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Abstract

Objective: Recent studies reported the intraluminal thrombus (ILT) among

others strongly affects abdominal aortic aneurysms (AAA) expansion rates.

Thus, we investigate characteristics of ILT with AAA expansion.

Methods: We applied homogeneous multistate continuous-time Markov chain

models to longitudinal data of 26 Korean AAA patients as a retrospective clinical

study. We considered four states of AAA and maximal thickness of ILT (maxILT),

fraction of wall area covered by ILT (areafrac) and fraction of ILT volume (volfrac)

as possible covariates.

Results: Based on likelihood-ratio statistics, areafrac is the most significant

biomarker and maxILT is the second most significant. Besides, within AAAs

that developed an ILT layer, we found that an AAA expands relatively fast at an

early stage but the rate goes slower once AAA reaches in a large size.

Conclusion: Results recommends surgical intervention when any patient

with areafrac more than 60% or maxILT more than 30mm. Although this

recommendation should be considered with caution given the limited sample

size, one can use the proposed model as a tool to find such recommendations

with their own data.
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Introduction

Abdominal aortic aneurysm (AAA), the dilatation of an aorta at an abdominal level

is a common threatening disease that affects 9.5% of the elderly population (>65

years)1. This dilatation of the abdominal aorta can cause death when it ruptures.

The rupture occurs when the stress on the AAA wall overcomes the wall strength.

Since the maximum diameter is being positively associated with the wall stress2

and with AAA expansion3, it has been used as a risk factor for AAA growth and

subsequently for rupture. Current medical treatment suggests that once a patient

is diagnosed with AAA, s/he should be under surveillance until the aneurysm

reaches 5.5 cm in diameter4 in the U.S. Some studies, however, challenge the 5.5

cm threshold criterion since small AAAs still rupture. For example, 10–24% of

ruptured AAAs were less than 5 cm in diameter5, although more cases succumb

to rupture prior to surgical intervention as the diameter increases. In fact, the

screening criterion varies by countries6. Therefore, we take advantage of this

association and investigate the statistical distribution of the maximum diameters

of AAAs by quantitatively dichotomizing the patients into four different prognosis

groups: early, mild, severe and fatal.

In this study, patients were observed over time and morphological characteristics

of AAA were collected as well. With the time-to-event data, researchers and

practitioners usually would like to make inferences on the progression path (e.g.

deterioration or recovery) of the disease. Survival analysis is a commonly used

statistical tool to achieve such goal. However, usual survival analysis can only

deal with binary events (alive or death). Instead, the multistate model7 is able to

model longitudinal studies where individuals may experience several events, and

conduct forward or backward conversions between events. Therefore, we adopted

a multistate continuous-time Markov Chain model to estimate the transition from

one state to another for AAA. In this model, the transition intensities provide

the hazards8 and the survival probabilities for AAA progression. We can also

calculate the mean sojourn time9 in a given state. In addition, we incorporate

the intraluminal thrombus (ILT) information as covariates into the model through

transition intensities as ILT is strongly associated with AAA expansion rates.
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Choosing the appropriate covariate to predict AAA growth rate and time-to-

event is an important task, because an accurate prediction can allow personalized

clinical management and proper timing of surgery10. Patient-specific prediction

of AAAs have been performed via Bayesian methods combining sequential

CT images11 and biomedical and computational models12 without taking into

account the intraluminal thrombus (ILT). There has been, however, substantial

heterogeneity of AAA expansion rates and an accurate growth prediction is still

remaining a top priority to improve the prediction capability. Numerous variables

have been suggested as potential predictors for growth and its rupture13 and,

among them, the ILT is being recognized as a potential metric of AAA growth14.

For examples, Stevens et al.15 obtained a set of follow-up CT images from four

patients and estimated AAA growth along with geometrical characteristics of

ILT. They found that the intraluminal ILT volume and maximum ILT thickness

were correlated with AAA volume growth. With 14 patients, Zambrano et al.16

classified scan images of AAAs into two groups of AAAs by the ILT areal

fractions and found that AAAs grew significantly faster in the group with larger

ILT compared to the group with lesser ILT. Nevertheless, those studies of ILT

on AAA growth were found only from on a small set of AAAs and few studied

on which geometrical characteristics of ILT were more linked to the prediction

of AAA expansion. Therefore, using a larger dataset of follow–up AAAs, this

study calls to investigate which geometrical characteristics of ILT can enhance

the prediction of AAA expansion and their transition probabilities. Particularly, we

study the association between AAA growth and ILT by considering a homogeneous

multistate continuous-time Markov chain model with covariates related to ILT.

Generally, the progression of AAA growth can be related to other factors such

as age, gender, smoking, and vascular diseases17. Our retrospective data, on the

other hand, were originally obtained for characterizing relevant morphological

parameters so that the clinical and biochemical data were not available. As our

focus is on influence of ILT information for AAA progression, we extracted ILT

thicknesses, percentage of the luminal area covered during the AAA progression

and the volume of ILT per each scan and applied a statistical model to predict AAA

expansion based on these geometrical characteristics of ILT. By incorporating
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contributing factors such as ILT’s volume or fraction, a fitted model can be used to

predict the progression of AAA and its rate from one state to another state.

Materials & Methods

This study uses longitudinal computed tomography (CT) images from 26 de-

identified Korean patients with each patient having up to 7 surveillance scans. Thus,

this study is the retrospective review of clinical data. The study was reviewed and

exempted by Internal Review Board at Michigan State University. For each scan, a

maximum spherical diameter D was measured and used to categorize AAAs into 4

stages18 : 1) ‘early’ (D < 40mm), 2) ‘mild’ (40mm ≤ D <47mm), ‘severe’ (47mm

≤ D < 58 mm), 4) ‘fatal’ (D ≥ 58mm). Gharahi et al.18 proposed a diameter

measurement called the spherical diameter that the largest sphere fits within

the aorta and found that the spherical diameter measurement has the minimum

uncertainty compared to others, which has an advantage for the growth prediction,

although the spherical diameters are slightly smaller than the traditional orthogonal

diameters (average 4 mm with the maximum value of 9 mm). Note that there are

variations in AAA screening among countries. However, the typical orthogonal

diameter criterion for surgical recommendation is 50mm or 55mm4,6. Given such

variations in criterion and use of spherical diameter in our study, it is reasonable to

assume that a patient in severe state is recommended for surgical intervention and

a patient in fatal state should be guided for a prompt surgery.

Also, for each scan, maximal thickness of ILT, fraction of wall area covered

by ILT and fraction of ILT volume were measured by the approach introduced in

Zambrano et al. (2016)16 and denoted by maxILT, areafrac and volfrac, respectively.

AAA maximum spherical diameter information of all patients at different scan

times are shown in Figure 1. There are cases where a state of AAA growth is moved

to another state (e.g. move from state ‘early’ to state ‘mild’ or from state ‘mild’ to

state ‘severe’.). Note that one patient (P14) experienced a decrease of the maximum

diameter before an expansion. There are also cases that scan times are relatively

short. One patent (P21) has much smaller diameter compared to the other patients.

The measurements of this patient could be an outlier or due to the characteristics of

the spherical diameter (smaller than that of the traditional orthogonal diameter18).
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As P21 stayed in the ”early” state according to our criterion, the results would

not change much with/without this patient so we decide to keep the patient in the

analysis.
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Figure 1. Plot of AAA spherical diameter vs. age for each patient. Each line corresponds to a
patient. Patient ID is provided on the lower left corner of each line. Dots on each line indicate
when the CT image was taken.

A multistate continuous-time Markov chain model is used to model the

progression of diseases (see, e.g. Jackson et al., 200319) which can provide

information of disease progression by transition probabilities between different

states and mean sojourn time at one state. Specifically, we used a homogeneous

model by assuming a transition intensity (the rate of a transition probability) is

independent of time. This model allows a transition probability that changes over

time but the rate remains constant. In addition, we incorporate ILT information
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into the model by considering the logarithm of an intensity as a linear function of

explanatory variables from ILT. To investigate which model fits the data better, we

consider likelihood ratio (LR) statistics given the proposed statistical model. The

LR statistics is the ratio of two likelihoods (or -2 log likelihood ratio), which is

used to perform a statistical hypothesis test for model comparison. The likelihood

in the numerator is from the null model and the likelihood in the denominator is

from the alternative model. Thus, a larger value of the likelihood ratio statistics (or

a smaller value of -2 log likelihood ratio) indicates the data support the null model.

The estimation algorithm is converged produced the stable results.

Results

Recall that we consider the maximal thickness of ILT (maxILT), the fraction of

wall area covered by ILT (areafrac) and the volume fraction of ILT (volfrac) into

the model as covariates. These variables are continuous variables. Note that these

three variables are highly correlated with each other. In particular, the correlation

between the fraction of wall area covered by ILT and the volume fraction of ILT

is 0.89. High correlation between covariates can lead unstable estimates if they

are included in the model together. Thus, we consider a model with one covariate

each. Although three variables are highly correlated, as shown in Figure 2, they

have different effects on the transition probability curves at different times. We

want to investigate which variable is a significant biomarker for the progression of

AAA.

Model comparison

Table 1 shows likelihood ratio statistics (-2 log likelihood ratio) and the

corresponding p-value for each model when the null model is the model without

covariates. This result shows that the model with one of such covariates is overall

statistically significant. Although we cannot directly compare which covariate fits

the data better than the others by a hypothesis test as they are not nested models,

the larger LR statistics could imply a better fit as the LR statistics of each model is

calculated with the same null model.
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Table 1. Likelihood ratio statistics of different models.

maxILT areafrac volfrac

-2 log LR 17.9 23.33 10.51
p value 0.0013 0.0001 0.0326

Another evidence that these three covariates contribute much to the progress

of the AAA enlargement is the comparison of transition probability curves under

different models (see Figures 2a, 2b, 2c and 2d). The fitted transition probability

curve without covariates has relatively lower peaks than all the others, especially

when the transition is from the ‘early’ state to the ’mild’ state. In addition, by

finding the peak of the curves p12 and p23, we conclude that patients in ‘early’

state are most likely to move to ‘mild’ state between 1 and 2 years, while patients

in ‘mild’ state are most likely to move to ‘severe’ state around 4 years.

The model with areafrac has the highest transition probability from the ‘mild’

state to the ‘severe’ state among the three models given the severe criterion within

3 years (Figures 2b, 2c and 2d). This may indicate the progression from the ‘mild’

state to the ‘severe’ state is sensitive to the changes of areafrac. In other words, when

a patient already has a mild AAA, areafrac can be a useful biomarker to predict

his/her state after a certain time.

A prevalence plot could also show goodness of fit for a multistate continuous

Markov Chain model and Pearson tests can provide goodness of fit for the models

as well. These results indicate that the Markov model with maxILT or areafrac as

a covariate passed the test of a goodness of fit. We provide detailed results in the

supplementary document.

Among the models with ILT characteristics as a covariate, we investigate the

model using wall area covered by ILT (areafrac) with more details. Results of the

other two models (maxILT and volfrac) are provided in the supplementary document.

Fraction of wall area covered by ILT

The value of areafrac ranges from 0 to 0.74, and about 75% of cases are less than

0.4. So the value 0.4 (75% quantile) could be used as a criterion for the severity of

ILT. As an extreme case, we also consider 0.6 which is 95% quantile. With these
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(a) The homogeneous Markov model
without covariates.
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(b) The homogeneous Markov model
with covariate: maxILT, when maxILT
is fixed at its mean value 14.34mm.
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(c) The homogeneous Markov model
with covariate: areafrac, when areafrac
is fixed at its mean value 0.31.
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(d) The homogeneous Markov model
with covariate: volfrac, when volfrac is
fixed at its mean values 0.38.

Figure 2. Fitted transition probability curves at different years. In each graph, the red circle line
(p12) denotes transition probabilities of moving from ‘early’ state to ‘mild’ state; the blue triangle
line (p23) denotes transition probabilities of moving from ‘mild’ state to ‘severe’ state; the purple
plus line (p32) denotes transition probabilities of moving from ‘severe’ state to ‘mild’ state: the
green cross line (p34) denotes transition probabilities of moving from ‘severe’ state to ‘fatal’
state. The x-axis is years. The y-axis is the transition probability.

values for areafrac, we provide estimated transition probabilities for the duration of

3 years (Table 2a, 2b). Also we provide mean sojourn time in Table 2c.

According to the estimated transition probability ((1,1)-th entry of Table 2a), we

can see that there is no chance that a patient with areafrac being 0.4 is in ‘early’

state. Besides, such a patient will instantly transit to or already stay in either ‘mild’
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or ‘severe’ state within 3 years. By comparing transition probabilities when areafrac

is 0.6 (Table 2b) with those when areafrac is 0.4 (Table 2a), we also conclude that

disease state of AAA progresses significantly with the increase of areafrac. Also,

mean sojourn time for ‘early’ state is significantly small compared to those for

other states. Although the range of AAA size for each state is rather different, this

still implies that a patient stays ‘early’ for a shorter time with 0.4 of areafrac.

To see the effects of areafrac on the survival probability, we plot fitted survival

probability curves with Kaplan-Meier (KM) curves, the empirical estimate of the

survival probability20. By comparing Figure 3a with Figure 3b, we find that the

model with larger areafrac as a covariate has a lower survival probability which

implies that a patient with larger areafrac is exposed to a higher risk of entering

into the last stage (‘fatal’ state). This result is consistent with what we have

found earlier. One can compare two survival curves, for example, the one with

areafrac = 0.4 and the other with areafrac = 0.6 by two sample Kolmogorov-Smirnov

test21, which indicates the two curves are statistically different. The detailed results

of the test are provided in the supplementary document.
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(a) The multistate continuous-time
Markov chain model with covariate
areafrac, when areafrac is 0.4.
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(b) The multistate continuous-time
Markov chain model with covariate
areafrac, when areafrac is 0.6.

Figure 3. Comparison of empirical and fitted survival probability for two multistate
continuous-time Markov chain models with areafrac. The red solid line denotes the fitted survival
curve. The blue dashed line denotes the empirical survival. The red dotted line denotes the
95% confidence interval of the fitted survival.

A bigger set of patient data should be tested in order to reach a stronger

conclusion. However, despite the fact that a small data set was used, a trend was
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Table 2. Results from multistate continuous-time Markov chain models with the covariate
areafrac. (a) and (b) denote estimated transition probabilities (ETP) at the different values of the
covariate and time. (c) denote the estimated mean sojourn time (EMST).

(a) ETP for each state
when areafrac is 0.4 at 3
years.

early mild severe fatal

early 0.000 0.236 0.630 0.134
mild 0.000 0.231 0.631 0.138
severe 0.000 0.075 0.673 0.252

(b) ETP for each
state when areafrac
is 0.6 at 3 years.

early mild severe fatal

0.000 0.323 0.374 0.302
0.000 0.323 0.374 0.303
0.000 0.282 0.330 0.388

(c) EMST (year) for
each state when
areafrac is 0.4.

estimates 95% CI

0.052 (0.007, 0.415)
1.754 (0.226, 13.60)
5.845 (0.831, 41.09)

clearly seen. If we believe that a surgical intervention should be recommended

when survival probability lower than 40% at 4 years, Figure 3b suggests that

a patient with 0.6 of areafrac is being considered for such recommendation. For

maxILT, 30mm was the value we obtain for such recommendation. Note that

depending on the practitioner’s criterion on the survival probability (e.g. 40%)

and the time period (e.g. 4 years), the recommendation will change. However, the

model we used can provide such information adaptively.

Discussion

A homogeneous multistate continuous-time Markov chain model is considered for

the analysis of AAA progression to investigate transition of progression from one

state to the another state in AAA growth. The model allows to estimate mean

sojourn time for a patient being in each state. Given the estimated mean sojourn

times for ’mild’ and ’severe’ states from the model with areafrac, we may say that

an approximated time for 1mm increase in the ’mild’ state is shorter than that for

the ’severe’ state, which implies that AAA expands relatively fast at an early stage

but the rate gets slower once AAA is enlarged enough. The model with ILT area

fraction has the highest transition probabilities among the three models within 3

years at the value of the third quartile (severe condition). This finding may imply

that the progression from ‘mild’ state to ‘severe’ state is sensitive to the changes

of ILT area fraction. In other words, when someone already has a mild AAA, ILT

area fraction may be a useful biomarker to predict his/her state after a certain time.
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Likelihood ratio statistics supports that the model with one of three covariates fits

the data better than the model without ILT information. This may suggest that when

we consider AAA growth, we should not ignore ILT information such as maximal

ILT thickness, ILT area fraction, ILT volume fraction information of the patients.

More specifically, if we believe that the patient with the fitted survival probability

lower than 40% at 4 year should be recommended for surgical intervention, we may

suggest any patients with ILT area fraction more than 60% is highly recommended

for surgical intervention, considering the low survival probabilities in these two

progression stages. This recommendation could be changed depending on the

threshold of survival probability and the time. Also, the results would be different

than the reported due to the dependency of the chosen stages threshold criteria.

More detailed analysis on the appropriate threshold should be conducted with

a larger cohort before reaching stronger conclusion. Despite this limitation, our

results are in agreement with other previous studies such as Domonkos et al.

(2019)22 and Metaxa et al. (2015)23.

The thrombus accumulation is an ongoing process presented in 75% of detected

AAA and the prevalence of finding such accumulation increases as the aneurysm

size increases24. It is, therefore, expected to observe AAAs without ILT at the

early stage (early) of this disease. This study found that most of our AAAs

were remained without ILT accumulation during the early stage and while they

transitioned to the following stage, a significant ILT accumulation was observed.

Over this early stage, a faster AAA expansion in comparison with other stages was

found. This could suggest that the faster growth may promote ILT accumulation.

Additionally, this observation and the fact that ILT accumulation rate was found to

be the same to the AAA expansion rate16 would explain the proposed idea of using

sudden increase of thrombus as a potential predictor of rupture.

Once the initial ILT accumulation occurs (usually in the transition between

‘early’ to ‘mild’ state), our results have shown that the next transition stage would

be sensitive to the amount of lumen area covered by the thrombus (areafrac).

The intraluminal thrombus is a complex biological entity composed also by

many inflammatory cells, including macrophages and neutrophils25 that not just

interfere with the direct wall shear stress and strain relationship between lumen

wall and blood flow but that also interact biochemically (promoting wall thinning,
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cell inflammation, degradation of the extracellular matrix26) and biomechanically

(modifying wall shear stress27) with the arterial wall. It is then understandable that

a larger area covered by thrombus would have a greater impact on the AAA growth

process and thus in our transition time. Furthermore, our results may indicate that

the risk of a patient to transition to the ‘fatal’ last stage is outweighed as a larger

ILT thickness (maxILT) is observed. These results agree with signs of lower pO2

levels and signs of hypoxia in aneurysm with ILT thickness greater than 4 mm28.

The data were originally obtained for characterizing relevant morphological

parameters so that the clinical and biochemical data such as smoking habit (current,

ex-smoking and how long) and blood pressure were not diligently collected. Also,

we have only three female patients so that we could not investigate the effect by

gender. Thus, we were unable to add more patient-specific information. If we have

enough observations from the control group (individual with no AAA ) and patients

whose AAA ruptured or received surgical treatment, we would have more reliable

estimates of transition probabilities as well as mean sojourn times. Also, thorough

investigation on the effects of ILT information as well as other patient-specific

information to the AAA growth can be done with a larger size of data. Therefore,

we would like to point out that our findings bring an interesting hypothesis which

should be verified by further studies with a larger group of AAA patients.

On the other hand, to our knowledge, there were only a few studies, available

for the morphological data, obtained from follow-up patients. In fact, this study

was one of large data sets, in terms of characterizing morphological parameters

in the follow-up study. The reason of the scarcity of such data should be due

to requiring manual time consuming segmentation or development of automatic

process of quantifying the morphological parameters. We think that, even with the

small size of samples, we was able to demonstrate the new statistical tool in the role

of thrombus effect and predicting the progression of AAAs. For a future study, we

wish to get clinical data with various risk factors and we plan to develop automatic

morphological quantification so that we can extract ILT information easily, which

helps to make a larger data for the analysis.

A growth rate/expansion rate could be also an informative criterion to determine

the stages of AAA as well. However, we decided to select a maximum diameter

given that it is the clinically important metric to assess the onset, progression, and
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risk of rupture in AAAs. The use of this widely known relationship to stratify

AAAs severity would make it easier for the reader to relate our results to other

patients’ cohort or to patients in clinical practice.
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