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Abstract  

Background: Breast cancer is the most common malignancy among women in the United States, with more 

than 250,000 cases diagnosed each year. Metabolomics, which reflect the aggregate effects of genetics and the 

environment on an individual’s metabolic state, can shed light on biochemical pathways involved in 

susceptibility to breast cancer.  We investigated associations between pre-diagnostic circulating amino acids-

related metabolites and subsequent risk of breast cancer among predominantly premenopausal women.  

Methods: In 1996-1999, 29,611 women (average age, 44 years) in the Nurses’ Health Study II donated blood 

samples. Between blood collection and June 2011, 1057 women were diagnosed with breast cancer (average of 

8 years after blood collection). Women were predominately premenopausal at the time of blood collection. 207 

amino acid and amino acid-related metabolites were profiled with LC-MS/MS. Conditional logistic regression 

(CLR) was used to estimate odds ratios (ORs) of breast cancer and 95% confidence intervals (CIs). 

Multivariable analyses evaluating the joint association of all metabolites with breast cancer risk were based on 

CLR with a lasso penalty (Lasso), CLR with an elastic net penalty (Elastic Net), and Random Forests. We used 

FDR to account for testing multiple hypotheses.  

Results: Eleven metabolites were associated with breast cancer risk in CLR models, after adjustment for 

multiple comparisons (p value < 0.05 and q value < 0.20; creatine had q value > 0.20), 6 of which remained 

significant after adjustment for breast cancer risk factors (p-value<0.05). Higher levels of six metabolites, 

including 2-aminohippuric acid, DMGV, kynurenic acid, N2, N2-dimethylguanosine, phenylacetyl glutamine 

and piperine, were associated with lower breast cancer risk (e.g., piperine: ORsimple (95%CI) = 0.85 (0.78-0.93); 

ORadjusted (95%CI)=0.84 (0.77-0.92)). Higher levels of asparagine, creatine and 3 lipids (C20:1 LPC, C34:3 PC 

plasmalogen, C40:7 PE plasmalogen) were associated with increased breast cancer risk (e.g., C40:7 PE 

plasmalogen ORsimple (95%CI) = 1.14 (1.05-1.25); ORadjusted (95%CI) = 1.11 (1.01-1.22)). Piperine, 2-

aminohippuric acid, C40:7 PE plasmalogen and creatine were also selected in multivariable modeling 

approaches (Lasso, Elastic Net, and Random Forests).  

Conclusions: Two diet-related metabolites, piperine (responsible for the pungency of pepper) and 2-

aminohippuric acid (the glycine conjugate of the tryptophan metabolite anthranilic acid) were inversely 
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associated, while C40:7 PE plasmalogen (a highly unsaturated glycerophospholipid and key component of the 

lipid bilayer of cells) was positively associated with breast cancer risk among predominately premenopausal 

women, independent of established breast cancer risk factors. Further validation of the specific metabolite 

associations with breast cancer risk in independent cohorts is warranted.    

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.20185835doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.01.20185835
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

 Breast cancer is the most common malignancy among women in the United States, with more than 

250,000 cases diagnosed each year1. Known modifiable risk factors are estimated to account for only around 

one-third of postmenopausal breast cancers2-4, and an even smaller fraction of premenopausal cancers2,5. Thus, 

new strategies are needed for the identification of modifiable risk factors, especially for premenopausal breast 

cancers.   

Metabolites are small molecules that are produced and consumed by cellular metabolism. The study of 

the complete collection of metabolites, called metabolomics, provides a direct signature of cellular activity in 

the body and has emerged as a powerful tool for the diagnosis, characterization, and prediction of disease. 

Metabolomic methods have uncovered biomarkers for a wide variety of cancers including colorectal, gastric, 

pancreatic, liver, ovarian, breast, urinary, esophageal and lung6. In breast cancer, metabolomics has proven 

useful for tumor biology characterization, predicting treatment response, anticipating recurrence, and estimating 

prognosis 7.  

More recently, prospective epidemiological studies have used metabolomics to identify metabolite risk 

factors for several cancers including pancreatic8-10, prostate11,12, liver13, colorectal14, ovarian15,16, endometrial17, 

and breast cancer18-22. For breast cancer, studies have used both targeted18,21,23 and untargeted20,22 methods to 

discover metabolomic risk factors associated with diet20,23, BMI21, microbiota metabolism20, lipid, amino acid, 

and other metabolic pathways18,20,22. While several studies stratified results by estrogen receptor (ER) 

status18,21,23, no prospective metabolomic breast cancer studies have investigated differential effects by 

menopausal status. 

In this study, we assessed the association of over 200 prospectively measured circulating amino acid and 

amino acid-related metabolites with risk of breast cancer among the predominantly premenopausal women 

(1057 cases and 1057 matched controls) of the Nurses’ Health Study II (NHSII). 
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Methods 

Study Population 

In 1989, 116,429 female registered nurses aged 25-42y returned a mailed questionnaire and were 

enrolled in the NHSII. Participants have been followed biennially since 1989 with questionnaires collecting 

information on reproductive history, lifestyle factors, diet, medication use, and new disease diagnoses.  

In 1996-1999, 29,611 NHSII participants aged 32-54y contributed blood samples, as previously 

described24. Of these, 18,521 women who had not used oral contraceptives, been pregnant or breastfed in the 

previous six months provided samples timed within the menstrual cycle, targeting the early follicular (days 3 to 

5 of the cycle) and mid-luteal (7 to 9 days prior to expected start of next cycle) phases. The remaining women 

donated a single untimed sample. Follicular plasma was separated and frozen by the participants and returned 

with the luteal sample; samples were collected and shipped overnight to our laboratory where we processed and 

archived aliquots of white blood cell, red blood cell, and plasma in liquid nitrogen freezers (≤-130oC). Follow-

up in the blood subcohort is high (96% in 2011). 

The study protocol was approved by the institutional review boards of the Brigham and Women’s 

Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required. The 

return of the self-administered questionnaire and blood sample was considered to imply consent.  

 

Case and Control Selection 

Cases of breast cancer were identified after blood collection among women who had no reported cancer 

(other than nonmelanoma skin). 1057 cases (invasive cases n=780) were diagnosed between 1999 and 2011. 

Breast cancer cases were reported by the participant, which were confirmed by medical record reviews 

(n=1015) or verbally by the nurse (n=42). Given the high confirmation rate by medical record for breast cancer 

in this cohort (99%), all cases are included in this analysis. 

One control was matched per case by the following factors: age (+/- 2y), menopausal status and 

postmenopausal hormone therapy (HT) use at blood collection and diagnosis (premenopausal, postmenopausal 
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and not taking HT, postmenopausal and taking HT, and unknown), and month (+/- 1mo), time of day (+/- 2h), 

fasting status at blood collection (<8 h after a meal or unknown; >10h), race/ethnicity (African-American, 

Asian, Hispanic, Caucasian, other) and luteal day (+/- 1d; timed samples only). 

Covariate Information 

 Data on breast cancer risk factors, including anthropometric measures, reproductive history, and lifestyle 

factors, were collected from questionnaires administered biennially and at the time of blood collections. Case 

characteristics, including invasive vs. in situ, histologic grade, estrogen and progesterone receptor (ER, PR), 

were extracted from pathology reports. As previously described25, immunohistochemical results for ER and PR, 

read manually by a study pathologist, were included for cases with available tumor tissue included in tissue 

microarrays.  

Laboratory Assay 

  Plasma metabolites were profiled at the Broad Institute of MIT and Harvard (Cambridge, MA) using a 

liquid chromatography tandem mass spectrometry (LC-MS) method designed to measure polar metabolites such 

as amino acids, amino acids derivatives, dipeptides, and other cationic metabolites as described previously26-29 . 

Pooled plasma reference samples were included every 20 samples and results were standardized using the ratio 

of the value of the sample to the value of the nearest pooled reference multiplied by the median of all reference 

values for the metabolite. Samples were run together, with matched case-control pairs (as sets) distributed 

randomly within the batch, and the order of the case and controls within each pair randomly assigned. 

Therefore, the case and its control were always directly adjacent to each other in the analytic run, thereby 

limiting variability in platform performance across matched case-control pairs. In addition, 238 quality control 

(QC) samples, to which the laboratory was blinded, were also profiled. These were randomly distributed among 

the participants’ samples.  

Hydrophilic interaction liquid chromatography (HILIC) analyses of water soluble metabolites in the positive 

ionization mode were conducted using an LC-MS system comprised of a Shimadzu Nexera X2 U-HPLC 

(Shimadzu Corp.; Marlborough, MA) coupled to a Q Exactive mass spectrometer (Thermo Fisher Scientific; 

Waltham, MA). Metabolites were extracted from plasma (10 µL) using 90 µL of acetonitrile/methanol/formic 
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acid (74.9:24.9:0.2 v/v/v) containing stable isotope-labeled internal standards (valine-d8, Sigma-Aldrich; St. 

Louis, MO; and phenylalanine-d8, Cambridge Isotope Laboratories; Andover, MA). The samples were 

centrifuged (10 min, 9,000 x g, 4°C), and the supernatants were injected directly onto a 150 x 2 mm, 3 µm 

Atlantis HILIC column (Waters; Milford, MA). The column was eluted isocratically at a flow rate of 250 

µL/min with 5% mobile phase A (10 mM ammonium formate and 0.1% formic acid in water) for 0.5 minute 

followed by a linear gradient to 40% mobile phase B (acetonitrile with 0.1% formic acid) over 10 minutes. MS 

analyses were carried out using electrospray ionization in the positive ion mode using full scan analysis over 

70-800 m/z at 70,000 resolution and 3 Hz data acquisition rate. Other MS settings were: sheath gas 40, sweep 

gas 2, spray voltage 3.5 kV, capillary temperature 350°C, S-lens RF 40, heater temperature 300°C, microscans 

1, automatic gain control target 1e6, and maximum ion time 250 ms. Metabolite identities were confirmed using 

authentic reference standards or reference samples. 

 

In total, 259 known metabolites were measured in this study. Metabolites not passing our previously conducted 

processing delay pilot study 29 were excluded from this analysis (N=33). All metabolites (N=226) included here 

exhibited good reproducibility within person over 1-2 years29. 206 metabolites had no missing values among 

participant samples. One metabolite had <10% missing values and 19 metabolites had ≥10% missing values. 

Most of the metabolites (N=191) had a coefficient of variation (CV) <25% and an intraclass correlation 

coefficient (ICC) >0.4 among blinded QC samples. Twenty-five metabolites had CV≥25%, five had ICCs≤0.4, 

and five metabolites had CV≥25% and ICC≤0.4.   

 

Statistical Analysis 

Metabolite levels were natural logarithm transformed and standardized prior to statistical analysis. Missing 

values were imputed by one half the lowest observed value per metabolite, for metabolites with <10% missing 

values (N=1). Metabolites with >10% missing values (N=19) were excluded from the main analysis and 

evaluated in an exploratory analysis.  
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Association of metabolite levels with breast cancer risk was assessed in metabolite-by-metabolite models and in 

multivariable analyses that included all metabolites simultaneously.  

 

The association of individual metabolites with breast cancer risk was assessed in conditional logistic regression 

models.  In a simple model, each metabolite was included without adjustment for other factors. In an adjusted 

model, the following additional factors were included: BMI at age 18, weight change from age 18 to time of 

blood draw, age at menarche, parity and age at first birth, family history of breast cancer, diagnosis of benign 

breast disease, physical activity, alcohol consumption, exogenous hormone use and breastfeeding history. Odds 

ratios (OR) and 95% confidence intervals (95% CI) were estimated for a one-unit (one standard deviation) 

increase in the log-transformed and standardized metabolites levels.  

 

We performed analyses restricting to premenopausal women at blood collection, and analyses stratified by BMI 

(<25 vs. ≥25 kg/m2) and ER status. In a sensitivity analysis, we observed similar results between conditional 

logistic regression and unconditional logistic regression adjusting for the matching factors. Thus, stratified 

analyses were conducted using unconditional logistic regression, additionally adjusting for the matching factors. 

To test for effect modifications by BMI and ER status, we included cross-product terms in conditional logistic 

models and report the p-value for that interaction. As ER status represents a case characteristic, we assigned 

each control the ER status of its matched case.  

 

In an exploratory analysis we assessed the association with risk of breast cancer for the 19 metabolites with 

>10% missing values. We included the continuous metabolite level as well as a presence/absence indicator in 

the fully adjusted conditional logistic regression model and performed a likelihood-ratio test (full model 

compared to a model excluding both the metabolite and the presence/absence indicator) to estimate the 

significance level of the association.    
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Multivariable analyses evaluating the joint association of the 207 metabolites with breast cancer risk were based 

on (1) conditional logistic regression with lasso penalty (‘Lasso’), (2) conditional logistic regression with an 

elastic net penalty (‘Elastic Net’), and (3) Random Forests. In the Lasso and Elastic Net analyses, a minimally 

adjusted model included only the set of 207 metabolites, whereas a fully adjusted model further adjusted for the 

risk factors noted above. In each analysis, the optimal values of the regularization parameter(s) were estimated 

as that which minimizes the average deviance in the left-out partitions, in a 10-fold cross validation procedure. 

A p-value for each metabolite was obtained from a permutation test in which the case/control labels were 

permuted within each matched stratum. A p-value for each metabolite was calculated as the proportion of 

permutations (out of 250) in which the magnitude of the coefficient under label permutation was at least as large 

as the regression coefficient in the observed dataset. Analyses were carried out using the R library clogitL130.  

 

Random Forests analyses included a minimally adjusted model that included the 207 metabolites and matching 

factors. A fully adjusted model also included the additional risk factors noted above. In all analyses, the 

parameter mtry corresponding to the number of variables randomly sampled as candidates at each split was set 

to the square root of the total number of covariates in the model. Each classifier was an aggregate of 5000 trees. 

A p-value for each metabolite was obtained from a permutation test as described above in which the 

case/control labels were randomly permuted 100 times. Analyses were carried out using the R library 

randomForest31. 

 

To adjust for multiple testing in the conditional logistic regression and the multivariable models we estimated 

the positive FDR based on the q-value procedure32. Metabolites that satisfied a p-value less than 0.05 and 

corresponding q-value less than 0.20 in the minimally adjusted model were discussed as primary findings.   

 

Criterion for statistical significance: Metabolites that met a p-value<0.05 and q-value<0.20 in at least one of the 

four models (Conditional Logistic Regression, Lasso, Elastic Net and Random Forests) with minimal 

adjustment were considered as statistically significant. An exception was made for metabolites that did not meet 
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a p-value threshold < 0.05 in the conditional logistic regression: 4 metabolites that met the threshold for 

statistical significance in Lasso only but had high raw p-values (>0.3) in the conditional logistic regression were 

excluded (C12:1 carnitine, C22:5 LPC, C46:2 TAG, glycine).  

 

A metabolite score was estimated for each participant as a linear combination of all metabolites that met the 

threshold for statistical significance. The coefficients associated with each metabolite were estimated in a 

conditional logistic regression model with the Lasso penalty that included all metabolites simultaneously and 

with full adjustment for all potential confounders. 
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Results 

Study population 

1057 cases and 1057 matched controls were included in this study (Table 1). Women were an average 53 years 

old and predominantly premenopausal (80%) at the time of blood collection. At diagnosis, 42% of the women 

were premenopausal and 46% were postmenopausal.    

Table 1: Characteristics of breast cancer cases and matched controls at blood collection in the Nurses’ Health 

Study II, mean (SD) or %. 

 Cases 

(n=1057) 

Controls 

(n=1057) 

Age at blood collection^, y 44.7 (4.5) 44.8 (4.4) 

Age at menarche, y 12.4 (1.3) 12.8 (1.4) 

Parity and age at first birth, %: 

Nulliparous 

1-2 children, ≥25y 

1-2 children, <25y 

3+ children, <25y 

3+ children, ≥25y 

 

21.1 

39.2 

14.7 

11.3 

13.8 

 

15.9 

34.9 

15.9 

16.6 

14.2 

Ever breastfed, %: 63.1 65.0 

Family history of breast cancer, %: 17.4 10.8 

Personal history of benign breast disease, %: 22.1 15.6 

BMI at age 18, kg/m2 20.8 (2.9) 21.1 (3.1) 

Weight change between age 18 and blood collection, kg 11.6 (12.0) 12.6 (13.2) 

Physical activity, MET-hrs/wk 18.0 (15.3) 18.1 (15.5) 

Alcohol consumption, g/day 3.8 (6.9) 3.3 (5.6) 

Past/current exogenous hormone use*, %: 86.3 86.7 

Menopausal status at blood collection^, %: 

Premenopausal 

Postmenopausal 

Unknown 

 

80.2 

12.7 

7.1 

 

79.7 

13.1 

7.3 

Menopausal status at diagnosis^, %: 

Premenopausal 

Postmenopausal 

Unknown 

 

42.0 

46.4 

11.6 

 

42.2 

47.1 

10.7 

Caucasian^, %: 97.2 98.4 

Fasting(>8h) at blood collection^, % 68.7 74.7 

* oral contraceptive or menopausal hormone therapy 

^ matching factor 
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Conditional logistic regression (CLR) 

Eleven metabolites were significantly associated with risk of breast cancer based on the simple model 

(Figure 1, Supplementary Table 1). Six metabolites were associated with lower risk while five metabolites were 

associated with higher risk of overall breast cancer. Dimethylguanidino valeric acid (DMGV; OR per 1-SD 

increase (95%CI)=0.84 (0.77-0.92)), 2-aminohippuric acid (OR (95%CI)=0.84 (0.76-0.92)) and piperine (OR 

(95%CI)=0.85 (0.78-0.93)) had the strongest inverse associations. C40:7 phosphatidylethanolamine (PE) 

plasmalogen (OR (95%CI)=1.14 (1.05-1.25)) and asparagine (OR (95%CI)=1.14 (1.04-1.26)) had the strongest 

positive associations. Creatine was the only metabolite with q-value>0.2 in the simple model but is included 

here as q-value<0.2 in both Lasso models. Results were similar when we included adjustment for breast cancer 

risk factors (DMGV: 0.88 (0.79-0.97); 2-aminohippuric acid: 0.85 (0.77-0.93); C40:7 PE: plasmalogen: 1.11 

(1.01=1.22); asparagine: 1.10 (1.00-1.22)) and when we restricted to premenopausal women (Figure 1, 

Supplementary Table 2) or ER+ tumors (Figure 1, Supplementary Table 3). 

 

Among the 11 selected metabolites, only DMGV showed effect modification by BMI with stronger associations 

among women with high BMI (adjusted model, high BMI: OR (95%CI)=0.82 (0.70-0.97); normal BMI: OR 

(95%CI)=0.94 (0.83-1.06); p-interaction=0.04). Significant interactions with BMI were observed for several 

additional metabolites that were not significant overall; for example C36:4 DAG/TAG fragment (high BMI: OR 

(95%CI)=0.92 (0.80-1.06); normal BMI: OR (95%CI)=1.21 (1.06-1.37); p-interaction=0.005), serine (high 

BMI: OR (95%CI)=1.19 (1.04-1.38); normal BMI: OR (95%CI)=0.93 (0.83-1.05); p-interaction=0.008), and 

proline betaine (high BMI: OR (95%CI)=0.82 (0.72-0.94); normal BMI: OR (95%CI)=1.04 (0.92-1.17); p-

interaction=0.017).  

 

Of the 11 selected metabolites, we only observed stronger associations with risk of ER- tumors in the adjusted 

model (ER-; Supplementary Table 3) for asparagine (ER- tumors: OR (95%CI)=1.21 (0.99-1.47); ER+ tumors: 

OR (95%CI)=1.06 (0.94-1.18); p-interaction=0.03). Three additional metabolites were suggestively different by 

ER status: betaine (ER- tumors: OR (95%CI)=0.89 (0.73-1.09); ER+ tumors: OR (95%CI)=1.07 (0.96-1.20); p-
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interaction=0.02), 4-acetamidobutanate (ER- tumors: OR (95%CI)=0.89 (0.72-1.09); ER+ tumors: OR 

(95%CI)=0.97 (0.87-1.08); p-interaction=0.03), and histidine (ER- tumors: OR (95%CI)=1.06 (0.87-1.29); ER+ 

tumors: OR (95%CI)=1.01 (0.91-1.13); p-interaction=0.05).  

Figure 1: Odds ratios and 95% confidence intervals (CI) per 1 SD increase for metabolites significantly 

associated with risk of overall breast cancer (p-value<0.05 and q-value<0.2) in Nurses’ Health Study II, among 

premenopausal women only, by BMI category (<25, ≥25)***, and by ER status (ER positive, ER 

negative)****. Creatine, although not selected by the conditional logistic regression (p-value<0.05, q-

value>0.2), is shown here for completeness, as is was selected by the multivariable models.   

 

  
*: Simple model: adjusts for matching factors including menopause status at blood draw, time of blood draw, date/season of blood draw, luteal day at 

blood draw, fasting status at blood draw, menopausal status at diagnosis and race.  

** Adjusted model: in addition to matching factors, this model adjusts for BMI at age 18, weight change between age 18 and time of blood draw, age 

at menarche, parity and age at first birth, family history of breast cancer, personal history of benign breast disease, physical activity, alcohol 

consumption, exogenous hormone use, breast feeding history.  

*** All p-heterogeneity by BMI category were >0.07 except for DMGV p-heterogeneity=0.04 (simple and adjusted model).  

**** All p-heterogeneity by ER status were >0.13 except for asparagine p-heterogeneity=0.02/0.03 (simple/adjusted model). 
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In an exploratory analysis including metabolites with >10% missing values (N=19; 4 metabolites had >90% 

missingness), metoprolol (45% missing values) was nominally significantly associated with risk of breast 

cancer (likelihood-ratio test p-value=0.04; data not shown). Women with detectable metoprolol levels had a 

23% higher risk (presence-absence indicator p-value=0.07) of breast cancer compared to women with 

undetectable metoprolol. However, among women with measured metoprolol, higher levels were associated 

with lower risk (OR per one unit increase in log-transformed and standardized metabolite levels =0.91, p-

value=0.14). The remaining metabolites with high missingness were not associated with risk of breast cancer.   

 

Multivariable models of the joint association of all metabolites 

The inverse association of piperine with risk of breast cancer met the threshold for statistical significance (p-

value<0.05 and q-value<0.20) in all three simple (without adjustment for risk factors) multivariable models, 

Lasso, Elastic Net and Random Forests (Tables 2 and 3). In addition, DMGV and N2,N2-dimethylguanosine 

were detected in the Random Forests model with minimal adjustment, satisfying a q-value threshold of 0.05. 

Higher levels of C40:7 PE plasmalogen and creatine were associated with increased breast cancer risk in CLR 

Lasso models (q-value<0.20). These associations remained significant after further adjustment for risk factors 

(nominal p < 0.05) with the exception of N2,N2-dimethylguanosine in Random Forests (p=0.05)  and piperine 

in Elastic Net (nominal p-value<0.05, q-value>0.2).  

When all eleven identified metabolites were assessed together in an adjusted lasso CLR model, ten metabolites 

remained independently associated with risk of breast cancer. The direction of association in the lasso CLR 

model was consistent with the previous CLR and multivariable models except for N2,N2-dimethylguanosine 

who’s coefficient was estimated to be equal to zero, reflecting its high correlation with kynurenic acid and 2-

aminohippuric acid (Figure 2). 
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Table 2: All metabolites that met q-value<0.2 in at least 1 primary model analysis that adjusts for matching 

factors.  

Metabolites 

Simple model** Number 

of √ 

Adjusted model*** 

Logis
tic 

Las
so 

Elastic 
Net 

Random 
Forest 

Logis
tic 

Las
so 

Elastic 
Net 

Random 
Forest 

DMGV √* *  √* 2 *   √* 

2-aminohippuric 
acid 

√*   * 1 √*   * 

piperine √* √* √* √* 4 √* √* * √* 

kynurenic acid √* *   1 √* √*   

N2,N2-
dimethylguanosine 

√*   √* 2     

Phenylacetyl-
glutamine 

√* *   1 * √*   

C34:3 PC 
plasmalogen 

√* *  * 1  √*  √* 

C20:1 LPC √*    1     

C40:7 PE 
plasmalogen 

√* √*  * 2 * √*  * 

asparagine √* * * * 1  *  * 

creatine * √* *  1 * √*   

√ q-value<0.2 

* if p-value < 0.05;4 metabolites that met threshold for statistical significance in Lasso only but had Logistic regression raw p values > 0.3 were 

excluded (C12:1 carnitine, C22:5 LPC, C46:2 TAG, glycine). 

**: Simple model: adjusts for matching factors including menopause status at blood draw, time of blood draw, date/season of blood draw, luteal day 

at blood draw, fasting status at blood draw, menopausal status at diagnosis and race.  

*** Adjusted model: in addition to matching factors, this model adjusts for BMI at age 18, weight change between age 18 and time of blood draw, 

age at menarche, parity and age at first birth, family history of breast cancer, personal history of benign breast disease, physical activity, alcohol 

consumption, exogenous hormone use, breast feeding history.  

 

Figure 2: Heatmap of all pairwise correlations among the 11 metabolites associated with breast cancer risk. 

Positive correlations are shown in shades of red while inverse correlations are shown in shades of blue.   
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Table 3: All metabolites that met q-value<0.2 in at least 1 primary model analysis that adjusts for matching 

factors. M1 is the simple model (accounting for matching factors) and M2 is the adjusted model (adjusting for 

matching factors and breast cancer risk factors).  

Metabolite 
Mod

el 

Logistic Lasso Elastic Net 
Random 
Forest 

Odds 
Ratio 

Raw P-
value 

Odds 
Ratio 

Raw P-
value 

Odds 
Ratio 

Raw P-
value 

Raw P-
value 

DMGV 
M1 0.84 9.23E-05 0.87 4.00E-02 0.90 5.60E-02 <0.01 

M2 0.88 1.10E-02 0.89 6.80E-02 0.96 1.64E-01 <0.01 

2-aminohippuric 
acid 

M1 0.84 1.42E-04 0.93 2.24E-01 0.94 2.48E-01 0.02 

M2 0.85 7.72E-04 0.92 1.56E-01 0.96 9.60E-02 0.02 

piperine 
M1 0.85 4.59E-04 0.80 0.00E+00 0.85 0.00E+00 <0.01 

M2 0.84 2.79E-04 0.78 0.00E+00 0.92 1.60E-02 <0.01 

kynurenic acid 
M1 0.87 3.00E-03 0.87 2.80E-02 0.90 5.60E-02 0.1 

M2 0.86 2.92E-03 0.86 1.20E-02 0.96 8.80E-02 0.11 

N2,N2-
dimethylguanosine 

M1 0.88 8.47E-03 1.00 1.00E+00 0.97 6.04E-01 <0.01 

M2 0.91 6.01E-02 1.00 5.04E-01 0.98 3.04E-01 0.05 

phenylacetylglutami
ne 

M1 0.89 1.15E-02 0.88 2.80E-02 0.90 5.20E-02 0.13 

M2 0.90 2.13E-02 0.89 2.40E-02 0.96 9.20E-02 0.19 

C34:3 PC 
plasmalogen 

M1 1.13 7.64E-03 1.24 2.80E-02 1.09 1.28E-01 0.01 

M2 1.09 7.44E-02 1.29 1.60E-02 1.03 1.64E-01 <0.01 

C20:1 LPC 
M1 1.13 9.00E-03 1.08 2.44E-01 1.06 3.80E-01 0.17 

M2 1.10 5.18E-02 1.14 6.00E-02 1.02 2.76E-01 0.25 

C40:7 PE 
plasmalogen 

M1 1.14 3.23E-03 1.25 0.00E+00 1.11 6.80E-02 0.01 

M2 1.11 3.01E-02 1.29 0.00E+00 1.03 1.28E-01 0.04 

asparagine 
M1 1.14 6.10E-03 1.22 2.80E-02 1.13 3.20E-02 0.02 

M2 1.10 5.41E-02 1.18 4.40E-02 1.04 1.20E-01 0.03 

creatine 
M1 1.10 3.94E-02 1.27 0.00E+00 1.16 1.20E-02 0.06 

M2 1.13 1.51E-02 1.24 0.00E+00 1.05 5.60E-02 0.07 

*: Simple model: adjusts for matching factors including menopausal status at blood draw, time of blood draw, date/season of blood draw, luteal day 

at blood draw, fasting status at blood draw, menopausal status at diagnosis and race.  

** Adjusted model: in addition to matching factors, this model adjusts for BMI at age 18, weight change between age 18 and time of blood draw, age 

at menarche, parity and age at first birth, family history of breast cancer, personal history of benign breast disease, physical activity, alcohol 

consumption, exogenous hormone use, breast feeding history.  
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Discussion 

We conducted a large-scale study of 207 circulating amino acid and amino acid-related metabolites, and risk of 

breast cancer in a nested case-control study (1057 cases and 1057 matched controls) within NHSII, a cohort of 

predominantly premenopausal women. Higher levels of six metabolites, 2-aminohippuric acid, DMGV, 

kynurenic acid, N2, N2-dimethylguanosine, phenylacetyl glutamine and piperine, were associated with lower 

breast cancer risk while higher levels of asparagine, creatine and 3 lipids, C20:1 LPC, C34:3 PC plasmalogen, 

C40:7 PE plasmalogen, were associated with increased breast cancer risk. Inverse associations between 2-

aminohippuric acid, DMGV, kynurenic acid, phenylacetyl glutamine and piperine, and the positive association 

with C40:7 PE plasmalogen remained statistically significant after adjusting for established risk factors. 

Notably, associations between 2-aminohippuric acid, piperine and kynurenic acid remained significant even 

after multiple testing correction. Piperine, 2-aminohippuric acid and C40:7 PE plasmalogen were also selected 

in multivariable modeling approaches (Lasso, Elastic Net, and Random Forests). None of the metabolites 

showed heterogeneity by BMI, except DMGV. None of the metabolites showed heterogeneity by ER status, 

except asparagine.  

 

Piperine is a polyphenol responsible for the pungency of black and long pepper and exhibits a wide range of 

properties: anti-diabetic, anti-inflammatory, immunomodulatory, reduction of insulin resistance, and enhanced 

drug bioavailability33-35. Piperine also inhibits tumorigenesis, tumor angiogenesis, cancer cell proliferation, 

cancer cell migration and invasion, and enhances apoptosis and autophagy36. Experimental and cell line studies 

identified anti-breast cancer specific mechanisms of action, including decreased matrix metalloproteinase 9 

(MMP-9) and MMP-13 expression, induced apoptosis through activation of caspase-3 and inhibition of human 

epidermal growth factor receptor 2 (HER2) gene expression37. Synergetic effects of piperine and chemotherapy 

drugs (paclitaxel,doxorubicin), hormone therapy drugs (tamoxifen), radiotherapy, TRAIL- and nano-delivery-

based therapy drugs (paclitaxel, rapamycine) were observed 37.  Notably, piperine inhibited growth and 

motility38, and enhanced efficacy of TRAIL-based therapy39 in triple-negative breast cancer cells, the most 

aggressive breast cancer subtype. In a previous study of the associations of diet-related metabolites and breast 
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cancer risk within the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer screening trial (n=1242, 621 

cases), piperine was found to be modestly correlated with liquor consumption (correlation=0.16) and similar to 

our study, inversely associated with breast cancer risk (OR comparing 90th versus 10th percentile=0.74 (0.56-

0.99,p=0.045)), after adjusting for BMI and other potential confounders23. Notably, PLCO women were 

postmenopausal at the time of blood collection suggesting that the association between piperine and breast 

cancer may be independent of menopausal status.  

    

Dimethylguanadino valeric acid (DMGV), an organic keto acid, is the product of transamination of asymmetric 

dimethylarginine (ADMA), which inhibits nitric oxide signaling that is crucial to endothelial function—excess 

ADMA is associated with increased risk of cardiovascular disease40,41. Plasma DMGV is positively associated 

with incident coronary artery disease, cardiovascular mortality, nonalcoholic fatty acid liver disease, and type II 

diabetes42,43. Circulating DMGV is directly correlated with resistance to the metabolic benefits of exercise44. 

Physical activity, consumption of vegetables and red wine are associated with lower circulating DMGV, while 

sugar-sweetened beverage consumption is associated with higher circulating DMGV43,45.  DMGV was 

associated with lower breast cancer risk in our study. The association between DMGV and breast cancer risk 

has not been previously assessed in prospective cohort studies. However, this metabolite was correlated with 

liver fat in the offspring cohort of the Framingham Heart Study (=0.02, 95% CI: 0.018 - 0.022, p<10-23)27. In 

addition, in the same study, baseline DMGV levels were associated with higher risk of type 2 diabetes, with 

replication of this association in the Malmo Diet and Cancer study and the Jackson Heart Study27. Large 

prospective studies are required to validate the association between DMGV and breast cancer risk. If replicated, 

experimental studies will be needed to understand the complex relationship between DMGV, diet, physical 

activity, CVD, type II diabetes, and breast cancer. Of note is that this analysis was in predominantly 

premenopausal women, among whom adiposity is also inversely associated with risk of breast cancer for 

reasons that are still not fully understood46. 
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Although the measurement platform used here was optimized to measure amino acids and related metabolites, 

not lipids, our analysis included a small number of lipids and identified a few significant associations. 

Plasmalogens are a subclass of phospholipids (components of the cell membrane and involved in cell signaling 

and cell cycle regulation47) that constitute 15-20% of all phospholipids in cell membranes48. Plasmalogens have 

head groups that are usually either phosphatidylcholine (PC plasmalogens) or ethanolamine (PE plasmalogens), 

and are characterized by an ether bond to an alkenyl group in the sn-1 position while the sn-2 position is usually 

occupied by polyunsaturated fatty acids48. Certain cancers exhibit altered plasmalogen levels: circulating 

plasmalogens are depressed in pancreatic cancer patients49 and increased in gastric carcinoma patients50 

compared to healthy controls. Our study identified two plasmalogens, C34:3 PC plasmalogen and C40:7 PE 

plasmalogen, associated with increased risk of breast cancer. The fatty acid component of specific lipids may 

also reflect dietary or metabolic processes; notably C40:7 PE plasmalogen is highly unsaturated but the position 

of the double bonds cannot be determined in this metabolomics assay. Among 74 women with breast cancer, the 

levels of the majority of measured phospholipids (LPC, LPE, PC and PE) were higher in tumor tissue when 

compared to normal breast tissue samples47. Similar trends were observed in another study comparing tumor to 

normal tissue in 257 participants with breast cancer, and these lipids were correlated with cancer progression 

and patient survival51. Contrary to our findings, in the European Prospective Investigation into Cancer (EPIC) 

cohort, PC plasmalogens, including C34:3 PC plasmalogen, were inversely associated with risk of breast 

cancer18,19. However, neither study stratified their results by menopausal status, thus making a direct 

comparison difficult. Additional studies are needed to evaluate how plasmalogens are associated with risk of 

breast cancer and if this relationship is modulated by menopausal status. 

 

LPCs are derived from phosphatidylcholines after hydrolysis of one of the fatty acid groups. In the liver, LPCs 

upregulate genes involved in cholesterol biosynthesis, while circulating LPCs activate many inflammatory and 

oxidative stress signaling pathways, and are associated with inflammatory diseases such as atherosclerosis and 

multiple sclerosis52. Circulating LPCs have mixed associations with certain cancers. For instance, circulating 

LPCs are elevated in ovarian cancer patients but depressed in leukemia patients relative to healthy controls53; 
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LPCs showed inverse associations with risk of endometrioid and clear cell ovarian tumors, with stronger inverse 

associations among premenopausal women, in NHS and NHSII15,16.  While most LPCs measured in EPIC were 

inversely associated with risk, one of our top hits was LPC C20:1 that was positively associated with risk18. In 

an earlier study nested within the EPIC cohort of 774 participants including 362 breast cancer cases, C18:0 LPC 

was identified as inversely associated with breast cancer risk, after adjusting for potential risk factors 19, though 

analyses were not stratified by menopausal status.  

 

Our study identified three amino acid derivatives associated with breast cancer risk. High levels of 

phenylacetylglutamine were associated with decreased breast cancer risk while high levels of asparagine and 

creatine were associated with increased risk. Phenylacetylglutamine is formed from phenylacetate and 

glutamine and is found as a normal constituent of human urine54. Phenylacetylglutamine is a host microbiome 

cometabolite associated with bacterial phenylalanine metabolism55-58. Clostridium difficile, F. prausnitzii, 

Bifidobacterium, Subdoligranulum, and Lactobacillus are all positively associated with hippuric acid57,59, while 

Bifidobacterium is positively associated with phenylacetylglutamine and microbes of the Christensellaceae, 

Ruminococcaceae, and Lachnospiracaea families are negatively associated with phenylacetylglutamine56,60. 

While not directly linked to breast cancer risk, high serum levels of phenylacetylglutamine is a potential early 

marker of kidney dysfunction in chronic kidney disease60. Glutamine, a precursor to phenylacetylglutamine, has 

been associated with breast cancer risk in a nested case-control study within the French Su.Vi.Max cohort 

(n=211 cases). High levels of glutamine were associated with increased risk (OR per SD increase =1.33, 95% 

CI: 1.07-1.66) and this association persisted among the subgroup of premenopausal women (p for interaction = 

0.003)20. In a nested case-control study within the EPIC cohort (n=1624 cases), asparagine was inversely 

associated with breast cancer risk (OR=0.87 per SD increase, 95% CI: 0.80-0.95, FDR p=0.06), in contrast to 

the direction of association in our study18. However, the EPIC study participants were overwhelmingly (> 70%) 

postmenopausal at the time of blood collection, in contrast to our population with 80% premenopausal women. 

Differences in the menopausal status may partially explain the observed opposite directions of association 

between asparagine and breast cancer risk.  
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Creatine is obtained from meat consumption and synthesized endogenously from arginine, glycine, and 

methionine. Most creatine is found in skeletal muscle, and a significant amount is also found in the brain. 

Omnivores obtain roughly 50% of their daily creatine from meat and 50% is biosynthesized, while vegetarians 

biosynthesize most of their creatine61 and have significantly lower muscular creatine levels than meat eaters62. 

Creatine is broken down to creatinine in a first-order reaction, the rate of which decreases with age and 

decreased muscle mass63. Creatine/creatinine metabolism plays an important role in energy metabolism in 

skeletal muscle tissue, and thus disturbances in this pathway are associated with many muscle diseases, whether 

as a cause or consequence64. To the best of our knowledge, no previous work has reported a link between 

creatine and breast cancer risk. However, the association we observed in this analysis is consistent with the 

positive association between red meat and risk of breast cancer among premenopausal women in the NHSII 

cohort65. 

 

Kynurenic acid and 2-aminohippuric acid are benzenoids inversely associated with breast cancer risk in our 

study. 2-amminohippuric acid is a glycine conjugate of anthranilic acid and can be synthesized in the liver66, but 

little is known about its biological function.  Both kynurenic acid and 2-aminohippuric acid are part of the 

kynurenine branch of the tryptophan pathway, an essential amino acid and a precursor to many biologically 

active metabolites67,68. Studies of the function of kynurenic acid suggest pleiotropic roles in disease. On the one 

hand, kynurenic acid has been shown to have anti-inflammatory and anti-ulcerative properties in animal models, 

as well as antioxidative properties in vitro in human cells69. On the other hand, circulating kynurenic acid was 

associated with increased risk of insulin resistance70. Kynurenic acid acts as both an anti-inflammatory and 

immunosuppressive factor which in turn allows tumor proliferation71. Tryptophan metabolism plays an 

important role in tumor progression and malignancy with several cancers expressing tryptophan-degrading 

enzymes such as IDO172,73. However, the direct role of kynurenic acid remains unclear, with both proliferative 

and antiproliferative effects on human glioblastoma cells, an antiproliferative effect on human colon 
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adenocarcinoma cells, and decreased DNA synthesis and inhibited migration in both cell types69. Neither 

kynurenic acid nor 2-aminohippuric acid have been previously associated with breast cancer risk.  

 

N2,N2-dimethylguanosine (DMGU) is a purine nucleoside and a primary degradation product of transport 

RNA. Elevated circulating DMGU levels may indicate cellular stress and is associated with several diseases, 

including pulmonary arterial hypertension74, solid tumors75, incident type II diabetes76, and all-cause 

mortality77. Elevated levels of N2, N2-dimethylguanosine were found in patients with acute leukemia and breast 

cancer78. Elevated circulating levels of this metabolite are associated with lower risk of breast cancer in our 

study.   

 

Our study has several strengths and limitations. Notably, we conducted a prospective analysis of amino acid and 

amino acid-related metabolomics and risk of breast cancer among a large number of predominantly 

premenopausal women. We had detailed information on sample collection characteristics and risk factors which 

we included in our statistical approaches. Although metabolomics was measured at only one point in time, the 

identified metabolites are reasonably stable over time29 (ICCs or correlation over 1-2 years ≥0.75 for 9 

metabolites; no data are available for 2-aminohippuric acid and C20:1 LPC). Our cohort consisted of registered 

nurses, a group that are not representative of the general population (e.g. social economic status), however there 

is no evidence suggesting that breast carcinogenesis is different in this group of women. While we had 

reasonable power in most of our analyses, we had limited power among ER negative tumors. Lastly, the 

uniqueness of our data measured among predominantly premenopausal women make replication studies 

challenging. We conducted this analysis in a hypothesis generating framework and hope that other cohorts will 

follow and analyze metabolomics data stratifying by menopausal status. 

 

In summary, we identified several metabolites associated with risk of breast cancer among premenopausal 

women. Increased circulating levels of piperine, 2-aminohippuric acid and kynurenic acid are associated with 

lower risk of breast cancer, independent of established risk factors and after accounting for testing multiple 

hypotheses. Additional prospective cohort studies are needed to assess these associations considering 
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menopausal status. If these findings are validated, experimental studies are warranted to understand the 

underlying biological mechanisms driving changes in metabolite levels.      
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