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ABSTRACT 

Portable chest x-ray (pCXR) has become an indispensable tool in the management of 

Coronavirus Disease 2019 (COVID-19) lung infection. This study employed deep-learning 

convolutional neural networks to classify COVID-19 lung infections on pCXR from normal and 

related lung infections to potentially enable more timely and accurate diagnosis. This retrospect 

study employed deep-learning convolutional neural network (CNN) with transfer learning to 

classify based on pCXRs COVID-19 pneumonia (N=455) on pCXR from normal (N=532), 

bacterial pneumonia (N=492), and non-COVID viral pneumonia (N=552). The data was split 

into 75% training and 25% testing. A five-fold cross-validation was used. Performance was 

evaluated using receiver-operating curve analysis. Comparison was made with CNN operated on 

the whole pCXR and segmented lungs. CNN accurately classified COVID-19 pCXR from those 

of normal, bacterial pneumonia, and non-COVID-19 viral pneumonia patients in a multiclass 

model. The overall sensitivity, specificity, accuracy, and AUC were 0.79, 0.93, and 0.79, 0.85 

respectively (whole pCXR), and were 0.91, 0.93, 0.88, and 0.89 (CXR of segmented lung). The 

performance was generally better using segmented lungs. Heatmaps showed that CNN accurately 

localized areas of hazy appearance, ground glass opacity and/or consolidation on the pCXR. 

Deep-learning convolutional neural network with transfer learning accurately classifies COVID-

19 on portable chest x-ray against normal, bacterial pneumonia or non-COVID viral pneumonia. 

This approach has the potential to help radiologists and frontline physicians by providing more 

timely and accurate diagnosis. 
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Introduction 

Coronavirus Disease 2019 (COVID-19) is a highly infectious disease that causes severe 

respiratory illness (1,2). It was first reported in Wuhan, China in December 2019 (3) and was 

declared a pandemic on Mar 11, 2020 (4). The first confirmed case of coronavirus disease 2019 

(COVID-19) in the United States was reported from Washington State on January 31, 2020.(5) 

Soon after, Washington, California and New York reported outbreaks. COVID-19 has already 

infected 10 million, killed more than 0.5 million people, and the United States has become the 

worst-affected country, with more than 2.4 million diagnosed cases and at least 122,796 deaths 

(https://coronavirus.jhu.edu, assessed Jun 28, 2020). There are recent spikes of COVID-19 

infection cases across many states and around the world and there will likely be second waves 

and recurrence.  

A definitive test of COVID-19 infection is the reverse transcription polymerase chain 

reaction (RT-PCR) of a nasopharyngeal or oropharyngeal swab specimen (6,7). Although RT-

PCR  has high specificity, it has low sensitivity, high false negative rate, and long turn-around 

time (6,7) (currently ~4 days although it is improving and other tests are becoming available (8)). 

By contrast, portable chest X-rays (pCXR) is convenient to perform, has a fast turnaround, and is 

well suited for imaging contagious patients and longitudinal monitoring of critically ill patients 

in the intensive care units because the equipment can be readily disinfected, preventing cross-

infection. pCXR of COVID-19 infection has certain unique characteristics, such as 

predominance of bilateral, peripheral, and low lobes involvement, with ground-glass opacities 

with or without airspace consolidations as the disease progresses. These characteristics generally 

differ from other lung pathologies, such as bacterial pneumonia or other viral (non-COVID-19) 
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lung infection. Based on CXR and laboratory findings, clinicians might start patients on 

empirical treatment before the RT-PCR results become available or even if the RT-PCR come 

back negative due to high false negative rate of RT-PCR. Early treatment in COVID-19 patients 

is associated with better clinical outcomes. Similarly, computed tomography (CT), which offers 

relatively more detailed features (such as subtle ground-glass opacity (9,10)), has also been used 

in the context of COVID-19. However, CT suite and equipment are more challenging to 

disinfect, and thus it is much less suitable for examining patients suspected of or confirmed with 

contagious diseases in general and COVID-19 in particular. Longitudinal CT monitoring of 

critically ill patients in the intensive care units is also challenging. In short, pCXR has become an 

indispensable imaging tool in the management of COVID-19 infection, is often one of the first 

examinations a patient suspected of COVID-19 infection receives in the emergency room, and 

ideally used for longitudinal monitoring of critically ill patients in the intensive care units.  

The usage of pCXR under the COVID-19 pandemic circumstances is unusual in many 

aspects. For instance, pCXR is preferred as it can be used at the bedside without moving the 

patients, but the imaging quality is not as good as conventional CXR (11). In addition, COVID-

19 patients may not be able to take full inspirations during the examination, obscuring possible 

pathology, especially in the lower lung fields. Many sicker patients may be positioned on the 

side which compromises imaging quality. Thus, pCXR data under the COVID-19 pandemic 

circumstances are suboptimal and, thus, may be more challenging to interpret. Moreover, pCXR 

is increasingly read by non-chest radiologists in some hospitals due to increasing demands, 

resulting in reduced accuracy and efficiency.  

pCXR images contain important clinical features that could be easily missed by the naked 

eyes. Computer-aided methods can improve efficiency and accuracy of pCXR interpretations, 
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which in turn provides more timely and relevant information to frontline physicians. Deep-

learning artificial intelligence (AI) has become increasingly popular for analyzing diagnostic 

images (12,13). AI has the potential to facilitate disease diagnosis, staging of disease severity 

and longitudinal monitoring of disease progression.  

One common machine-learning algorithm is the convolutional neural network (CNN) (14,15), 

which takes an input image, learns important features in the image such as size or intensity, and 

saves these parameters as weights and bias to differentiate types of images (16,17). CNN 

architecture is ideally suited for analyzing images. Moreover, the majority of machine 

learning algorithms to date are trained to solve specific tasks, working in isolation. Models have 

to be rebuilt from scratch if the feature-space distribution changes. Transfer learning overcomes 

the isolated learning paradigm by utilizing knowledge acquired for one task to solve related ones. 

Transfer learning in AI is particularly important for small sample size data because the pre-trained 

weights enable more efficient training and improved performance (18,19).   

Many artificial intelligence (AI) algorithms based on deep-learning convolutional neural 

networks have been deployed for pCXR applications (20-24) and these algorithms can be readily 

repurposed for COVID-19 pandemic circumstances. While there are already many papers 

describing prevalence and radiographic features on pCXR of COVID-19 lung infection (see 

reviews (25,26)), there is a few peer-reviewed AI papers (27-32) and non-peer reviewed papers 

(33-36) to classify CXRs of COVID-19 patients from CXR of normals or related lung infections. 

The full potential of AI applications of pCXR under COVID-19 pandemic circumstances is not 

yet fully realized.  

The goal of this pilot study is to employ deep-learning convolutional neural networks to 

classify normal, bacterial infection, and non-COVID-19 viral infection (such as influenza) 
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against COVID-19 infection on pCXR. The performance was evaluated using receiver-operating 

curve (ROC) analysis. Heatmaps were also generated to visualize and assessment the 

performance of the AI algorithm. 

 

Materials and Methods 

 

Data sources: This retrospective study used publicly available pCXR of i) COVID-19 infection, 

ii) non-COVID-19 viral infection, iii) bacterial pneumonia, and iv) normal subjects. The 

COVID-19 pCXR were downloaded from (19) on May 27th, 2020. The original download 

contained 673 CT or pCXR images of COVID-19, SARS, acute respiratory distress syndromes, 

pneumocystis, streptococcus, legionella, Chlamydophila, E Coli, Klebsiella, lipoid, Varicella, 

and influenza. The final sample size for COVID-19 patients was 455 pCXR from 197 patients. 

We recognized that this dataset was a public, community-driven dataset and there are potential 

selection biases. A radiologist (BS) evaluated all images for quality and relevance and each case 

was COVID-19 positive based on available data. Thus, this dataset is useful and valid for the 

purpose of algorithm development.  

The other datasets were taken from the established Kaggle chest X-ray image 

(pneumonia) dataset (https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia). 

Although the Kaggle database has a large sample size, we randomly selected a sample size 

comparable to that of COVID-19 to avoid asymmetric sample size bias that could skew 

sensitivity and specificity. The sample sizes chosen for bacterial pneumonia, non-COVID-19 

viral pneumonia, and normal pCXR were 492, 552 and 532 patients, respectively. Similarly, a 

chest radiologist evaluated all images for quality. 
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CNN: The CNN architecture was based on VGG16, a convolutional neural network 

(37). The VGG16 model was used because it was pretrained on the ImageNet database and 

properly employs transfer learning which makes the training process efficient. The data was 

normalized first by transforming all files into RGB images and resizing them into 224x224 pixels 

to make them compatible with the VGG16 framework. Next, the images were one-hot-encoded 

and split into 75% training and 25% testing. VGG16 implements 13 convolutional layers: 5 Max 

Pooling layers and 3 Dense layers which sum up to 21 layers and 16 weight layers. Conv 1 has 

64 filters while Conv 2 has 128 filters, Conv 3 has 256 filters while Conv 4 and Conv 5 have 512 

filters. VGG-16 also uses weights pre-trained on the ImageNet dataset. The first two layers have 

2 sublayers while the 4th and 5th layers have 3 sublayers. A max-pooling layer was used after 

each step in the model to down sample the input and identify its important features. All 

convolutional layers used rectified linear units (ReLUs) as an activation function because it adds 

a small number of learnable parameters. Three fully connected layers were used, each having 

4096 nodes. Dropout layers were used, along with the Softmax function, to prevent overfitting. 

For data analysis, batch sizes of 32 were used to limit computational expense and trained for 50 

epochs. Several optimizers were tested however, Adams optimization function gave the lowest 

validation loss. The learning rate was lowered from the recommended 0.01 to 0.001 to prevent 

overshooting the global minimum loss. Categorical cross entropy was used as a loss function 

since the loss value decreases as the predicted probability converges to the actual label. The 

VGG16 architecture was utilized for computation efficiency and ease to implement, for 

immediate translation potential. 
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 CNN analysis was performed on the whole pCXR as well as virtually segmented lungs. 

Lung segmentation was performed using a CNN architecture with 22 convolutional layers, 4 

max-pooling layers, and 4 merged layers for connectivity. A ReLu activation function was used 

with the Keras library. The output consisted of a mask of the segmented lungs. The segmented 

lungs were then fed into the CNN model for the Covid19 classification. This model was trained 

on the Montgomery dataset and achieved an IoU score of 0.956 and dice score of 0.972. 

 

Heatmaps: To visualize the spatial location on the images that the CNN networks were 

paying attention to, heatmaps were generated with class activation maps algorithm (38). This 

was done by adding global average pooling into CNN and calculating gradient backpropagation 

given one specific output class to obtain the class activation maps, indicating the discriminative 

image regions CNN paid attention to.  

 

Statistical methods and performance evaluation: Five-cross-validation was used. 

Performance of the prediction model used standard ROC analysis of the area under the curve 

(AUC), accuracy, sensitivity, specificity, precision, recall and F1 scores. Precision was computed 

using true positives divided by the sum of false positives and true positives; Recall was 

computed using the true positives divided by the sum of true positives and false negatives; F1 

scores were the mean of recall and precision rates. 

 

Results 

 Figure 2 shows examples of pCXR from a normal subject and from patients with 

different lung infections. COVID-19 is often characterized by ground-glass opacities with or 
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without nodular consolidation with predominance of bilateral, peripheral and lower lobes 

involvement. Non-COVID-19 viral pneumonia is often characterized by diffuse interstitial 

opacities, usually bilaterally. Bacterial pneumonia is often characterized by confluent areas of 

focal airspace consolidation.  

 

Figure 3 shows the training and validation loss and accuracy as a function of the epoch. 

Loss decreases and accuracy improved with increasing epoch for both training and validation 

dataset. The accuracy typically reached > 0.8.  

 

The results of the multiclass CNN classification for the whole CXR in the form of the 

confusion matrix is shown in Table 1. The precision, recall and F1 scores for the whole pCXR 

are shown in Table 2. The overall precision, recall and F1 scores showed good to excellent 

performance. For CNN with transfer learning performed on the whole pCXR, the overall 

sensitivity, specificity, accuracy, and AUC were 0.79, 0.93, and 0.79, .84 respectively. For CNN 

performed on segmented lungs, the overall sensitivity, specificity, accuracy, and AUC were 0.91, 

0.93, 0.88, 0.89 respectively. The performance was generally better using segmented lungs.  

 

To visualize the spatial location on the images that the CNN networks were paying 

attention to for classification, heatmaps of the COVID-19 versus normal pCXR are shown in 

Figure 4. The CNN algorithm was able to localize the area of pathology on pCXR. For CNN 

performed on the whole pCXR, the majority of the hot spots were reasonably localized to regions 

of ground glass opacities and/or consolidations, but some hot spots were located outside the 
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lungs. For CNN performed on segmented lungs, the majority of the hot spots were reasonably 

localized to regions of ground glass opacities and/or consolidations, mostly as expected.  

 

Discussion 

This study developed and applied a deep-learning CNN algorithm with transfer learning 

to classify COVID-19 CXR from normal, bacterial pneumonia, and non-COVID viral 

pneumonia CXR in a multiclass model. Heatmaps showed reasonable localization of 

abnormalities in the lungs. The overall sensitivity, specificity, accuracy, and AUC were 0.91, 

0.93, 0.88, and .89 respectively (segmented lungs). 

 

There are a few AI studies to date using machine learning methods to classify CXRs of 

COVID-19, normal and related lung infections. By the time this paper is reviewed many more 

papers will be published. Hurt et al. used a U-net CNN algorithm to predict pixel-wise 

probability maps for pneumonia on CXR on 10 COVID-19 patients (27). No ROC analysis was 

performed. Apostolopoulos and Mpesiana used deep-learning algorithm to predict COVID-19 

CXR with 98.66% sensitivity, 96.46% specificity, and 96.78% accuracy from a collection of 

1427 CXRs of which 224 were COVID-19 CXRs (28). Elaziz et al. used an innovative feature 

selection algorithms and standard classifier to classify CXR between COVID-19 (N=216) and 

non-COVID-19 (N=1675). This method achieved accuracy rates of 96.09% and 98.09% for each 

of the respective datasets (29). Note that patient cohorts were highly asymmetric. Murphy et al. 

used an artificial intelligence to classify COVID-19 CXRs (N=223) from non-COVID-19 CXRs 

(N=231) with an 0.81 AUC and they also showed that AI outperformed expert readers (30). 

Ozturk et al. used an AI model to perform multiclass classification for COVID-19 (N=127) vs. 
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No-Findings (N=500) vs. Pneumonia (N=500) as well as a binary classification for COVID vs. 

No-Findings which achieved 87.02% and 98.08% accuracies, respectively (31). Pereira et al. 

performed a multiclass classification and a hierarchical classification for COVID-19 vs 

pneumonia vs no-finding using resampling algorithms, texture descriptors, and CNN. This model 

achieved a F1-Score of 0.65 for the multiclass approach and F1 score of 0.89 for the hierarchical 

classification (32). AUC and accuracy were not reported. A few non-peer reviewed pre-prints 

using AI to classify COVID-19 CXRs have also been reported (33-36). Our study had one of the 

larger cohorts, balanced sample sizes, and multi-class model. Our approach is also amongst the 

simplest AI models with comparable performance index, likely facilitate immediate clinical 

translation. Together, these studies indicate that AI has the potential to assist frontline physicians 

in distinguishing COVID-19 infection based on CXRs.  

 

Heatmaps are informative tools to visualize regions that CNN algorithm pays attention to 

for detection. This is particular important given AI operates on high dimensional space. Such 

heatmaps enable reality checks and make AI interpretable with respect to clinical findings. Our 

algorithm showed that the majority of the hotspots were highly localized to abnormalities within 

the lungs, i.e., ground glass opacity and/or consolidation, albeit imperfect. The majority of the 

above-mentioned machine learning studies to classify COVID-19 CXRs did not provide 

heatmaps. We also noted that CNN on whole pCXR image resulted in some hot spots located 

outside the lungs. CNN of segmented lungs solved this problem. Another advantage of using 

segmented lung is reduced computational cost during training. Transfer learning also reduced 

computational cost, making this algorithm practical. The performance is generally better using 

segmented lungs.  
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Most COVID-19 positive patients showed significant abnormalities on pCXR (39). Some 

early studies have even suggested that pCXR could be used as a primary tool for COVID-19 

screening in epidemic areas (39,40), which could complement swab testing which still has long 

turnaround time and non-significant false positive rate. In some cases, imaging revealed chest 

abnormalities even before swab tests confirm infection (41,42). In addition, pCXR can detect 

superimposed bacteria pneumonia, which necessitates urgent antibiotic treatment. pCXR can also 

suggest acute respiratory distress syndrome, which is associated with severe negative outcomes and 

necessitates immediate treatment. Together with the anticipated widespread shortage of intensive 

care units and mechanical ventilators in many hospitals, pCXR also has the potential to play a 

critical role in decision-making, especially in regards to which patients to admit to the ICU, put 

on mechanical ventilation, or when to safely extubate. A timely implementation of AI methods 

could help to realize the full potential of pCXR in this COVID-19 pandemic. 

 

This pilot proof-of-principal study has several limitations. This is a retrospective study 

with a small sample size and the data sets used for training had limited alternative diagnoses. 

Although the Kaggle database has a large sample size for non-COVID-19 CXR, we chose the 

sample sizes to be comparable to that of COVID-19 to avoid asymmetric sample sizes that could 

skew sensitivity and specificity. Future studies will need to increase the COVID-19 sample size 

and include additional lung pathologies. The spatiotemporal characteristics on pCXR of COVID-

19 infection and its relation to clinical outcomes are unknown. Future endeavors could include 

developing AI algorithms to stage severity, and predict progression, treatment response, 
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recurrence, and survival, to inform and advise risk management and resource allocation 

associated with the COVID-19 pandemic.  

 

 In conclusion, deep learning convolutional neural networks with transfer learning 

accurately classify COVID-19 pCXR from pCXR of normal, bacterial pneumonia, and non-

COVID viral pneumonia patients in a multiclass model. This approach has the potential to help 

radiologists and frontline physicians by providing efficient and accurate diagnosis.  
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Table 1. Confusion table showing the multiclass CNN classification (whole CXR) 

  
Normal COVID-

19 

Non-COVID-
19 viral 

pneumonia 

Bacterial 
pneumonia 

Normal 122 3 17 2 
Covid19 6 102 3 6 

Non-COVID-19 viral 
Pneumonia 

16 2 94 20 

Bacterial pneumonia 4 1 30 85 
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Table 2 shows the precision and recall rate and F1 score (whole CXR).  

 Precision Recall F1 - score 

Normal 0.82 0.85 0.84 

Covid19 0.94 0.87 0.91 

Non-covid19 viral 
pneumonia 

0.65 0.71 0.68 

Bacterial pneumonia 0.75 0.71 0.73 
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Figure legends 

 

Figure 1. VGG16 architecture with 16 weighted layers including 3 fully connected layers. 

 

Figure 2:  Examples of chest radiographs (a) normal, (b) COVID-19 viral pneumonia, (c) non-

COVID-19 viral pneumonia, and (d) bacterial pneumonia. COVID-19 is often characterized by 

ground-glass opacities with or without nodular consolidation with predominance of bilateral, 

peripheral and lower lobes involvement. Non-COVID-19 viral pneumonia is often characterized 

by diffuse interstitial opacities, usually bilaterally. Bacterial pneumonia is often characterized by 

confluent areas of focal airspace consolidation. Arrows indicate regions of above-described 

characteristic features. 

 

Figure 3:  CNN training and validation loss and accuracy. Loss decreases and accuracy improved 

with increasing epoch for both training and validation dataset. 

 

Figure 4:  pCXR from a COVID-19 patient, the corresponding segmented lung, heatmap from 

CNN analysis using whole pCXR, and heatmap from CNN analysis using segmented lung 

overlaid on whole CXR. Arrows indicated regions of ground glass opacity and/or consolidations.  
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