see the supplementary material. 

Note: Remember that the union of Northern and Southern groups does not form the Global group because
we  have  added  Argentina  and  New Zealand  to  the  Southern  group  although  they  are  not  in  the  50  largest
epidemics for the measured period.
 

Figure 2 - Social distancing effect: The black curve shows the global mean rate of cases per 100k 

inhabitants. The left red line is the linear regression line for a period of 10 days immediately before 
the effects of social distancing measures were expected to appear. The right red line is the linear 
regression line for a 10 days period starting one week after March 19, the average start date for social 
distancing measures. 

Measuring the seasonality effect

We are now ready to estimate the effect of seasonality on COVID-19 transmission. First, we consider the
seasonal effect for each hemisphere as the variation in the slope for the mean polled rate at the expected moment
of seasonal reversal, which we estimate as April 15. Likewise, as we did to obtain the effect of social distancing,
we define the mean seasonal effect in the Northern hemisphere (MSEN) to be A-B, where B is now the slope of
the regression line of the mean rate of cases from March 27 to April 5. Let A be the slope of the regression line of
the mean rate of cases from April 16 to May 1. Likewise, we define the mean seasonal effect in the Southern
hemisphere (MSES).

Figure 3 below gives a clear picture of how the mean daily rate of cases changed in different directions
just after the estimated moment of seasonal reversal. To quantify this difference,  we obtain the estimates of the
slopes of the Northern hemisphere and 95% confidence intervals given by B=0.0478 (CI=[-0.0138, 0.1094]), A= -
0.0586 (CI=[-0.0957, -0.0215]). MSEN= -0.1064, which represents a relative reduction of 222.5%. We interpret a
relative reduction greater than 100% as a reduction which changes a positive slope to a negative one. Note that A
and B are not independent. The closer the regression lines are from each other we can suppose more positively
correlated they are. Since the upper limit -0.0215 for A is less than the lower limit -0.0138 for B, we reject the
hypothesis that A = B at 95% confidence level. There is consistent statistical evidence that the mean seasonal
effect in the Northern hemisphere is smaller than zero (MSES < 0). 
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For the Southern hemisphere, slope estimates and 95% confidence intervals are given by B=0.0130 (CI=[-
0.0081, 0.0341]),  A= 0.1089 (CI=[0.0500, 0.1678]). MSES = 0.0959, which represents  a relative increase of
740.3%.  As the upper limit 0.0341 for A is less than the lower limit 0.0500 for B we reject the hypothesis that A =
B with 95% confidence level. There is consistent statistical evidence that the mean seasonal effect in the Southern
hemisphere is greater than zero (MSES > 0). 

Figure 3 - Seasonality effect: black curves show the mean rate of cases per 100k inhabitants 
for countries in the Northern and Southern hemispheres, respectively, from March 5 to May 1.
Left red lines are the linear regression lines immediate before the expected seasonal reversal 
moment and right red lines are linear regression lines immediate after the expected seasonal 
reversal moment for both hemispheres. 

Consider the plausible hypothesis that the social distancing effect could potentially influence a greater
drop  in  the  slope  if  we  have  considered  a  period  of  time  greater  than  the  10  days  in  its  definition.  As  a
consequence part of the decrease in the slope of the Northern hemisphere that we are attributing to the seasonal
effect could be given by the effect of social distancing measures. However, assuming this is true, then a similar
decreasing effect would be occurring in the Southern hemisphere and the absolute seasonality effect would be
even greater. This is a contradiction since we would have a very small seasonal effect in one hemisphere and a
very large seasonal effect on the other. 

In addition, consider the hypothesis that a fatigue effect could be explaining the increase in Southern
mean rate. The average time interval between the start of social distancing measures (March 19) and the start of
the data time interval that we used to measure the seasonal effect (April 16) is less than a month. It seems unlikely
that the effect of fatigue could be responsible for increasing the rate of cases in the Southern hemisphere and in
such a short time. Besides, we would again have an opposite effect in the Northern hemisphere which seems a
contraction.  Another important possible confounding factor, the social-economic factor is analyzed in detail in the
supplementary  material.  These  and  other  factors  that  could  possibly  affect  rates  in  reported  data  such  as

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.09.02.20187203doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.02.20187203
http://creativecommons.org/licenses/by-nd/4.0/


heterogeneous  transmission  and increased rate  of  testing  typically  produce  a  similar  effects  across  countries,
mostly  in  large  groups  such  as  Northern  and  Southern  hemispheres.  Although  quantitative  differences  are
expected, similar qualitative effect is expected in both hemispheres for these factors. 

Seasonality, on the contrary, produces opposite effects in Northern and Southern hemispheres as the ones
we observe in COVID-19 pandemic data from the end of April. Hence, there is sufficient statistical evidence that
points to a consistent seasonality effect in the COVID-19 pandemic. 

To confirm that the difference between the growth speeds from the end of April and the end of March is
due to  seasonality  and  not  to  confounding  effects,  we run  a  multiple  linear  regression  analysis.  We take  as
response variable Y the seasonality effect (A-B) for each country. The explanatory variables are the seasonal
factor XHP, the social distancing factor XSD and the income factor XIC. We set XHP as the indicator variable if the
country belongs to the Northern hemisphere, XSD as the discrete score varying from 0 to 2 according to the level of
social distancing measures adopted (low/none, moderate, high/lockdown) and X IC as the country growth domestic
product per capita (GDP). After re-scaling variables to a comparable scale, we obtained for the additive model the
estimate Y =  0.20 -0.18XHP -0.06XSD -0.09XIC. All three factors contribute to a reduction on Y, but the seasonal
factor XHP had the largest absolute effect. 

To access dependence between factors, we run a multiple linear regression model with interaction terms
obtaining for re-scaled variables the estimate Y =  0.11 -0.16XHP +0.03XSD +0.01XIC -0.01XHPXSD -0.01XHPXIC 
-0.09XSDXIC. Note that the absolute value of individual coefficient of the seasonal factors XHP remains the largest
and its estimate is very close to the estimate obtained in the additive model. The interaction coefficients between
seasonal factor and the other two factors are considerably small which shows that the seasonal factor affected all
countries independently of the levels of social distancing and income factors. The individual coefficients for social
distancing and income factors changed from negative to positive, which shows that individually these factors did
not contribute to reduce the growth rate of cases. The reduction measured previously in the additive model is
contained  in  the  interaction  between social  distancing  factor  and income factor.  This  implies  that  the  social
distancing effectiveness is highly correlated with income and that its impact was bigger in high income countries
than in low income countries. Details and further regression analysis can be found in the supplementary appendix.

Lastly, to access the variability of the seasonal effect, we show in figure 4 the box-plots of the seasonal 
effects for the Southern and Northern hemispheres. This emphasizes the difference in the distribution of the effects
of the two hemispheres, which corroborates to the hypothesis of seasonality.
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Figure 4 – Seasonal effect boxplots: the boxplot for seasonal effects of 
countries in the Northern hemisphere is shown on the left  (red boxplot).
The boxplot for seasonal effects from countries in the Southern hemisphere 
is shown on the right (light blue boxplot). 

3. Discussion

In this study we set that seasonality strongly affects COVID-19’ transmission and that its seasonal period
follows the autumn/winter pattern typical from other viruses with respiratory transmission. We also measured the
social distancing effect, providing the distinction between the seasonal effect, the social distancing effect and the
income effect.

Our results partially contradict the results obtained by Flaxman et al.12 and Islam et al.13. In the first study,
the decrease in daily cases in 11 European countries in late April and early May is attributed exclusively to social
distancing interventions without considering seasonality or other possible confounding factors. In the second,
worldwide  data  are  analyzed,  but  again  the  entire  effect  is  attributed  to  social  distancing  measures  without
considering other factors such as seasonality. 

Prediction of second waves and consequences for decision-making

The Seasonal force of transmission drives the second waves in seasonal diseases. Once the seasonal effect
is  established  in  COVID-19  and  its  seasonal  periods  are  known,  we  can  predict  the  appearance  of  future
epidemics.  In  particular,  a  second wave is  expected  to  begin  around September  or  October  in  the  Northern
hemisphere. In contrast, a significant reduction in the transmission rate is expected to begin in countries of the
Southern hemisphere in the same period.

We estimated that the seasonal periods occur from April to September (high season in the south) and from
October to March (high season in the north).  These are periods when the transmission rate is highest in each
hemisphere. They are highly related to the epidemic periods, but the first should not be confused with the second
one. The seasonal moments of reversal are good estimates for the beginning of the increase in the number of cases
in the countries of the respective hemisphere. Therefore, we expect a general increase in the number of COVID-19
cases in most countries in the Northern hemisphere in October and a general decrease in the number of cases in
most countries in the Southern hemisphere to begin at the same time.  

Nevertheless, remind that epidemic periods also depend on other variables such as the percentage of the
susceptible population and that each city has its own seasonal transmission rates βmax and βmin. Thus,  places where
major epidemics have occurred will  be less impacted by this change in the transmission rate. Some possible
examples are Sweden, Belgium and some cities in the United States, Spain and Italy that have already had major
epidemics and where the increase in the transmission rate will affect less the size of the epidemic due to a smaller
proportion  of  the  susceptible  population.  On  the  other  hand,  some  countries  with  very  large  proportions  of
susceptible population will  be more affected if they do not control their epidemics. Some examples are most
countries in Europe and Asia. 

The first wave in most of Europe and the rest of the Northern hemisphere lasted mainly just two months
or less, from mid-February to mid-April. The social distancing measures had to be adopted for around two months
before  the  seasonal  period  ended.  In  May,  when  the  majority  of  European  countries  began  to  make  social
distancing measures more flexible, the transmission rate was lower and the epidemics were controlled with less
stringent measures. Cities with R0min < 1 did not see the continuation of the epidemic. Some other locations, like
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some cities  in  the United States, certainly have  R0min > 1 and therefore,  the epidemic continued to increase.
Nonetheless, it is important to note that they have not been affected by the seasonal effect.

In the Southern hemisphere, the social distancing measures had an effect similar to that of the Northern
hemisphere, producing a stabilization in the number of cases in the first two weeks of April. But the seasonal
effect produced a significant increase in the transmission rate, which went from βmin  to βmax and in addition to the
social distancing measures, the number of cases increased consistently from April 15. Moreover, more restrictive
measures such as lockdown, though effective, could not be adopted for the entire seasonal period which extends
over 6 months. An example is Argentina, which kept its epidemic controlled by lockdown measures like most of
Europe but when it started to become more flexible (either officially or due to population fatigue) the number of
cases increased differently from what happened in Europe because the transmission rate was βmax  instead of βmin.
From October 2020 to March 2021 the transmission rate in the Southern hemisphere will decrease from βmax to
βmin.  In  places  where  R0min  <  1,  the  epidemic  will  be  controlled  and  in  places  with  smaller  proportions  of
susceptible populations, such as most of South America and South Africa, we also expect the epidemic to be
controlled. Nevertheless, some countries with large proportions of susceptible populations like New Zealand and
Australia, may experience major epidemics in cities where R0min  > 1 if no control measures are adopted.

With the seasonality effect taken into account, we predict that many (but not all) countries in the Northern
hemisphere will  have second waves which will  begin more generally  during September and will  increase in
October and November. In fact, at the end of August, when this article was finalized, the trend of increasing the
number of cases in some countries in the Northern hemisphere restrictive social distancing measures such as
lockdown maybe be not as good as it was in the first wave due to the length of the period high season will take its
entire six-month span. Other control measures such as vaccination of a part of the population must be adopted.
Until vaccines are not available, other control measures such as active contact tracing will have to be adopted,
otherwise effective social distancing would have to last until either a vaccine is available or mid-April. The other
option is mitigating measures such as less restrictive social distancing measures and waiting for herd immunity.    

Detection of Seasonality in future pandemics

We briefly describe below the steps to detect the presence of seasonal effects in future pandemics:
 

1) The comparison between aggregated slopes in the Southern and Northern hemispheres curves can be
used to detect seasonality at the beginning of a pandemic, even with data from a short period of time. Beware of
confounding factors must be taken in this preliminary analysis.

2) Monitoring abrupt changes in their slopes (either R0t or  βt) close to estimated seasonal moment of
reversal (expected begin of seasonal period) is a way to confirm this detection.

3) Measuring changes in data of the chosen parameters, before and after the seasonal moment of reversal
provides an estimate of the seasonal effect.

Our method is particularly useful for detecting seasonality during a pandemic, since a large amount of
data from both hemispheres are available in this case. In minor epidemics where data from many countries are not
available, data from a small number of countries can still be used to apply this methodology as long as data from
countries in both hemispheres are available.  In the event of an epidemic in  a given country, data on similar
diseases could be used to make the comparison and provide possible evidence of seasonal forces in transmission. 

Note that we can measure the seasonal force of infection by obtaining the reproduction numbers R0min and
R0max for the low and high seasonal periods. Since R0 (R0t) is a very popular measure, it is tempting to calculate it
for pooled data for both hemispheres or, alternatively, it can be calculated for each country separately and then
obtain averages. In both cases we believe this method would be technically incorrect. To be properly calculated, it
must be obtained from the mean of all R0 for each city in the sample, not each country. We did not perform this
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valuable  analysis  because  of  the  limited  time we have  due to  the  urgency of  the  pandemic.  Therefore,  this
important methodology is led to future work.
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