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Abstract15

Background: Test-trace-isolate programs are an essential part of COVID-19 control that16

o↵er a more targeted approach than many other non-pharmaceutical interventions. E↵ective17

use of such programs requires methods to estimate their current and anticipated impact.18

Methods and Findings: We present a mathematical modeling framework to evaluate the19

expected reductions in the reproductive number, R, from test-trace-isolate programs. This20

framework is implemented in a publicly available R package and an online application. We21

evaluated the e↵ects of case detection, speed of isolation, contact tracing completeness and22

speed of quarantine using parameters consistent with COVID-19 transmission (R0 = 2.5,23

generation time 6.5 days). We show that R is most sensitive to changes to the proportion of24

infections detected in almost all scenarios, and other metrics have a reduced impact when25

case detection levels are low (< 30%). Although test-trace-isolate programs can contribute26

substantially to reducing R, exceptional performance across all metrics is needed to bring R27

below one through test-trace-isolate alone, highlighting the need for comprehensive control28

strategies. Formally framing the dynamical process also indicates that metrics used to29

evaluate performance of test-trace-isolate, such as the proportion of identified infections30

among traced contacts, may be misleading. While estimates of program performance are31

sensitive to assumptions about COVID-19 natural history, our qualitative findings are robust32

across numerous sensitivity analyses.33

Conclusions: E↵ective test-trace-isolate programs first need to be strong in the ”test” com-34

ponent, as case detection underlies all other program activities. Even moderately e↵ective35
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test-trace-isolate programs are an important tool for controlling the COVID-19 pandemic,36

and can alleviate the need for more restrictive social distancing measures.37

Introduction38

In the absence of a vaccine or a widely-available prophylactic drug, non-pharmaceutical inter-39

ventions are the only tools available to curb the spread of the ongoing COVID-19 pandemic.40

During the initial phases of the pandemic, broad-reaching interventions like stay-at-home orders41

and non-essential business closures were applied throughout the world, a↵ecting large swathes42

of the population and causing severe social and economic disruption [1–6].43

Because of the high costs of broad scale social distancing measures, there has been an44

increasing focus on alternative approaches with fewer ancillary costs. One such approach is a45

test-trace-isolate program, in which extensive testing is used to identify cases in the community;46

public health agencies then trace the contacts of these cases in order to identify people who may47

have been infected; and the initial cases are asked to isolate and their contacts are asked to48

quarantine for the period of time that they could be, or become, infectious [7]. If e↵ective, test-49

trace-isolate programs can reduce the need for more restrictive, widespread control measures.50

Already they have played a critical role in controlling SARS-CoV-2 transmission in places51

ranging from Utah to South Korea, where these programs have been credited with enabling52

successful control while avoiding the most restrictive social distancing measures (e.g., stay-at-53

home orders) [8–11].54

Not all test-trace-isolate programs are created equal, and the success of test-trace-isolate55

programs is ultimately measured in their ability to reduce transmission. The proportion of56

infections identified through testing and contact tracing dictate the proportion of transmission57

chains we can potentially disrupt, while the speed of isolation and quarantine dictates how58

many potentially infectious contacts are prevented [12]. The resulting reductions in disease59

transmission can be quantified and compared by estimating the reproductive number, R, the60

average number of new infections caused by a single infected individual.61

Translating test-trace-isolate program metrics into reductions in the reproductive number is62

not a direct calculation due to feedback loops between control measures and disease transmission63

dynamics. As a test-trace-isolate program interrupts chains of transmission, it changes the64

propagation of disease in future generations. Any approach aiming to translate quantitative65

program metrics into meaningful measures of the e↵ectiveness of disease control must account66

for these dynamic processes.67

Here, we propose a mathematical framework for modeling the impact of test-trace-isolate68

strategies on onward transmission, as measured by expected reductions in the reproductive69

number. Using this approach, we explore the factors which most influence the success of a70

test-trace-isolate program, their interactions, and how these results may be used in developing71

strategies for improvement. To enable broad adoption of our approach, the methods presented72

here are implemented in an R package, tti [13], and the web-based Contact Tracing Evaluation73

and Strategic Support Application (ConTESSA) [14], both of which are freely available online.74
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Methods75

Mathematical Framework76

To estimate the e↵ectiveness of a test-trace-isolate program, we frame our analysis in terms77

of the e↵ective reproductive number, R, defined as the number of onward transmissions an78

infected individual is expected to make given the current immune status of the population79

and implemented control measures. We first define the population of infected individuals to80

be spread across three compartments; infections Detected through testing and subsequently81

isolated (D), infections among Quarantined contacts of identified cases (Q) and undetected82

infections in the Community (C) (Figure 1). Though there will be uninfected individuals both83

in quarantine and in the community, these do not play a role in our calculations and are ignored.84

We consider the proportion of the population in each compartment at any given time t to be85

defined by a 1⇥3 matrix, denoted DQCt. To calculate the proportion of infected individuals in86

each compartment at time t+ 1, we apply the rates at which individuals in each compartment87

cause new infections, and then the rates at which these secondary infections are detected and88

isolated through the following equation:89

DQCt+1 =
(DQCt)(INFECT )(DETECT )P

[(DQCt)(INFECT )]
, (1)

where INFECT is a 3 ⇥ 3 diagonal matrix describing the number of infections caused in the90

next generation by members of each detection compartment, and DETECT is a 3⇥ 3 matrix91

describing the probability that infections in the next generation are detected and isolated,92

quarantined, or undetected in the community.93

The diagonal elements of the INFECT matrix, [RD, RQ, RC ], represent the reproductive

number for members of each compartment. Hence, given the normalized version of the DQC

matrix specified above, we can calculate the overall reproductive number at time t as:

Rt = (DQCt)(INFECT )

The DETECT matrix then assigns these new infections to the appropriate detection classes94

of the DQC matrix in the next generation. Specifically:95

DETECT =

2

64
I(D) ! D I(D) ! Q I(D) ! C

I(Q) ! D I(Q) ! Q I(Q) ! C

I(C) ! D 0 I(C) ! C

3

75 =

2

64
(1� !D)⇢ !D (1� !D)(1� ⇢)

(1� !Q)⇢ !Q (1� !Q)(1� ⇢)

⇢ 0 (1� ⇢)

3

75

(2)

where I(X) represents those infected by people in compartment X in the the previous gen-96

eration, !X is the probability that a contact of a detected individual in compartment X is97

traced and quarantined (quarantine completeness), and ⇢ is the probability that a community98

infection is detected and isolated by a test-trace-isolate program (isolation completeness). The99

transitions in each row of the DETECT matrix represent the probability that people in the100

corresponding notional infection compartment will be detected by a particular means (hence101

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.20186916doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.02.20186916
http://creativecommons.org/licenses/by-nc-nd/4.0/


rows sum to one).102

The other aspect that determines the e↵ectiveness of a test-trace-isolate program is the103

reduction in R that we see among those who are isolated or quarantined (Figure 2). We define104

the relative transmissibility of individuals in these compartments by �D and �Q such that:105

RD = �DRC (3)

RQ = �QRC (4)

The main mechanism by which isolation and quarantine reduce transmission is the (at least106

partial) truncation of the infectious period. Hence, these values are defined by the equations:107

�D =

Z ⌧D

�1
f(x)dx (5)

�Q =

Z ⌧Q

�1
g(x)dx (6)

where f(x) is the distribution of relative infectiousness indexed from day of symptom onset;108

g(x) is the expected distribution of relative infectiousness of secondary cases indexed from their109

infector’s time of symptom onset; and ⌧D and ⌧Q represent the average time to isolation and110

quarantine, respectively, from time of case symptom onset.111

Translating Observed Metrics to Model Inputs112

Health departments collect data on their test-trace-isolate programs, but these observed metrics113

need to be translated into model inputs. To estimate isolation completeness (⇢), we can divide114

the average number of infections that were isolated by the estimated number of total infections115

in the community. The latter value may be di�cult to obtain, but can be approximated in116

a number of ways, including serosurveys and extrapolation from the number of deaths and117

approximate infection fatality ratio. Quarantine completeness (!) can be estimated by dividing118

the number of quarantined individuals by the total number of contacts.119

For the purposes of our model, time to isolation (⌧D) is the average number of days from120

case symptom onset to case isolation, while time to quarantine (⌧Q) is the average number of121

days from case symptom onset to contact quarantine. Often these timings are the composite of122

several constituent processes, including time from symptom onset to testing, time from testing to123

notification and isolation, and the time from obtaining a test result to tracing and quarantining124

contacts.125

Adding real-world complexity to the model126

Above we describe the basic model framework, but to take into account the complexities of the127

real world, we can expand the number of compartments in the DQC matrix and the correspond-128

ing INFECT and DETECT transitions. In the implementation used to generate the results129

described below, we create compartments to di↵erentiate symptomatic and asymptomatic in-130

fections as well as household and community contacts to address the fact that these groups131

may di↵er in their probability and speed of detection, ability to be traced and quarantined,132
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Detected & Isolated

Quarantined

Community

RD infections from D Detected & Isolated

Quarantined

Community

generation t generation t+1

D
E
T
E
C
T
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N
F
E
C
T

RQ infections from Q

RC infections from C

intermediate state

Figure 1: Conceptual representation of the model algorithm, where infections in generation t
(left column) infect new individuals according to RD, RQ, and RC reproductive numbers that
populate the INFECT matrix (center column). These newly propagated infections are then
distributed into D, Q, and C compartments in generation t + 1 (right column) according to
the various detection transition probabilities specified in the DETECT matrix (colors of center
column). Symptomatic individuals (darker shading) may be more likely to be detected than
asymptomatic individuals (lighter shading)
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Figure 2: Conceptual representation of test-trace-isolate programs, where detection of a case in
generation t through widespread testing and subsequent isolation reduces onward transmission
to generation t+1. Individuals in generation t+1 are then traced and quarantined to reduce
onward transmission from those who may be infected.
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infectiousness, and risk of being infected.133

This expanded model has nine DQC compartments and is described in full in the Supple-134

mentary Methods.135

Disease simulation136

To obtain expected reductions in R, we first initiate the model with a DQC matrix that has137

only undetected community infections (C = 1). Then we simulate the infection and detection138

processes across multiple disease generations until equilibrium is achieved in the DQC matrix139

(this usually occurs in less than ten generations). This equilibrium provides an estimate of140

what would be achieved by a specified test-trace-isolate strategy if it maintained its current141

characteristics for the foreseeable future.142

The model may also be run as a stochastic simulation, to explore the impact of overdisper-143

sion and stochasticity in the epidemic process in general. In stochastic simulations we normalize144

the DQC matrix to a standard population size, then simulate the number of infections each145

individual causes for each notional INFECT compartment as a random draw from a negative146

binomial distribution based on the values in the INFECT matrix. These infections are then147

assigned to the compartments DQC matrix based on draws from a multinomial distribution pa-148

rameterized by the rows of the DETECT matrix. Since there is no equilibrium state, stochastic149

simulations are run for a fixed number of generations.150

The simulations presented in this paper assume that R0 = 2.5 without interventions, a151

generation time of 6.5 days (unless otherwise stated, Table S3), and initially, that whether152

individuals develop symptoms or not has no meaningful impact on transmission or detection153

probability in surveillance, and that household and community contacts are equally likely to154

be infected and quarantined. In later analyses, we relax these latter assumptions and add155

stochasticity to illustrate how our results are influenced by overdispersion in transmission, the156

presence of asymptomatic transmission, and di↵erential risk of infection and tracing speed in157

household contacts.158

Data and model availability159

The expanded model is implemented in the tti R package [13]. We also developed the Contact160

Tracing Evaluation and Strategic Support Application (ConTESSA), an R Shiny web applica-161

tion, around a simplified version of our modeling framework. The purpose of this application is162

to provide a user-friendly interface where managers of test-trace-isolate activities, equipped with163

their observed metrics, can examine how well their program reduces onward transmission and164

explore how their results might change with improvements to completeness and timing metrics165

as well as di↵erent underlying assumptions. The ConTESSA application is complemented by166

a free Coursera course that describes key contact tracing program metrics and provides more167

detailed instruction on how to use the application [15].168
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Results169

Case isolation and contact quarantine completeness and timing170

Application of our framework shows that the reproductive number can be reduced by improving171

performance across all dimensions of a test-trace-isolate program: detection and isolation com-172

pleteness, the speed of case isolation, the proportion of contacts followed up and quarantined,173

and the speed at which quarantine occurs (Figure 3). However, the e↵ect of improvements in174

one dimension are not independent of performance in the other dimensions, and as such, the175

aspect where improvements will yield the greatest dividends, the ”next best move”, depends on176

the current status of the program.177

Consider a situation where you only detect and isolate 10% of cases through your community178

testing program, and it takes an average of seven days from symptom onset to do so (squares179

in Figure 3). Whether you have highly e↵ective contact tracing (70% of contacts quarantined180

on average 4 days after case symptom onset, hollow shapes in Figure 3) or less e↵ective contact181

tracing (30% quarantined on average 8 days after case symptom onset, solid shapes in Figure182

3), little will be gained by improving the speed of case isolation, and the greatest reductions in183

transmission will be achieved by improving the proportion of infections detected and isolated184

(direction 1 in 3A). Increasing the proportion of infections detected and isolated, regardless of185

other metrics, is critical because it is these detected cases that “seed” all other test-trace-isolate186

activities. If an infection is not detected, it cannot be isolated, and their contacts cannot be187

traced and quarantined.188

Reducing the time to case isolation (direction 2 in Figure 3A) may be nearly as e↵ective as189

improving case isolation completeness in certain contexts, in particular, if contact tracing is less190

e↵ective and isolation completeness is reasonably high (over 30%). Because the vast majority of191

transmission occurs in the days immediately before and after symptom onset, improvements in192

the speed of case isolation that bring it to four days or fewer will yield the greatest reductions193

in transmission. Beyond this, there is limited opportunity to reduce onward transmission of194

the isolated case and thus little di↵erence between delays of 6, 8, or 10 days. Increasing the195

speed of case isolation is particularly important when contact tracing is ine↵ective (Figure 3B),196

hence the program must rely predominantly on reductions in transmission from isolated cases197

themselves.198

The benefits of increasing the speed and completeness of contact tracing and quarantine are199

greatest in the context of already highly e↵ective testing and isolation (e.g., 50% of infections200

isolated on average 4 days after symptom onset, circles in Figure 3D). In such situations,201

increasing quarantine completeness yields the largest reductions in transmission (direction 3 in202

Figure 3D), particularly when the speed of contact quarantine is less than 8 days from case203

symptom onset.204

Improvements in the speed of contact quarantine (direction 4 in Figure 3D) are most e↵ective205

during the 4-8 day window after case symptom onset for similar reasons; this period corresponds206

to the greatest expected infectiousness of infected contacts. The impact of improvements in the207

speed or completeness of contact tracing is less if testing and isolation fail to reach a high208

percentage of infections (Figure 3E). As noted above, this is because without adequate detected209
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cases to seed contact tracing activities, the ability of tracing and quarantine to have an impact210

is substantially reduced.211

The completeness and timing of test-trace-isolate activities determine whether we can achieve212

goals in disease control using these approaches. A common goal is to bring R below one so that213

the epidemic will start to recede in the population. We explored the range of program charac-214

teristics that could achieve this goal, under the assumption that contacts were quarantined on215

the same day as case isolation, and quarantine completeness ranged from 50-100% (Figure 4).216

At R = 2.5 (our baseline when no other interventions are in place) with perfect contact217

quarantine, at least 60% of cases must be isolated to achieve R < 1; this minimum percentage218

decreases to 50% when starting at R = 2, 34% at R = 1.5, and 20% at R = 1.25 (corresponding219

to 20%, 40%, and 50% reductions in baseline R due to other interventions) (Figure 4). It is not220

possible to achieve R < 1 if case isolation occurs more than 8.0 days after symptom onset, on221

average, and this threshold increases to 9, 11, and 13 days for R starting at 2, 1.5, and 1.25.222

Quarantine need not be perfect to achieve R < 1 (colors in Figure 4), but the tolerance for223

imperfect quarantine changes with isolation speed. For example, case isolation completeness224

needs to only increase from 60% to 63% to o↵set a decrease in contact quarantine completeness225

from 100% to 50% when cases are isolated on the same day as symptom onset. However, this226

tolerance for incomplete quarantine rapidly degrades as the time to isolation increases, and, in227

the absence of other interventions (i.e., R = 2.5), no isolation program will achieve R < 1 with228

50% quarantine completeness if the average time to case isolation exceeds 2.6 days.229

Infections arising in traced contacts230

A metric often recommended for evaluating test-trace-isolate programs is the proportion of iden-231

tified infections that were already under quarantine [7]. Programs are thought to be successful232

if this metric is high because it may indicate that a substantial fraction of transmission chains233

were interrupted through isolation of case contacts early in (or prior to) their infectious period.234

In practice, a program might approximate this by calculating the proportion of all newly de-235

tected infections among traced contacts, who may or may not be in quarantine when they are236

confirmed to be infected. This proportion is equivalent to Q
Q+D in our model.237

An increasing proportion of new infections detected among traced contacts only represents238

an improvement in the program e↵ectiveness if the timing of case isolation remains constant or239

becomes quicker. As delays in isolation increase, a greater number of secondary infections will240

occur among traced contacts. Hence, we can see both an increase in the proportion of newly241

detected infections among traced contacts and an increase in the e↵ective reproductive number242

(direction ‘2‘ in Figure 5).243

Adding real-world complexity to transmissibility and risk244

In the sections above, we assume that all infected individuals are equally likely to transmit and245

be detected. Yet, there is evidence that asymptomatic individuals (those who never develop246

symptoms) are less infectious than those who do develop symptoms [16, 17]. If the relative247

contribution of asymptomatic individuals to onward transmission is low, limited detection of248

asymptomatic cases will have little e↵ect on the reproductive number (Figure S1).249
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Figure 3: Improvements to case isolation and contact quarantine: Impact of case isolation
timing (x-axis) and completeness (line colors) on the e↵ective reproductive number (y-axis) for
A) a highly e↵ective contact tracing program and B) a less e↵ective contact tracing program. C)
Heat map of the e↵ective reproductive number across a range of case isolation timing (y-axis)
and completeness (x-axis) scenarios, assuming that contact tracing is highly e↵ective. Impact
of contact tracing timing (x-axis) and completeness (line colors) on the e↵ective reproductive
number (y-axis) for D) a widespread and rapid case isolation scenario and E) a less e↵ective
and slower case isolation scenario. F) Heat map of the e↵ective reproductive number across
a range of contact tracing timing (y-axis) and completeness (x-axis) scenarios, assuming that
detection and isolation of index cases is widespread and rapid. For all panels, the open shapes
mark example scenarios with highly e↵ective contact tracing (70% quarantined on average 4
days after case symptom onset) in contrast to the filled shapes of a less e↵ective contact tracing
scenario (30% quarantined after 8 days). Circles mark example scenarios with widespread and
rapid case isolation (50% isolated on average 4 days after case symptom onset) in contrast to
squares, which have limited and slower case isolation (10% isolated after 7 days). Shapes display
consistent scenarios across all panels in the figure.
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Similarly, previous scenarios assume that all contacts are equally at risk of being infected,250

but contact tracing studies suggest that the risk of SARS-CoV-2 infection for household contacts251

could be six (or more) times higher compared to other close contacts [11, 16]. Quarantining252

household contacts therefore is expected to have a larger impact in reducing the reproductive253

number than quarantining non-household contacts (Figure S2).254

There is growing evidence that the distribution of onward transmission for SARS-CoV-2 is255

overdispersed, meaning that most individuals contribute little to onward transmission, while256

super-spreading events result in the bulk of secondary infections [18, 19]. Overdispersion has257

little e↵ect on the mean estimates of the reproductive number (Figure S3). However, when there258

are few total infections in a community, the random occurrence or detection of any one super-259

spreading event can drastically alter program impact, including ending an outbreak altogether,260

thereby increasing uncertainty in R.261

Sensitivity Analyses262

The above results are sensitive to assumptions about the infectious period and generation time263

of SARS-CoV-2. While the qualitative trends and relationships hold regardless, assumptions264

of a shorter generation time substantially increase the necessary speed at which activities must265

occur to have a meaningful impact (Figures S4 - S8).266

Discussion267

Test-trace-isolate programs have the potential to play an important role in COVID-19 control,268

but the extent of that role depends on each program’s ability to limit transmission of the269

virus. Here, we have presented a modeling framework with which to evaluate the performance270

of test-trace-isolate programs, and shown how four key metrics of performance interact. The271

results show that a program’s ability to detect cases through community testing is one of the272

greatest drivers of program e↵ectiveness, as it is these cases that seed all other activities. Rapid273

case isolation, complete contact tracing, and timely quarantine will compound the impact that274

identifying a new seed will have on the trajectory of the epidemic. Nevertheless, exceptional275

performance may be needed across all of these dimensions if transmission is to be controlled by276

test-trace-isolate alone, raising the importance of complementary control activities.277

Previous work has emphasized the importance of decreasing delays to case isolation and278

contact quarantine to reduce disease transmission [20, 21]. However, these models assumed279

high testing and isolation coverage (� 60%), levels perhaps attainable in the early or late stages280

of an outbreak, but far exceeding estimated infection detection rates in many locations with281

established epidemics [22–25]. Here, we explore a broader range of case detection and isolation282

proportions, including values that may be more feasibly attained in areas with substantial283

incidence. In doing so, we show the critical importance of the proportion of cases detected.284

Once adequate levels of detection are reached, the speed of case isolation and contact quar-285

antine will begin to matter more. In practice, these delays are linked, as many of the same286

activities must be completed before isolation or quarantine can occur (e.g., sample collection,287

laboratory testing, contact of infected or exposed individuals). Hence, practical improvements288
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in important aspects of a test-trace-isolate program, such as speed of laboratory testing, may289

have an outsized impact on the performance of the program overall.290

These results have implications for the design and implementation of test-trace-isolate pro-291

grams. The ability to identify and interrupt a high proportion of transmission chains will require292

investment in widespread testing. Population screening, in addition to symptom-based or at-will293

testing, could meaningfully improve a program’s impact on transmission. Inexpensive, easy to294

administer, and widely available tests could facilitate expanded detection e↵orts [26, 27]. Even295

if such tests have lower sensitivity, the higher coverage attainable could result in detection of a296

higher percentage of infections [28]. Importantly, these improvements to testing capacity and297

access must be available to those populations most impacted by COVID-19 and not exacerbate298

existing testing disparities. If we increase testing coverage, but fail to reach those who are at299

highest risk for infection, there will be little impact on transmission.300

Any increases in case detection will be ine↵ective if isolation and quarantine fail to interrupt301

transmission. To some extent, this can be counteracted by improvements to other aspects of a302

program (e.g., proportion of cases detected), but measures to facilitate e↵ective isolation and303

quarantine may be needed to reach transmission control goals. Given the high risk of household304

transmission, measures that can intervene in these settings may be highly important. Facilities305

for isolation outside of the household were associated with substantial reductions in R in China306

[29]. Use of facial coverings has also been proven e↵ective at reducing household transmission307

for SARS-CoV-2 and other respiratory viruses [30–32]. Social and economic support for isola-308

tion and quarantine, particularly if outside the home, may be necessary for test-trace-isolate309

programs to be e↵ective in many communities [7]. Technology, such as use of mobile phone data310

to identify contacts, may improve the speed and completeness of contact tracing, but compli-311

ance may be undermined if contact definitions are too broad, and substantial resources would312

still be required to initiate and support quarantine of identified contacts [33, 34].313

The case isolation and contact quarantine completeness metrics used in our model may be314

better conceptualized as the proportion of onward transmission that would have been otherwise315

caused by those isolated or quarantined. Thus, programs will see greater reductions in trans-316

mission from isolation or quarantine of those who are more likely to transmit. In the expanded317

version of our model, we already address di↵erences between symptomatic and asymptomatic318

transmission and household versus community contacts. There may be programmatic reasons319

to specifically target other groups, and our basic framework could be extended to accommodate320

such strategies.321

Our framework is not without limitations. This model describes a general strategy of tracing322

and quarantining the immediate contacts of identified cases in a community. It may not be323

easily extensible to settings such as schools or workplaces. Alternative strategies also exist,324

including tracing of contacts-of-contacts [35], and so-called backwards tracing [36]. The latter325

approach is part of a fundamentally di↵erent way of using contact tracing in disease control326

that has been used in COVID-19 response in some countries (e.g., Japan [37]), which focuses327

on identifying settings that have the potential to facilitate super-spreading events or otherwise328

amplify transmission. Our estimates of program e↵ectiveness are sensitive to assumptions of329

disease natural history, though we have explored the impact of some of these assumptions330
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(Figures S4 - S8), and further exploration are possible. The model relies on a simplified version331

of transmission that does not account for many risk factors for SARS-CoV-2 infection or the332

contact structure in the population [35, 38], which could lead to persistent transmission even333

when the population reproductive number is low. While the reproductive number is a useful334

representation of transmission control at the population level, it does not capture di↵erential335

health burden of infections, and a program could have a higher R but better limit mortality if336

it e↵ectively protects at-risk populations.337

Test-trace-isolate programs should not alone be used to control COVID-19. It is exceedingly338

di�cult to achieve a reproductive number less than one without additional reductions in trans-339

mission from other interventions, which may include masking or broad scale social distancing.340

Likewise, our model is based on proportions, but resource needs are determined by the absolute341

number of identified cases and traced contacts. When incidence is high, resources needed to342

test and trace the desired proportion of infections may be excessive, but if incidence is brought343

down through other control measures, the same targets may be logistically feasible. Still, test-344

trace-isolate programs need not themselves bring R below one to be valuable, and incremental345

reductions in transmission can alleviate the need for the most severe social distancing measures.346

Hence, test-trace-isolate isolate programs have a valuable role to play in the COVID-19 re-347

sponse, even if such programs themselves are not the whole solution. Understanding the impact348

that a program is having, or that would result from investing in better program performance, is349

critical to the e↵ective use of these programs within a broader control strategy. We hope that350

the model presented here, which is implemented in publicly available tools, will help facilitate351

the e↵ective use of these programs in the COVID-19 response.352
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