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Abstract  46 

High frequency screening of populations has been proposed as a strategy in facilitating 47 

control of the COVID-19 pandemic. Here we use computational modeling, coupled with clinical 48 

data from a rapid antigen test, to predict the impact of frequent rapid testing on COVID-19 spread 49 

and outcomes. Using patient nasopharyngeal or nasal swab specimens, we demonstrate that the 50 

sensitivity/specificity of two rapid antigen tests compared to quantitative real-time polymerase 51 

chain reaction (qRT-PCR) are 80.0%/91.1% and 84.7%/85.7%, respectively; moreover, sensitivity 52 

correlates directly with viral load. Based on COVID-19 data from three regions in the United States 53 

and São José do Rio Preto, Brazil, we show that high frequency, strategic population-wide rapid 54 

testing, even at varied accuracy levels, diminishes COVID-19 infections, hospitalizations, and 55 

deaths at a fraction of the cost of nucleic acid detection via qRT-PCR. We propose large-scale 56 

antigen-based surveillance as a viable strategy to control SARS-CoV-2 spread and to enable 57 

societal re-opening.  58 
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INTRODUCTION 69 

The COVID-19 pandemic has taken an unprecedented toll on lives, wellbeing, healthcare 70 

systems, and global economies. As of 25 September 2020, there have been more than 32.1 million 71 

confirmed cases globally with more than 980,000 confirmed deaths (1). However, these numbers 72 

and the current mapping of disease spread present an incomplete picture of the outbreak largely 73 

due to the lack of adequate testing, particularly as undetected infected cases are the main source 74 

of disease spread (2–7). It is estimated that the reported detection rate of actual COVID-19 cases 75 

is only 1-2% (5). As of September 2020, the United States and Brazil remain the top two countries 76 

with the highest number of COVID-19 cases and deaths worldwide. As countries begin to re-open 77 

their economies, a method for accessible and frequent surveillance of COVID-19, with the 78 

necessary rapid quarantine measures, is crucial to prevent the multiple resurgences of the disease.  79 

The current standard of care rightfully places a strong focus on the diagnostic limit of 80 

detection, yet frequently at the expense of both cost and turnaround time. This situation has 81 

contributed to limited population testing largely due to a dearth of diagnostic resources. 82 

Quantitative real-time polymerase chain reaction (qRT-PCR) is the gold-standard method for 83 

clinical diagnosis, with high sensitivity and specificity, but these tests are accompanied by the need 84 

for trained personnel, expensive reagents and instrumentation, and a significant amount of time to 85 

execute. Facilities offering qRT-PCR sometimes require a week or longer to complete and return 86 

the results to the patient. During this waiting period the undiagnosed individual may spread the 87 

infection and/or receive delayed medical treatment. Moreover, due to the cost and relative 88 

inaccessibility of qRT-PCR in both resource-limited and abundant settings, large-scale screening 89 

using qRT-PCR at frequent intervals remains impractical to identify infected but asymptomatic or 90 

mildly symptomatic infections. Numerous studies have reported asymptomatic COVID-19 cases 91 
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as well as a variation in viral load within and between individuals at different time points, 92 

suggesting the need for more frequent testing for informative surveillance.  93 

Technologies alternate to qRT-PCR, such as rapid viral antigen detection, clustered 94 

regularly interspaced short palindromic repeats (CRISPR), and loop-mediated isothermal 95 

amplification (LAMP) of SARS-CoV-2 provide potential large-scale screening applications, yet 96 

their implementation is stymied by requirements for qRT-PCR-like accuracy before they can reach 97 

the market (8). In countries such as India, where the qRT-PCR resources would not be sufficient 98 

to cover monitoring of the population, the use of rapid antigen tests is well underway(9, 10). In 99 

early May 2020, the United States Food and Drug Administration (FDA) authorized the first 100 

antigen test for the laboratory detection of COVID-19, citing a need for testing beyond molecular 101 

and serological methods. Antigen testing detects the viral proteins rather than nucleic acids or 102 

human antibodies, allowing for detection of an active infection with relative ease of sample 103 

collection and assay. These rapid assays – like other commercially-available rapid antigen tests  - 104 

can be mass-produced at low prices and be administered by the average person without a laboratory 105 

or instrumentation. These tests also take as little as 15 minutes to determine the result, enabling 106 

real-time surveillance and/or diagnosis. Although antigen tests usually perform with high 107 

specificities (true negative rate), their sensitivity (true positive rate) is often lower when compared 108 

to molecular assays. While qRT-PCR can reach a limit of detection as low as 102 genome copies 109 

per mL, rapid antigen testing detects viral protein that is assumed to correlate with approximately 110 

105 genome copies per mL (11). 111 

We hypothesize that frequent antigen-based rapid testing even with lower sensitivities 112 

compared to qRT-PCR - along with appropriate quarantine measures - can be more effective at 113 

decreasing COVID-19 spread than less frequent molecular testing of symptomatic individuals. 114 
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Keeping in mind the realities of daily testing in resource-limited regions, we also hypothesize that 115 

testing frequency can be adjusted according to the prevalence of the disease; that is, an uptick in 116 

reported cases should be accompanied by more frequent testing. During the viral incubation period, 117 

high infectivity correlates with a high viral load that can be detected by either qRT-PCR or rapid 118 

antigen testing (12–16). Rapid tests thus optimize diagnosis for the most infectious individuals. 119 

Studies also point to the relatively small window of time during an individual’s incubation period 120 

in which the qRT-PCR assay is more sensitive than rapid tests (12).  121 

In this study we report the clinical validation of two direct antigen rapid tests for detection 122 

of SARS-CoV-2 spike glycoprotein (S) or nucleocapsid protein (N) using retrospectively collected 123 

nasopharyngeal or nasal swab specimens. Using the clinical performance data, we develop a 124 

modeling system to evaluate the impact of frequent rapid testing on COVID-19 spread and 125 

outcomes using a variation of a SIR model, which has been previously used to model COVID-19 126 

transmission (17–23). We build on this model to incorporate quarantine states and testing protocols 127 

to examine the effects of different testing regimes. This model distinguishes between undetected 128 

and detected infections and separates severe cases, specifically, those requiring hospitalization, 129 

from those less so, which is important for disease response systems such as intensive care unit 130 

triaging. We simulate COVID-19 spread with rapid testing and model disease outcomes in three 131 

regions in the United States and São José do Rio Preto, Brazil - the site of the clinical validation 132 

study - using publicly available data. To date, COVID-19 modeling describes the course of disease 133 

spread in response to social distancing and quarantine measures, and a previous simulation study 134 

has shown that frequent testing with accuracies less than qRT-PCR, coupled with quarantine 135 

process and social distancing, are predicted to significantly decrease infections (12, 17, 23–27). 136 

This is the first modeling system using publicly-available data to simulate how potential public 137 
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health strategies based on testing performance, frequency, and geography impact the course of 138 

COVID-19 spread and outcomes. Our findings suggest that a rapid test, even with sensitivities 139 

lower than molecular tests, when strategically administered 2-3 times per week, will reduce 140 

COVID-19 spread, hospitalizations, and deaths at a fraction of the cost of nucleic acid testing via 141 

qRT-PCR. Modern surveillance systems should be well equipped with rapid testing tools to ensure 142 

that disease tracking and control protocols are effective and well-tailored to national, regional, and 143 

community needs.   144 

 145 

RESULTS 146 

Accuracy of Direct Antigen Rapid Tests Correlate with Viral Load Levels  147 

Rapid antigen tests have recently been considered a viable source for first-line screening, 148 

although concerns about the accuracy of these tests persist. We clinically validated two different 149 

direct antigen rapid tests for the detection of either N or S from SARS-CoV-2 in retrospectively 150 

collected nasal or nasopharyngeal swab specimens. Of the total number of nasal swab specimens 151 

evaluated by qRT-PCR for amplification of SARS-CoV-2 N, S, and ORF1ab genes, 100 tested 152 

positive and 90 tested negative (Table 1, Table S1). The overall sensitivity and specificity of the 153 

rapid antigen test for detection of SARS-CoV-2 N, evaluated across the nasal swab specimens, 154 

was 80.0% and 91.1%, respectively. Of the total number of nasopharyngeal swab specimens 155 

evaluated by qRT-PCR for amplification of SARS-CoV-2 N, RNA-dependent RNA polymerase 156 

(RdRp), and envelope (E) genes, 72 tested positive and 49 tested negative (Table 2, Table S1). The 157 

overall sensitivity and specificity of the rapid antigen test for detection of SARS-CoV-2 S, 158 

evaluated across the nasopharyngeal swab specimens was 84.7% and 85.7%, respectively. 159 
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Altogether, our data demonstrate that the sensitivity of the rapid antigen tests are positively 160 

correlated to the viral load level (Table S1). 161 

The Ct value indirectly quantifies the viral RNA copy number related to the viral load of 162 

the sample for the specific assay (28, 29). Ct values represent the number of qRT-PCR cycles at 163 

which generated fluorescence crosses a threshold during the linear amplification phase; Ct values 164 

are therefore inversely related to the viral load. Notably, the sensitivity of both rapid antigen tests 165 

increases as Ct value decreases (Table S1). The sensitivity of the rapid antigen test for detection 166 

of SARS-CoV-2 N increased from 80.0% at Ct values <40 to 95.8% at Ct values <20. Similarly, 167 

the sensitivity of the rapid antigen test for detection of SARS-CoV-2 S increased from 84.7% at 168 

Ct values <35 to 100.0% at Ct values <15. Taken together, the clinical data shows that the rapid 169 

antigen test performs with increasing accuracy for individuals with a higher viral load, and 170 

potentially the most infectious (13–16).  171 

 172 

An Enhanced Epidemiological SIDHRE-Q Model  173 

We propose an enhanced epidemiological modeling system, SIDHRE-Q, a variant of the 174 

classical SIR model in order to expand our clinical validation study and to understand the effects 175 

of using frequent rapid tests such as the rapid antigen test on COVID-19 outbreak dynamics. The 176 

changes we make to the basic model to encompass the unique characteristics of the COVID-19 177 

pandemic are similar to those presented by Giordano et al. (16) (Figure 1, Figure S1). The 178 

differential equations governing the evolution of the SIDHRE-Q model and descriptions of the 179 

parameter values are provided in the material and methods section (Equation 2, Table 3).  180 

An individual that begins in S may either transition to a Quarantine Uninfected (Q-U) state 181 

via a false positive result or to an Infected Undetected (I) state via interaction with an infected 182 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.01.20184713doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.01.20184713
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

individual. Should an individual in S move into Q-U, they are quarantined for 14 days before 183 

returning to S, a time period chosen based on current knowledge of the infectious period of the 184 

disease. One could also conceive of an effective strategy in which individuals exit quarantine after 185 

producing a certain number of negative rapid tests in the days following their initial positive result 186 

or confirm their negative result using qRT-PCR. 187 

Given that those diagnosed are predominantly quarantined, individuals in I interact more 188 

with the S population than do those in Infected Detected (D). Therefore, the infectious rate for I is 189 

assumed to be significantly larger than for D. Furthermore, a region’s ability to control an outbreak 190 

is directly related to how quickly and effectively people in I test into D, reducing their 191 

infectiousness through quarantine. This study, in particular, highlights the critical role frequency 192 

of testing, along with strict quarantine, has in mitigating the spread of the disease and provides 193 

specific testing strategies based on rapid tests we predict to be highly effective. 194 

In this model, we assume that individuals receive a positive diagnosis before developing 195 

severe symptoms and that those with symptoms severe enough to be potentially fatal will go to the 196 

hospital. If an individual develops symptoms, we assume they are tested daily until receiving a 197 

positive result; hence, before severe symptoms develop, they will be diagnosed with high 198 

probability. Those who do not develop symptoms are tested according to the frequency of tests 199 

administered to the general population. Therefore, there is no modeled connection between I and 200 

H or between I and E. Removing these assumptions would have negligible impact on the results 201 

as these flows are very small. 202 

Should an individual test positive and transition to D, they may either develop serious 203 

symptoms requiring care or recover. Those who develop serious symptoms and transition to state 204 

H will then transition to either R or E. The recovered population is inevitably tested, as infected 205 
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individuals may recover without being detected. Therefore, the Quarantined Recovered (Q-R) 206 

state is introduced with the same connections to R as the connections between S and Q-U. Though 207 

the reinfection rate of SARS-CoV-2 has been a point of recent debate, it is assumed that the number 208 

of re-infected individuals is small (30–34). Therefore, individuals cannot transition from R to S, 209 

hence the separately categorized quarantined populations. 210 

We considered several variations and extensions of the SIDHRE-Q model. In simulations, 211 

we tested additional states, such as those in the SIDARTHE model, which include distinctions 212 

between symptomatic and asymptomatic cases for both detected and undetected populations (17). 213 

Incorporating information about the correlations between viral load and infectivity and sensitivity 214 

were also considered. Altogether, our modeling system has been well tuned to predict the impact 215 

of high frequency rapid testing on COVID-19 spread and outcomes.  216 

 217 

Frequent Rapid Testing with Actionable Quarantining Dramatically Reduces Disease 218 

Spread 219 

In order to demonstrate how strategies could affect the disease spread in different 220 

geographies and demographics, we used surveillance data obtained from regions of varying 221 

characteristics: the state of Massachusetts (MA), New York City (NYC), Los Angeles (LA), and 222 

São José do Rio Preto (SJRP), Brazil, the site of the rapid antigen test clinical validation study. 223 

These regions are also selected in our study due to the readily available surveillance data provided 224 

by the local governments. We fit the model to the data from each region starting 1 April 2020. At 225 

this time point the disease reportedly is most advanced in NYC and least advanced in SJRP, Brazil 226 

with estimated cumulative infection rates of 7.11% and 0.12%, respectively. 227 
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After calibrating the SIDHRE-Q model, the disease spread is observed with varying 228 

validated rapid antigen test performances and frequencies (Figure 2A). Sensitivity (the ratio of true 229 

positives to the total number of positives) and specificity (the ratio of true negatives to the total 230 

number of negatives) compared to gold-standard qRT-PCR were used as measures of test 231 

accuracy.  232 

The rapid test frequency is varied while maintaining an accuracy of 80% sensitivity and 233 

90% specificity, comparable to our clinical data collected in SJRP, Brazil. These testing scenarios 234 

are then compared to symptomatic testing, in which individuals receive a rapid test only when 235 

presenting symptoms, via either a rapid test or qRT-PCR. Since the primary testing regiment 236 

deployed in MA, LA, NYC and SJRP, Brazil is qRT-PCR-based and focused on symptomatic 237 

individuals, the symptomatic testing protocol via qRT-PCR is directly estimated from the data to 238 

be the rate 𝜈 (Table 3).  239 

The difference between the qRT-PCR and rapid test simulations (red and orange lines, 240 

respectively) is therefore only sensitivity of testing (Figure 2A). We assumed that test outcome 241 

probability is a function only of whether an individual is infected and independent of other factors; 242 

one can consider this a lower bound on effectiveness of a strategy, as sensitivity and infectivity 243 

are often positively correlated with antigen testing.  244 

To better understand the effect of rapid testing frequency and performance on healthcare 245 

capacity and mortality rates, we simulate the testing strategy with 30%-90% sensitivity each with 246 

80% or 90% specificity against the symptomatic testing strategy (Figure S2).  247 

As per our hypothesis, frequency and symptom-based testing dramatically reduced 248 

infections, simultaneous hospitalizations, and total deaths when compared to the purely symptom-249 

based testing regiments, and infections, hospitalization, and death were reduced as frequency 250 
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increased. Although testing every day was clearly most effective, even testing every fourteen days 251 

with an imperfect test gave an improvement over symptomatic testing with qRT-PCR.  While the 252 

strategy works best when implemented at the very beginning of an outbreak, as demonstrated by 253 

the results in SJRP, Brazil, it also works to curb an outbreak that is already large, as demonstrated 254 

by the results in NYC. The difference between frequencies is more noticeable when the testing 255 

strategy is applied to the outbreak in NYC, leading us to hypothesize that smaller outbreaks require 256 

a lower testing frequency than larger ones; note the difference between the dependence on 257 

frequency to curb a small initial outbreak in SJRP, Brazil versus a large one in NYC (Figure 2B).  258 

For test performance of 80% sensitivity and 90% specificity, the percent of the population 259 

that has been infected in total from the beginning of the outbreak to mid-July drops from 18% 260 

(MA), 11% (LA), 26% (NYC), and 11% (SJRP, Brazil) to 3%, 2%, 12%, and 0.26%, respectively, 261 

using a weekly rapid testing and quarantine strategy (with regards to predictions of overall 262 

infection rates, other studies based on seroprevalence and epidemiological predictions have 263 

reached similar conclusions (35, 36)). If testing is increased to once every three days, these 264 

numbers drop further to 1.6% (ΜΑ), 1.4% (LΑ), 9.4% (ΝΥC), and 0.19% (SJRP, Brazil) (Table 265 

S2).  266 

To further examine the relationship between frequency and sensitivity, we modeled the 267 

maximum number of individuals in a given state over the 105-day time period for four geographic 268 

regions (Figure 2B, Figure S3). In all four geographic regions, as frequency of testing increases, 269 

the total infections, maximum simultaneous hospitalizations, and total deaths converge to small 270 

percentages regardless of the sensitivity at high frequencies.  It is clear that the difference in 271 

frequency required to achieve the same result using tests of differing sensitivities is very small. 272 

For example, we predict that for the outbreak in LA, a testing strategy started on 1 April of every 273 
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10 days using a test of sensitivity 90% would have resulted in 2.5% of the population having been 274 

infected, while using a test of sensitivity 30% would require a strategy of every 5 days to achieve 275 

the same number. Thus, we conclude that frequency is more important than sensitivity in curbing 276 

the spread, and a large range of sensitivities prove effective when testing sufficiently often (Figure 277 

S3). How frequently, exactly, depends on the specific outbreak and what stage it is in, which leads 278 

us to the location-based deployment strategy discussed in a later section. Frequency of testing can 279 

be significantly reduced to effectively contain the disease once the initial outbreak has been 280 

controlled; it is clear that this takes only a matter of weeks (Figure 2A). 281 

On the other hand, according to the specificity of the rapid test and the quarantine duration, 282 

larger testing frequency result in a larger percent of the population quarantined (Figure 2A). 283 

Assuming a 90% rapid test specificity and 14-day quarantine duration, for the 1-, 3- and 7-day 284 

frequencies almost 60%, 38% and 20% of the population, respectively, would be quarantined. This 285 

figure may be reduced with additional rules for exiting quarantine early, such as after 286 

complementary testing. An example of such a strategy is that individuals who test positive are 287 

required to either quarantine for two weeks or produce two consecutive negative rapid tests in the 288 

two days following their positive result. Assuming 80% sensitivity and 90% specificity, those 289 

individuals will reenter the public while still infected with probability 0.04. If uninfected, that 290 

individual will exit quarantine after two days with probability 0.81. However, a compromise 291 

between the reduction of infections and the proportion of the population in quarantine would be 292 

part of the planning for the appropriate testing protocol in each community or region. 293 

Additionally, while high frequency may be necessary to contain a large outbreak initially, 294 

relatively infrequent testing, such as every one or two weeks, is sufficient to keep controlled 295 
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outbreaks small, while reducing the number of quarantined individuals to less than 10% of the 296 

population using a two-week mandatory quarantine. 297 

 298 

A County-Based Testing Strategy Offers a Cost-effective Approach to Large-scale COVID-299 

19 Surveillance   300 

To examine the effects of resource-strategic testing schemes, we modeled the COVID-19 301 

prevalence by varying testing frequency across counties of California. For this analysis, only 302 

California was analyzed because of the accessibility of the county level data. In this scheme, the 303 

percent of active infected detected individuals in a county determines the frequency of testing. We 304 

define thresholds for the number of active detected infections that, when hit, initiate testing 305 

protocols of different frequencies depending on the threshold hit. We first tested evenly spaced 306 

thresholds for the number of detected active infections up to 1% of the population, but later adopted 307 

thresholds that were determined according to Equation 1. In Equation 1, D = population of state D 308 

at the time of testing. T = number of active infections which, if reached, initiates everyday testing. 309 

The days between tests are rounded to the closest integer value. 310 

 311 

                  (1) 312 

The days between tests are chosen such that the detected active infections should remain 313 

near to or below T.  If the initial detected active infections are greater than T, then the testing 314 

frequency of 1 will cause infections to rapidly drop.  Both the threshold at which everyday testing 315 

begins and the coefficient of log2T/D can be modified to produce a strategy that is more or less 316 

frequent in testing or resource effective; a range of days between tests from 14 days to 1 day are 317 

used (Figure 3). A scan over different choices of T is shown in Figures S5 and S6; the threshold 318 
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we choose in Figure 3 is 0.05% because it is successful in curbing the outbreak within the time 319 

period we consider.  While these choices work for the epidemic in California at the point we start 320 

our simulations, 10 April, they do not necessarily reflect the most resource effective choices 321 

everywhere. Our analysis could be redone to select the best strategy in other states or in the country 322 

as a whole. 323 

Using a rapid test with a sensitivity of 80% and specificity of 90%, the county-based testing 324 

with threshold 0.05% reduces the active infections from 0.94% to 0.0005%, while the uniform 325 

strategy with tests administered every 7 days results in double the number of active infections 326 

(Figure 3). As the threshold is reduced, the total cost increases while the cumulative infections, 327 

maximum percentage hospitalized, and cumulative deaths all decrease (Figure S4).  328 

Strategy B in Figure 3 consists of qRT-PCR testing uniformly applied to the highlighted 329 

population with a frequency of once weekly. The average cost per person per day is just under $15. 330 

Despite this frequency and the accuracy of qRT-PCR, the strategy does not succeed in curbing the 331 

spread as fast as strategy A, which uses a testing sensitivity and specificity of 80% and 90%, 332 

respectively, and testing frequency that vary between counties depending on the proportion of their 333 

population that is currently infected. The total cost for strategy A is estimated at a fraction of the 334 

other at $1.53 per person per day. 335 

 336 

 337 

DISCUSSION 338 

In this study we examine the potential effects of a novel testing strategy to limit the spread 339 

of SARS-CoV-2 utilizing rapid antigen test screening approaches. Our clinical data and SIDHRE-340 

Q modeling system demonstrate that 1) frequent rapid testing even at a range of accuracies is 341 

effective at reducing COVID-19 spread, 2) rapid antigen tests are a viable source for this strategy 342 
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and diagnose the most infectious individuals, and 3) strategic geographic-based testing can 343 

optimize disease control with the amount of available resources. The information from a diagnostic 344 

test itself is of tremendous value, as it can prompt the necessary quarantine measures to prevent 345 

spread, guide proper care and triage, and provide crucial disease-tracking information. Diagnostic 346 

testing in the United States and abroad, however, has been a significant public health hurdle. The 347 

public has witnessed and experienced symptomatic individuals being denied testing due to 348 

shortages, and few testing structures for asymptomatic or mildly symptomatic individuals – a 349 

significant source of disease spread. Though several factors contributed to the stymied early 350 

response measures, such as lockdown and quarantine protocols and adherence, severe testing 351 

bottlenecks were a significant culprit (37–39). Early control measures have been shown to decrease 352 

lives lost by several orders of magnitude (40). These challenges, though exacerbated during the 353 

early months of the pandemic, remain at the forefront of the public health crises.  354 

Diagnosis of SARS-CoV-2 infection by qRT-PCR is the current standard of care, yet 355 

remains expensive and requires a laboratory and experienced personnel for sample preparations 356 

and experimentation. Significantly, the turnaround time for results can be up to 10 days (41). On 357 

an individual scale, this leaves the public in limbo, preventing people from either leaving 358 

quarantine if they are negative, or delaying critical care and infecting others if they are positive. 359 

On a societal level, this current testing scheme yields incomplete surveillance data on which 360 

response efforts such as societal reopening and hospital management depend. Though qRT-PCR 361 

is considered the gold-standard diagnostic method because of its high sensitivity and specificity, 362 

the logistical hurdles render it unrealistic for large-scale screening.  363 

 As qRT-PCR remains impractical for this strategy, and rapid tests are facing regulatory 364 

challenges because they do not perform with qRT-PCR-like accuracy, rapid test screening is either 365 
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nonexistent in several countries or symptom-based. Even under best-case assumptions, findings 366 

have shown that symptom and risk-based screening strategies miss more than half of the infected 367 

individuals (42). Some have argued that the need for widespread testing is overstated due to the 368 

variability in test sensitivity and specificity (43). Here, we present alternative large-scale 369 

diagnostic tools to qRT-PCR, and show that test performance, though valuable, is secondary to 370 

widespread test frequency, which is enabled by accessibility and turnaround time. Furthermore, 371 

test affordability is essential for the successful implementation in communities most affected by 372 

infection and will to speed up the safe opening and functioning of the viral sectors of the economy.  373 

Giordano et al. has modeled the evolution of SARS-CoV-2 spread, introducing a diagnosed 374 

state to elucidate the importance of population-wide testing (17). Mina et al. has examined how 375 

various test sensitivities and frequencies affect the reproductive number (12).  We build upon these 376 

findings to show how in affected United States and Brazil regions, population-wide frequent and 377 

rapid testing schemes, with sensitivities ranging from 30%-90%, can be more effective in curbing 378 

the pandemic than a PCR-based scheme. Integrating real-world surveillance and clinical data into 379 

our modeling system has allowed us to incorporate regional differences - such as variances in 380 

healthcare access, state health policy and adherence, state GDP, and environmental factors - under 381 

the same model. Significantly, our findings hold true across Massachusetts, New York City, Los 382 

Angeles, and São José do Rio Preto, Brazil. We also present the economic considerations of these 383 

testing regimes, showing that widespread rapid testing is more cost efficient than less frequent 384 

qRT-PCR testing. In line with these economic considerations, our model demonstrates the 385 

effectiveness of a geographic-based frequent testing regime, in which high disease prevalence 386 

areas receive more frequent testing than low disease prevalence areas. 387 
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Since COVID-19 is known to affect certain demographics differently, modeling would 388 

benefit from incorporating demographic information correlated with disease progression and 389 

spread to define sub-models and sets of parameters accordingly. Age, pre-existing conditions, job 390 

types, and density of population are examples of possible categories, each of which influence the 391 

risk of contracting and/or dying from COVID-19. Further studies would benefit from incorporating 392 

these ideas to better understand the effectiveness of rapid testing on identifying potential super 393 

spreading events. Future public health prevention programs should use the proposed modeling 394 

system to develop and test scenarios for precision testing and prevention.  395 

Our findings also point to low-cost tools for implementation of this testing strategy, such 396 

as a rapid antigen-based test for the detection of SARS-CoV-2 proteins. We show that the rapid 397 

antigen tests perform with a range of accuracies under which disease spread can be dramatically 398 

mitigated under our model. Notably, the sensitivity is correlated to the individual’s viral load, 399 

effectively diagnosing those who are potentially the most infectious with the highest accuracy. Our 400 

findings are significant because rapid antigen tests are cheaper than qRT-PCR, can be mass 401 

produced to millions per day, present results within 15 minutes, and can be administered by a 402 

nonexpert without a lab or special equipment.  403 

 There are several policy implications for these findings. First, our model supports that 404 

systems of high frequency rapid testing should be implemented as a first-line screening method. 405 

This can be first enabled by a more holistic regulatory evaluation of rapid diagnostics, such that 406 

policy emphasizes accessibility and turnaround time even under a range of accuracies. One can 407 

imagine a less accurate, though rapid method of first-line screening in schools, public 408 

transportation, and airports, or even at home, and a qRT-PCR-based method for second-line 409 

screening (testing those who present severe symptoms or have been in contact with infected 410 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2020. ; https://doi.org/10.1101/2020.09.01.20184713doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.01.20184713
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

individuals, testing in a clinical setting, etc). Second, our cost analysis and rapid antigen test data 411 

present a viable and potentially more cost-effective method for screening. Third, our county-based 412 

testing scheme presents a possible method for wide-scale screening while optimizing resources. 413 

Future studies should investigate how this selective testing strategy can be applied to different 414 

location scales to further inform health policy. Moreover, though our models analyze regions in 415 

the United States and Brazil, similar testing strategies can be considered globally in both resource 416 

limited and abundant settings due to the higher accessibility of rapid tests compared to qRT-PCR.  417 

 We emphasize that integral to the effectiveness of diagnostic schemes is 1) the proper 418 

adherence to quarantine measures and 2) the combined use of a variety of diagnostic methods 419 

including nucleic acid, antigen, and antibody tests. According to these models, rapid antigen tests 420 

are an ideal tool for first-line screening. Clinical molecular tests such as qRT-PCR are vital to the 421 

diagnostic landscape, particularly to re-test suspected cases that were negative on the rapid test. 422 

Because rapid tests present a higher rate of false negatives, methods such as qRT-PCR remain 423 

integral to second-line screening. Antibody tests provide important information for immunity and 424 

vaccination purposes as well as epidemiological surveillance. This model also assumes that 425 

individuals will quarantine themselves before being tested and for 14 days following a positive 426 

diagnostic result.  427 

Our simulations combined with real-world data demonstrate a robust modeling system and 428 

elucidates the significance of this novel testing strategy. However, there are important limitations 429 

to be considered. Differences in disease reporting between the geographical regions and the 430 

incomplete nature of COVID-19 surveillance data, often due to the lack of testing, are not 431 

considered in the model. It is imperative that the testing results, hospitalization and death statistics, 432 

and changes in protocol are reported in real-time to scientists and policy makers so that models 433 
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can be accurately tuned as the pandemic develops. The model also does not take into account 434 

infrastructural limitations such as hospital capacity. Though the rapid antigen test offers several 435 

advantages such as affordability, fast turnaround time, and ease of mass production, we are also 436 

assuming that there are systems in place to implement frequent and safe low-cost screening across 437 

different communities and settings.  438 

Our model underscores the need for a point-of-care or at-home test for frequent screening, 439 

particularly as lockdown restrictions ease. Regulatory agencies such as the FDA could work 440 

towards regulating rapid tests to alternative standards other than comparison to high sensitivity 441 

molecular diagnostics, as our model shows that frequency and scale of testing may overcome lower 442 

sensitivities. Rather, we could refocus policy to implement first-line screening that optimizes 443 

accuracy with efficiency and equitability.  444 

 445 

MATERIAL AND METHODS 446 

Development of Direct Antigen Rapid Tests for the Detection of SARS-CoV-2 447 

We developed a direct antigen rapid test for the detection of the nucleocapsid protein or 448 

spike glycoprotein from SARS-CoV-2 in nasal or nasopharyngeal swab specimens as previously 449 

described (44). Briefly, the rapid antigen tests are immunochromatographic format with a visual 450 

readout using anti-N or anti-S mouse monoclonal antibodies (E25Bio, Inc., Cambridge, MA, USA) 451 

that are either coupled to 40 nm gold nanoparticles (Abcam, Cambridge, UK) or adsorbed to 452 

nitrocellulose membranes (Sartorius, Goettingen, Germany). Each rapid antigen test has a control 453 

area adjacent to the paper absorbent pad; the control is an anti-mouse Fc domain antibody (Leinco 454 

Technologies, Fenton, MO, USA) that will capture any of the antibody-conjugated gold 455 

nanoparticles to generate a control visual signal. A visual signal at the test area reflects SARS-456 
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CoV-2 N or S that is “sandwiched” between an anti-N or anti-S antibody adsorbed to the 457 

nitrocellulose membrane and a second anti-N or anti-S antibody covalently coupled to visible gold 458 

nanoparticles.  459 

 460 

Validation of Direct Antigen Rapid Test for the Detection of SARS-CoV-2 461 

In a retrospective study of nasal swab specimens form human patients, we compared the 462 

accuracy of the rapid antigen test for detection of SARS-CoV-2 N to the viral loads of individuals. 463 

Nasal swab specimens (n=190) were tested following approved human subjects use protocols. The 464 

nasal swab specimens were banked frozen from suspected patients submitted to PATH for routine 465 

COVID diagnosis. Prior to using the rapid test, the nasal swab specimens were validated by qRT-466 

PCR using the FDA EUA ThermoFisher/AppliedBiosystems TaqPATH COVID-19 Combo Kit 467 

(ThermoFisher, Waltham, MA USA). The primary study under which the samples and data were 468 

collected received ethical clearance from the PATH Research Ethics Committee, protocol number 469 

00004244. The nasal swab specimens were de-identified, containing no demographic data, prior 470 

to analysis.        471 

Additionally, in a retrospective study of nasopharyngeal swab specimens from human 472 

patients, we compared the accuracy of the rapid antigen test to the viral load of individuals. 473 

Nasopharyngeal swab specimens (n = 121) were tested in Brazil following approved human 474 

subjects use protocols. The age of study participants ranged from 1 to 95 years with an overall 475 

median of 37 years (interquartile range, 27–51 years), and 62% were female. The demographic 476 

summary of the patients are included in Table S3. The nasopharyngeal swab specimens were 477 

banked refrigerated or frozen samples from suspected patients submitted to the lab for routine 478 

COVID diagnosis. Prior to using the rapid test, the nasopharyngeal swab samples were validated 479 
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by qRT-PCR using GeneFinderTM COVID-19 Plus RealAmp Kit (OSANGHealtcare, Anyang-si, 480 

Gyeonggi-do, Republic of Korea I). The primary study under which the samples and data were 481 

collected received ethical clearance from the Faculdade de Medicina de São José do Rio Preto 482 

(FAMERP), protocol number 31588920.0.0000.5415. All excess samples and corresponding data 483 

were banked and de-identified prior to the analyses.  484 

A nasopharyngeal swab specimen (1 mL) was concentrated using a Vivaspin 500 485 

centrifugal concentrator (Sartorius, Goettingen, Germany) at 12,000 x g for 10 minutes. The 486 

concentrated nasopharyngeal swab specimen retentate was transferred to a collection tube and the 487 

rapid antigen test was inserted into the tube with the retentate and allowed to react for 15 minutes. 488 

After processing of the rapid antigen test, the visual positive or negative signal was documented.    489 

 490 

Data for Modeling  491 

As of August 2020, the United States and Brazil have the highest number of confirmed 492 

COVID-19 cases and deaths worldwide, with both countries reporting their first case on 26 493 

February 202) (1). Although several affected US regions could have been modeled, we look at 494 

data from Massachusetts, New York, and Los Angeles: these regions each contained “hotspots”, 495 

or areas of surging COVID-19 cases, at different points in time during the pandemic and have 496 

publicly available government-provided surveillance data. Our model is fit using data over 105 497 

days beginning on April 1 for Figure 2 and 105 days beginning on April 10 for Figure 3 (see 498 

“Modeling Parameters” in Methods). In order to understand the various testing proposals on a 499 

global scale, we performed our clinical study in and expanded the modeling study to Brazil. The 500 

specific data we use to fit our model are cumulative confirmed cases, total deaths, and number of 501 
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daily hospitalizations due to COVID-19. This surveillance data was retrieved from government-502 

provided online databases (45–51).  503 

 504 

Modeling Parameters 505 

Equation 2 below provides the exact differential equations governing the model.  506 

(2) 507 

In order to determine the values of the parameters defining the flows between states, we use a least 508 

squares regression performed at seven day intervals in the datasets to which we fit.  This allows 509 

the model to take into account the time dependent nature of the parameters, which rely on factors 510 

such as social distancing regulations and changes in testing capacity.  We also fit window sizes 511 

between 1 and 21 days and find that while the fit degrades with larger window size, the overall 512 

shape of the fits do not change.  We choose seven days assuming policy changes take a week to 513 

become effective and that reasonable parameters can be expected to change within this time period. 514 

Also, the seven day window size accounts for the fact that often data is not reported as diligently 515 

over the weekend. Time series of the values of the parameters for the geographic locations 516 

discussed in this paper are included in Figure S5. 517 
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Given the restrictions on data available for the populations of various states, varying all of 518 

the parameters results in an over parameterized system. Therefore, a subset of the model 519 

parameters are fit while the others are either extracted from other sources; see Table 3. 520 

 521 

The fitting procedure minimizes the sum of the squared residuals of the total cases, current 522 

daily hospitalizations, cumulative deaths, and percentage of total infected individuals currently 523 

hospitalized.  The first three are present in the data sets while the latter is derived from the estimates 524 

of the ratio between infected undetected to infected detected individuals from the CDC Laboratory 525 

Seroprevalence Survey Data (52).  While this ratio changes over time, the percentage of infected 526 

individuals developing severe symptoms should remain roughly constant throughout the course of 527 

the epidemic in the different locations studied. 528 

We consider the data sets for outbreaks in MA, NYC, LA, and SJRP, Brazil (45–50). While 529 

each location has testing and fatality information dating back to January, hospitalization data was 530 

not included until late March (for NYC and SJRP) and April (for MA and LA).  Hence we begin 531 

our fitting procedure and testing strategy on 1 April for each of the data sets; by this point, the 532 

outbreak is advanced in NYC, substantial in MA, non-negligible, but far from its peak, in LA, and 533 

in early stages in SJRP, Brazil.  Starting simulations at various stages of the outbreak allows one 534 

to see the difference in results between when a testing strategy is administered. 535 

In order to determine the effectiveness of the county-based strategy when applied to the 536 

state of California, we also fit all of the counties in California with a population greater than 1.5% 537 

of that of the entire state and with greater than zero deaths.  The results do not depend on these 538 

selections, but instead suggest a practical criteria to administer limited resources. The fitting is 539 

done starting 10 April for these counties, as at this point the outbreak is sufficiently well-540 
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documented in each to successfully model. For the county-level data we compute a seven day 541 

running average of each of the data sets to which we then fit in order to smooth out fluctuations in 542 

the data, likely due to reporting, which are more significant here than in the other data sets 543 

considered, as the county populations are smaller and hence discrepancies impact the smoothness 544 

of the data more.  The fits for each of the counties can be found in Figure S6.  545 

As one can see from Figure 1, these data sets are particularly not smooth, which indicates 546 

inefficiencies in reporting.  Additionally, it is difficult to gauge their consistency within the dates 547 

provided or to compare between locations, as reporting mechanisms changed over time within the 548 

same locations.  Despite this lack of consistency, our model and fitting mechanism was successful 549 

in reproducing the progress of the outbreak in each data set studied. 550 

The authors confirm that the data supporting the findings of this study are available within the 551 

article and/or its supplementary materials; any other data will be made available upon request. Our 552 

code can be found on github: https://github.com/badeaa3/COVID19_Rapid_Testing.  The code is 553 

written using python with the packages scipy, numpy, lmfit, matplotlib and plotly (53–57).  554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 
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H2: Supplementary Materials 564 

 565 

Results 566 

Table S1. Data summary of direct antigen rapid test (DART) for detection of SARS-CoV-2 567 

nucleocapsid protein and DART for detection of SARS-CoV-2 spike glycoprotein 568 

performance in comparison to qRT-PCR results.  569 

 570 

Table S2. Summary of results of COVID-19 outcomes in 3 US Regions and Brazil as a result 571 

of Frequent Rapid Testing Protocol using SIDHRE-Q Model. Total Infected, Maximum 572 

Hospitalized, and Total Deaths are shown for Massachusetts, Los Angeles, New York, and São 573 

Jose do Rio Preto, Brazil under a qRT-PCR protocol (symptomatic testing) and a Rapid Testing 574 

protocol (once every three days with test performance of 80% sensitivity and 90% specificity).  575 

 576 

Table S3. Demographic and clinical summary of patients evaluated by the SARS-CoV-2 577 

Direct Antigen Rapid Test (DART). N response, N or mean of positive, and % or standard 578 

deviation for each group is presented. All samples (n=131) collected and tested in São José do 579 

Rio Preto, Brazil. 580 

 581 

Figure S1. Graphical scheme displaying the relationships between the stages of quarantine 582 

and infection in SIDHRE-Q model: Q-U, quarantine uninfected; S, susceptible (uninfected); I, 583 

infected undetected (pre-testing and infected); D, infected detected (infection diagnosis through 584 

testing); H, hospitalized (infected with life threatening symptom progression); R, recovered 585 
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(healed); E, extinct (dead); and Q-R, quarantine recovered (healed but in quarantine by false 586 

positive testing). 587 

 588 

Figure S2. COVID-19 Outcomes as a result of Frequent Rapid Testing Protocol with 589 

variable test performances using SIDHRE-Q Model. The Cumulative Detected Infected, 590 

Hospitalized, Deceased, Active Infections, Recovered, and Quarantined are modeled over 105 591 

days (top to bottom) using reported data from 4 global regions: Massachusetts, Los Angeles, 592 

New York City, and São José do Rio Preto in Brazil (left to right). The COVID-19 population 593 

spread and outcomes are modeled under a Rapid Testing Protocol with variable testing 594 

frequencies ranging from 1-21 days between tests, and variable test performances: 90% 595 

specificity with 90% sensitivity (A), 70% sensitivity (B), 50% sensitivity (C), and 30% 596 

sensitivity (D); and 80% specificity with 90% sensitivity (E), 70% sensitivity (F), 50% 597 

sensitivity (G), and 30% sensitivity (H). This protocol is compared to a symptom-based Rapid 598 

Testing protocol and a symptom-based qRT-PCR protocol. 599 

 600 

Figure S3. Effect of Rapid Testing Protocol under variable testing sensitivities and 601 

increasing frequency under the SIDHRE-Q Model. The Cumulative Infections, Maximum 602 

Simultaneously Hospitalized, and Deceased populations are modeled for Massachusetts, Los 603 

Angeles, New York City, and São José do Rio Preto in Brazil. The effect of increasing frequency 604 

of testing is modeled for various testing sensitivities (30%-90%) with an 80% specificity. 605 

 606 

Figure S4. Effect of County Based Rapid Testing strategy on COVID-19 outcomes in 607 

California. This protocol varies testing frequency in accordance to the number of recorded 608 
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cases; the threshold for number of active infections which, if reached, signals to commence 609 

everyday testing, the highest frequency considered. A Rapid Test with a 80% sensitivity and 610 

90% sensitivity is used in this deployment strategy. Shown is the total cost per person per day 611 

versus the cumulative infections, maximum simultaneously hospitalized, and cumulative deaths 612 

with varied thresholds for all of CA is shown. The County Based Rapid Testing strategy is 613 

compared to uniform testing, which distributes the same number of total tests used in the county 614 

strategy, albeit evenly across each county. The effects of uniform testing are modeled for both a 615 

Rapid Testing protocol and a qRT-PCR protocol.   616 

 617 

Figure S5. Time series of the four fitted parameters 𝛼, 𝜈, 𝜇, and 𝜏 (left to right) for MA, LA, 618 

NYC, and SJRP (top to bottom). See Table 2 in the Methods section for an explanation of the 619 

parameters. The values are extracted every seven days from data provided by the respective 620 

regions. The parameters vary significantly over time and location. Flat points occur during the 621 

seven day windows where the parameters are held constant. The fitting procedure is also outlined 622 

in the Methods section.  623 

 624 

Figure S6. Time series of the three fitted pieces of data Cumulative Cases, Daily 625 

Hospitalized, and Cumulative Deaths (left to right) for each county receiving testing in CA; 626 

Ventura (2A), Stanislaus (2B), Santa Clara (2C), San Joaquin (2D), San Francisco (2E), San 627 

Diego (2F), San Bernardino (2G), Sacramento (2H), Orange (2I), Los Angeles (2J), Kern (2K), 628 

Fresno (2L), Alameda (2M). The counties included satisfy two requirements: population greater 629 

than 1.5% of the total CA population and nonzero total number of deaths at each point in time. 630 

The fitting procedure is outlined in the Methods section.  631 
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Table 2. Clinical validation summary for the SARS-CoV-2 direct antigen rapid test 835 

(DART) for SARS-SoC-2 spike glycoprotein evaluated using 121 retrospectively collected 836 

patient nasopharyngeal swab specimens.  837 
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+ - Total Sensitivity 84.7% 80.6% 88.9%

+ 61 7 68 Specificity 85.7% 80.8% 90.6%

- 11 42 53
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Predictive 
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89.7% 86.2% 93.2%

Total 72 49 121
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Predictive 
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79.2% 73.6% 84.9%
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Table 3. Details of parameter values used for SIDHRE-Q Model.  851 

 852 

Parameter Details & Statistics 

 

𝛼 

	 

𝛼is the probability that an interaction between an undetected infected person and 

an uninfected person results in a new infection, divided by the average number of 

uninfected people an undetected infected person comes into contact with on a 

given day.  𝛼is estimated from the data. 

 Mean St. Dev. 

MA 0.088 0.051 

LA 0.090 0.034 

NYC 0.067 0.042 

SJRP 0.121 0.042 

𝜂 𝜂is the probability that an interaction between an infected person and an uninfected person results in a new 

infection, divided by the average number of uninfected people a detected infected person comes into contact 

with on a given day.𝜂 = 0.01 ⋅ 𝛼  

The constant relating 𝜂, 𝛼 accounts for a small but nonzero transmission due to the quarantined (detected) 

infected population.  This value was chosen to be small, assuming a quarantined individual will only infect 

others with low probability. 

𝜈 𝜈is the probability that a symptomatic undetected individual is diagnosed on a 

given day.  𝜈is estimated from the data. 𝜈is multiplied by sensitivity (assume 

benchmark sensitivity 100% for PCR, as used when fitting). 

 Mean St. Dev. 

MA 0.006 0.005 

LA 0.011 0.006 

NYC 0.0056 0.002 

SJRP 0.015 0.007 

𝜖 𝜖 is the probability that an asymptomatic undetected infected individual is diagnosed on a given day.  𝜖	 = 0 

while fitting (during PCR symptomatic testing).  𝜖	 =(sensitivity/days between tests) when the rapid testing 

strategy is activated. 

𝜆 𝜆 is the probability that an undetected infected individual transitions to the recovered state on a given day.  𝜆	 =
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1/14, or the inverse of average recovery time (51).  

𝜇 𝜇 is the probability that an infected individual develops severe symptoms on a 

given day and transitions into the hospitalized state.  The flow from 𝐷 to 𝐻 is 

assumed to be independent of the ratio 𝐼/𝐷, but comes only from the detected 

infected population, hence why it is multiplied by (𝐼 + 𝐷)/𝐷.  𝜇 is estimated from 

the data. 

 Mean St. Dev. 

MA 0.0013 9.5e-4 

LA 0.0016 2.4e-4 

NYC 0.0011 6.6e-4 

SJRP 0.0018 8.0e-4 

𝜌 𝜌is the probability that a detected infected individual transitions to the recovered state on a given day. 

 

𝜌 = 1/14, or the inverse of the average recovery time (51). 

𝜎 𝜎is the probability that a hospitalized individual transitions to the recovered state on a given day.  𝜎 = 	1/11, 

or the inverse of the average recovery time for a hospitalized individual (51).  

𝜏 𝜏 is the probability that a hospitalized individual expires on a given day.  𝜏 is 

estimated from the data. 

 Mean St. Dev. 

MA 0.034 0.012 

LA 0.016 0.004 

NYC 0.036 0.034 

SJRP 0.032 0.045 

𝛾 𝛾 is the probability of entering either of the quarantine states on a given day from either the Susceptible or 

Recovered populations.  𝛾 = 	0  while fitting (during PCR symptomatic testing).  𝛾 = (1 −specificity) ×

(1/days between tests) when the rapid testing strategy is activated. 

𝜓 𝜓is the probability that an individual exits quarantine on a given day.  𝜓 = 1/14, or the inverse of the 

quarantine period for fixed length quarantine. 

Parameter Details & Statistics 
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is the probability that an interaction between an undetected infected person and 

an uninfected person results in a new infection, divided by the average number 

of uninfected people an undetected infected person comes into contact with on a 

given day.  is estimated from the data. 

 Mean St. Dev. 

MA 0.088 0.051 

LA 0.090 0.034 

NYC 0.067 0.042 

SJRP 0.121 0.042 

 is the probability that an interaction between an infected person and an uninfected person results in a new 

infection, divided by the average number of uninfected people a detected infected person comes into contact 

with on a given day.   

The constant relating  accounts for a small but nonzero transmission due to the quarantined (detected) 

infected population.  This value was chosen to be small, assuming a quarantined individual will only infect 

others with low probability. 

 is the probability that a symptomatic undetected individual is diagnosed on a 

given day.  is estimated from the data. is multiplied by sensitivity (assume 

benchmark sensitivity 100% for PCR, as used when fitting). 

 Mean St. Dev. 

MA 0.006 0.005 

LA 0.011 0.006 

NYC 0.0056 0.002 

SJRP 0.015 0.007 

  is the probability that an asymptomatic undetected infected individual is diagnosed on a given day.   

while fitting (during PCR symptomatic testing).  (sensitivity/days between tests) when the rapid testing 

strategy is activated. 

  is the probability that an undetected infected individual transitions to the recovered state on a given day.  

, or the inverse of average recovery time (51).  

  is the probability that an infected individual develops severe symptoms on a  Mean St. Dev. 

MA 0.0013 9.5e-4 
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given day and transitions into the hospitalized state.  The flow from  to  is 

assumed to be independent of the ratio , but comes only from the detected 

infected population, hence why it is multiplied by .   is estimated 

from the data. 

LA 0.0016 2.4e-4 

NYC 0.0011 6.6e-4 

SJRP 0.0018 8.0e-4 

 is the probability that a detected infected individual transitions to the recovered state on a given day. 

 

, or the inverse of the average recovery time (51).  

 is the probability that a hospitalized individual transitions to the recovered state on a given day.  , 

or the inverse of the average recovery time for a hospitalized individual (51).  

  is the probability that a hospitalized individual expires on a given day.   is 

estimated from the data. 

 Mean St. Dev. 

MA 0.034 0.012 

LA 0.016 0.004 

NYC 0.036 0.034 

SJRP 0.032 0.045 

  is the probability of entering either of the quarantine states on a given day from either the Susceptible or 

Recovered populations.    while fitting (during PCR symptomatic testing).  specificity

days between tests  when the rapid testing strategy is activated. 

 is the probability that an individual exits quarantine on a given day.  , or the inverse of the 

quarantine period for fixed length quarantine. 
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FIGURES 857 

Figure 1. Graphical scheme displaying the relationships between the stages of quarantine 858 

and infection in SIDHRE-Q model. Q-U, quarantine uninfected; S, susceptible (uninfected); I, 859 

infected undetected (pre-testing and infected); D, infected detected (infection diagnosis through 860 

testing); H, hospitalized (infected with life threatening symptom progression); R, recovered 861 

(healed); E, extinct (dead); and Q-R, quarantine recovered (healed but in quarantine by false 862 

positive testing). 863 
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Figure 2. COVID-19 Outcomes in 3 US Regions and Brazil as a result of Frequent Rapid 874 

Testing Protocol using the SIDHRE-Q Model. (A) The Cumulative Detected Infected, 875 

Hospitalized, Deceased, Active Infections, Recovered, and Quarantined are modeled over 105 876 

days (top to bottom) using reported data from 4 global regions: Massachusetts, Los Angeles, 877 

New York City, and São José do Rio Preto in Brazil (left to right). The COVID-19 population 878 

spread and outcomes are modeled under a Rapid Testing Protocol (sensitivity 80%, specificity 879 

90%) with variable testing frequencies ranging from 1-21 days between tests. This protocol is 880 

compared to a symptom-based Rapid Testing protocol and a symptom-based PCR protocol. (B) 881 

Effect of Rapid Testing Protocol under variable testing sensitivities (30%-90%) and increasing 882 

frequency under the SIDHRE-Q Model. The Cumulative Infections, Maximum Simultaneously 883 

Hospitalized, and Deceased populations are modeled for Massachusetts, Los Angeles, New York 884 

City, and São José do Rio Preto in Brazil with a 90% test specificity.   885 
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(A) 897 

 898 
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(B) 899 
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Figure 3. Effect of County Based Rapid Test Protocol (A) and Uniform PCR Protocol (B) 909 

on active infected detected population over time in California (CA). The legend denotes the 910 

thresholds at which testing frequency is determined, the testing frequencies, the percent of CA 911 

population under the strategy, and the cost per person per day.  912 
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