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Abstract

Background: Sepsis is among the leading causes of death in intensive care units (ICU) world-
wide and its recognition, particularly in the early stages of the disease, remains a medical
challenge. The advent of an affluence of available digital health data has created a setting in
which machine learning can be used for digital biomarker discovery, with the ultimate goal to
advance the early recognition of sepsis.
Objective: To systematically review and evaluate studies employing machine learning for the
prediction of sepsis in the ICU.
Data sources: Using Embase, Google Scholar, PubMed/Medline, Scopus, and Web of Science,
we systematically searched the existing literature for machine learning-driven sepsis onset
prediction for patients in the ICU.
Study eligibility criteria: All peer-reviewed articles using machine learning for the prediction
of sepsis onset in adult ICU patients were included. Studies focusing on patient populations
outside the ICU were excluded.
Study appraisal and synthesis methods: A systematic review was performed according to
the PRISMA guidelines. Moreover, a quality assessment of all eligible studies was performed.
Results: Out of 974 identified articles, 22 and 21 met the criteria to be included in the system-
atic review and quality assessment, respectively. A multitude of machine learning algorithms
were applied to refine the early prediction of sepsis. The quality of the studies ranged from
“poor” (satisfying  40% of the quality criteria) to “very good” (satisfying � 90% of the quality
criteria). The majority of the studies (n = 19, 86.4%) employed an offline training scenario
combined with a horizon evaluation, while two studies implemented an online scenario
(n = 2, 9.1%). The massive inter-study heterogeneity in terms of model development, sepsis
definition, prediction time windows, and outcomes precluded a meta-analysis. Last, only 2
studies provided publicly-accessible source code and data sources fostering reproducibility.
Limitations: Articles were only eligible for inclusion when employing machine learning al-
gorithms for the prediction of sepsis onset in the ICU. This restriction led to the exclusion
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of studies focusing on the prediction of septic shock, sepsis-related mortality, and patient
populations outside the ICU.
Conclusions and key findings: A growing number of studies employs machine learning to op-
timise the early prediction of sepsis through digital biomarker discovery. This review, however,
highlights several shortcomings of the current approaches, including low comparability and
reproducibility. Finally, we gather recommendations how these challenges can be addressed
before deploying these models in prospective analyses.
Systematic review registration number: CRD42020200133

1 Introduction

Sepsis is a life-threatening organ dysfunction triggered by dysregulated host response to infection
[Singer et al., 2016] and constitutes a major global health concern [Rudd et al., 2020]. Despite
promising medical advances over the last decades, sepsis remains among the most common
causes of in-hospital deaths. It is associated with an alarmingly high mortality and morbidity,
and massively burdens the health care systems world-wide [Dellinger et al., 2013, Hotchkiss et al.,
2016a, Kaukonen et al., 2014, Rudd et al., 2020]. In parts, this can be attributed to challenges related
to early recognition of sepsis and initiation of timely and appropriate treatment [Ferrer et al.,
2014]. A growing number of studies suggests that the mortality increases with every hour the
antimicrobial intervention is delayed—further underscoring the importance of timely recognition
and initiation of treatment [Ferrer et al., 2014, Pruinelli et al., 2018, Weiss et al., 2014]. A major
challenge to early recognition is to distinguish sepsis from disease states (e.g. inflammation) that
are hallmarked by similar clinical signs (e.g. change in vitals), symptoms (e.g. fever), and molecular
manifestations (e.g. dysregulated host response) [Al Jalbout et al., 2019, Lever and Mackenzie,
2007]. Owing to the systemic nature of sepsis, biological and molecular correlates—also known
as biomarkers—have been proposed to refine the diagnosis and detection of sepsis [Hotchkiss
et al., 2016b]. However, despite considerable efforts to identify suitable biomarkers, there is yet no
single biomarker or set thereof that is universally accepted for sepsis diagnosis and treatment,
mainly due to the lack of sensitivity and specificity [Faix, 2013, Parlato et al., 2018].

In addition to the conventional approaches, data-driven biomarker discovery has gained momentum
over the last decades and holds the promise to overcome existing hurdles. The goal of this approach
is to mine and exploit health data with quantitative computational approaches, such as machine
learning. An ever-increasing amount of data, including laboratory, vital, genetic, molecular, as
well as clinical data and health history, is available in digital form and at high resolution for
individuals at risk and for patients suffering from sepsis [Johnson et al., 2016b]. This versatility of
the data allows to search for digital biomarkers in a holistic fashion as opposed to a reductionist
approach (e.g. solely focusing on hematological markers). Machine learning models can naturally
handle the wealth and complexity of digital patient data by learning predictive patterns in the
data, which in turn can be used to make accurate predictions about which patient is developing
sepsis [Fleuren et al., 2020, Thorsen-Meyer et al., 2020]. Over the last decades, multiple studies
have successfully employed a variety of computational models to tackle the challenge of predicting
sepsis at the earliest time point possible [Barton et al., 2019, Kaji et al., 2019, McCoy and Das,
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2017]. For instance, Futoma and colleagues proposed to combine multi-task Gaussian processes
imputation together with a recurrent neural network in one end-to-end trainable framework
(MGP-RNN). They were able to predict sepsis 17 h prior to the first administration of antibiotics
and 36 h before a definition for sepsis was met [Futoma et al., 2017b]. This strategy was motivated
by Li and Marlin [2016], who first proposed the so-called Gaussian process adapter that combines
single-task Gaussian processes imputation with neural networks in an end-to-end learning setting.
A more recent study further improved predictive performance by combining the Gaussian process
adapter framework with temporal convolutional networks (MGP-TCN) as well as leveraging a
dynamic time warping approach for the early prediction of sepsis [Moor et al., 2019].

Considering the rapid pace at which the research in this field is moving forward, it is important
to summarise and critically assess the state of the art. Thus, the aim of this review. Thus, the aim
of this review was to provide a comprehensive overview of the current state of machine learning
models that have been employed for the search of digital biomarkers to aid the early prediction of
sepsis in the intensive care unit (ICU). To this end, we systematically reviewed the literature and
performed a quality assessment of all eligible studies. Based on our findings, we also provide
some recommendations for forthcoming studies that plan to use machine learning models for the
early prediction of sepsis.

2 Methods

The study protocol was registered with and approved by the international prospective reg-
ister of systematic reviews (PROSPERO) before the start of the study (registration number:
CRD42020200133). We followed the Preferred Reporting Items for Systematic reviews and Meta-
Analysis (PRISMA) statement [Moher et al., 2015].

2.1 Search strategy and selection criteria

Five bibliographic databases were systematically searched, i.e. EMBASE, Google Scholar, Pub-
Med/Medline, Scopus, and Web of Science, using the time range from their respective inception
dates to July 20th, 2020. Google Scholar was searched using the tool “Publish or Perish” (ver-
sion 7.23.2852.7498) [Harzing, 2007]. Our search was not restricted by language. The search
term string was constructed as (‘‘sepsis prediction’’ OR ‘‘sepsis detection’’)

AND (‘‘machine learning’’ OR ‘‘artificial intelligence’’) to include publica-
tions focusing on (early) onset prediction of sepsis with different machine learning methods. The
full search strategy is provided in Supplementary Table 1.

2.2 Selection of studies

Two investigators (MM and CRJ) independently screened the titles, abstracts, and full-texts re-
trieved from Google Scholar in order to determine the eligibility of the studies. Google Scholar was
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selected by virtue of its promise of an inclusive query that also captures conference proceedings,
which are highly relevant to the field of machine learning but not necessarily indexed by other
databases. In a second step, two investigators (MM and MH) queried EMBASE, PubMed, Scopus,
and Web of Science for additional studies. Eligibility criteria were also applied to the full-text
articles during the final selection. In case multiple articles reported on a single study, the article
that provided the most data and details was selected for further synthesis. We quantified the
inter-rater agreement for study selection using Cohen’s kappa (k) coefficient [Viera et al., 2005].
All disagreements were discussed and resolved at a consensus meeting.

2.3 Inclusion and exclusion criteria

All full-text, peer-reviewed articles1 using machine learning for the prediction of sepsis onset
in the ICU were included. Although the 2016 consensus statement abandoned the term “severe
sepsis” [Singer et al., 2016], studies published prior to the revised consensus statement targeting
severe sepsis were also included in our review. Furthermore, to be included, studies must have
provided sufficient information on the machine learning algorithms used for the analysis, def-
inition of sepsis (e.g. Sepsis-3), and sepsis onset definition (e.g. time of suspicion of infection).
We excluded duplicates, non-peer reviewed articles (e.g. preprints), reviews, meta-analyses, ab-
stracts, editorials, commentaries, perspectives, patents, letters with insufficient data, studies on
non-human species and children/neonates, or out-of-scope studies (e.g. different target condition).
Lastly, studies focusing on the prediction of septic shock were also excluded as the septic shock
was beyond the scope of this review. The extraction was performed by four investigators (MM,
BR, MH, and CRJ).

2.4 Data extraction and synthesis

The following information was extracted from all studies: (1) publication characteristics (first au-
thor’s last name, publication time), (2) study design (retrospective, prospective data collection and
analysis), (3) cohort selection (sex, age, prevalence of sepsis), (4) model selection (machine learning
algorithm, platforms, software, packages, and parameters), (5) specifics on the data analysed (type
of data, number of variables), (6) statistics for model performance (methods to evaluate the model,
mean, measure of variance, handling of missing data), and (7) methods to avoid overfitting as
well as any additional external validation strategies. If available, we also reviewed supplemen-
tary materials of each study. A full list of extracted variables is provided in Supplementary Table 2.

1This includes peer-reviewed journal articles and peer-reviewed conference proceedings.
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2.5 Settings of Prediction Task

Owing to its time-sensitivity, setting up the early sepsis prediction task in a clinically-meaningful
manner is a non-trivial issue. We extracted details on the prediction task as well as the alignment
of cases and controls. Given the lack of standardised reporting, the implementation strategies and
their reporting vary drastically between studies. Thus, subsequent to gathering all the information,
we attempted to create new categories for the sepsis prediction task as well as the case–control
alignment. The goal of this new terminology and categories is to increase the comparability
between studies.

2.6 Assessment of quality of reviewed machine learning studies

Based on 14 criteria relevant to the objectives of the review (adapted from Qiao [2019]), the
quality of the eligible machine learning studies was assessed. The quality assessment comprised
five categories: (1) unmet needs (limits in current machine learning or non-machine learning
applications), (2) reproducibility (information on the sepsis prevalence, data and code availability,
explanation of sepsis label, feature engineering methods, software/hardware specifications, and
hyperparameters), (3) robustness (sample size suited for machine learning applications, valid
methods to overcome overfitting, stability of results), (4) generalisability (external data valida-
tion), and (5) clinical significance (interpretation of predictors and suggested clinical use; see
Supplementary Table 3). A quality assessment table was provided by listing “yes” or “no” of
corresponding items in each category. MM, BR, MH, and CRJ independently performed the
quality assessment. In case of disagreements, ratings were discussed and subsequently, final
scores for each publication were determined.

2.7 Role of funding source

The funding sources of the study had no role in study design, data collection, data analysis, data
interpretation, or writing of the report. The corresponding author had full access to all the data in
the study and had final responsibility for the decision to submit for publication.

3 Results

3.1 Study selection

The results of the literature search, including the numbers of studies screened, assessments for
eligibility, and articles reviewed (with reasons for exclusions at each stage), are presented in
Figure 1. Out of 974 studies, 22 studies met the inclusion criteria [Abromavičius et al., 2020, Barton
et al., 2019, Bloch et al., 2019, Calvert et al., 2016, Desautels et al., 2016, Futoma et al., 2017b, Kaji
et al., 2019, Kam and Kim, 2017, Lauritsen et al., 2020, Lukaszewski et al., 2008, Mao et al., 2018,
McCoy and Das, 2017, Moor et al., 2019, Nemati et al., 2018, Reyna et al., 2019, Schamoni et al.,
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974 studies identified through
Embase, Google Scholar,

PubMed, Scopus, and Web
of Science database query

703 records after
duplicate removal

703 articles screened and
assessed for eligibility

271 duplicate records excluded

681 articles excluded; reasons:
out of scope (no prediction

task; not dealing with sepsis),
review article, abstract only

22 records included
in literature review

1 records excluded; reason: article
presented a challenge dataset but
not specific methods; the quality
assessment criteria do not apply

21 records included
in quality assessment
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Figure 1: PRISMA flowchart of the search strategy. A total of 22 studies were eligible for the literature review and
21 for the quality assessment.
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Figure 2: A boxplot of the sepsis prevalence distribution of all studies, with the median prevalence being highlighted
in red. Note that some studies have subset controls for balancing the class ratios in order to facilitate the
training of the machine learning model. Thus, the prevalence in the study cohort (i.e. the subset) can be
different from the prevalence of the original data source (e.g. MIMIC-III).

2019, Scherpf et al., 2019, Shashikumar et al., 2017a,b, Sheetrit et al., 2019, Van Wyk et al., 2019,
van Wyk et al., 2019]. The majority of excluded studies (n = 952) did not meet one or multiple
inclusion criteria, such as studying a non-human (e.g. bovine) or a non-adult population (e.g.
paediatric or neonatal), focusing on a research topic beyond the current review (e.g. sepsis pheno-
type identification or mortality prediction), or following a different study design (e.g. case reports,
reviews, not-peer reviewed). Detailed information on all included studies are provided in Table 1.
The inter-rater agreement was excellent (k = 0.88).

3.2 Study characteristics

Of the 22 included studies, 21 employed solely retrospective analyses, while 1 study used both
retrospective and prospective analyses [McCoy and Das, 2017]. Moreover, the most frequent
data sources used to develop computational models were MIMIC-II and MIMIC-III (n = 12;
54.5%), followed by Emory University Hospital (n = 5; 22.7%). In terms of sepsis definition, the
majority of the studies employed the Sepsis-2 (n = 12; 54.5%) or Sepsis-3 definition (n = 9; 40.9%).
It is important to note that some studies modified the Sepsis-2 or Sepsis-3 definition since all
existing definitions have not been intended to specify an exact sepsis onset time (e.g. the employed
time window lengths have been varied) [Abromavičius et al., 2020, Nemati et al., 2018]. In one
study [Schamoni et al., 2019], sepsis labels were assigned by trained ICU experts. Depending
on the definition of sepsis used, and whether subsampling of controls was used to achieve a
more balanced class ratio (facilitating the training of machine learning models), the prevalence of
patients developing sepsis ranged between 6.2% and 63.6% (Figure 2). One study did not report
the prevalence [Lauritsen et al., 2020]. Concerning demographics, 9 studies reported the median
or mean age, 12 the prevalence of female patients, and solely 1 the ethnicity of the investigated
cohorts (Supplementary Table 4).

3.3 Overview of machine learning algorithms and data

As shown in Table 1, a wide range of predictive models was employed for the early detection
of sepsis, with some models being specifically developed for the respective application. Most
prominently, various types of neural networks (n = 9; 40.9%) were used. This includes recurrent
architectures such as long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] or
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gated recurrent units (GRU) [Cho et al., 2014], convolutional networks [Fukushima et al., 1983], as
well as temporal convolutional networks, featuring causal, dilated convolutions [Lea et al., 2017,
Oord et al., 2016]. Furthermore, several studies employed boosted tree models (n = 4; 18.2%),
including XGBoost [Chen and Guestrin, 2016], or random forest [Kam et al., 1995]. As for the
data analysed, the most common data type were vitals (n = 21; 95.5%), followed by laboratory
values (n = 13; 59.1%), demographics (n = 12; 54.5%), and comorbidities (n = 4; 18.2%). The
number of variables included in the respective models ranged between 2 [Shashikumar et al.,
2017a] and 119 [Kaji et al., 2019]. While reporting the type of variables, four studies failed to
report the number of variables included in the models [Lauritsen et al., 2020, Lukaszewski et al.,
2008, McCoy and Das, 2017, Sheetrit et al., 2019].

3.4 Model validation

Approximately 80% of the studies employed one type of cross-validation (e.g. 5-fold, 10-fold,
or leave-one-out cross-validation) to avoid overfitting. Additional validation of the models on
out-of-distribution ICU data (i.e. external validation) was only performed in three studies [Mao
et al., 2018, Nemati et al., 2018, Reyna et al., 2019]. Specifically, Mao et al. [2018] used a dataset
provided by the UCSF Medical Center as well as the MIMIC-III data set to train, validate, and
test the InSight algorithm. Aiming at developing and validating the Artificial Intelligence Sepsis
Expert (AISE) algorithm, Nemati et al. [2018] created a development cohort using ICU data of
over 30,000 patients admitted to two Emory University hospitals. In a subsequent step, the
AISE algorithm was externally validated on the publicly-available MIMIC-III dataset (at the
time containing data from over 52,000 ICU stays of more than 38,000 unique patients) [Nemati
et al., 2018]. Last, the study by Reyna et al. [2019], describes the protocol and results of the
PhysioNet/Computing in Cardiology Challenge 2019. Briefly, the aim of this challenge was to facilitate
the development of automated, open-source algorithms for the early detection of sepsis. The
PhysioNet/Computing in Cardiology Challenge provided sequestered real-world datasets to the
participating researchers for the training, validation, and testing of their models.
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3.5 Experimental design choices for sepsis onset prediction

In this review, we identified two main approaches of implementing sepsis prediction tasks on
ICU data. The most-frequent setting (n = 19; 86.4%) combines “offline” training with a “horizon”
evaluation. Briefly, offline training refers to the fact that the models have access to the entire
feature window of patient data. For patients sustaining a sepsis, this feature window ranges from
hospital admission to sepsis onset, while for the control subjects the endpoint is a matched onset.
Alternatively, a prediction window (i.e. a gap) between the feature window and the (matched)
onset has been employed [Bloch et al., 2019]. As for the “horizon” evaluation, the purpose is to
determine how early the fitted model would recognise sepsis. To this end, all input data gathered
up to n hours before onset is provided to the model for the sepsis prediction at an horizon of
n hours. For studies employing only a single horizon, i.e. predictions preceding sepsis onset
by a fixed number of hours, we denote their task as “offline” evaluation in Table 2, since there
are no sequentially repeated predictions over time. This experimental setup, offline training
plus horizon evaluation, is visualised in Figure 3. In the second most-frequently used sepsis
prediction setting (n = 2; 9.1%), both the training and evaluation occur in an “online” fashion.
This means that the model is presented with all the data that has been collected until the time
point of prediction. The amount of data depends on the spacing of data collection. In order to
incentivise early predictions, these timepoint-wise labels can be shifted into the past: in the case
of the PhysioNet Challenge dataset, already timepoint-wise labels 6 h before onset are assigned
to the positive (sepsis) class [Reyna et al., 2019]. For an illustration of an online training and
evaluation scenario, refer to Figure 4.

Selecting the “onset” for controls (i.e. case–control alignment) is a crucial step in the develop-
ment of models predicting a sepsis onset [Futoma et al., 2017b]. Surprisingly, the majority of the
studies (n = 16; 72.7%) did not report any details on how the onset matching was performed. For
the six studies (27.3%) providing details, we propose the following classification: four employed
random onset matching, one absolute onset matching, and one relative onset matching (Figure 3, top).
As the name indicates, during random onset matching, the onset time of a control is set at a
random time of the ICU stay. Often, this time has to satisfy certain additional constraints, such as
not being too close to the patient’s discharge. The absolute onset matching refers to taking the
absolute time since admission until sepsis onset for the case and assigning it as the matched onset
time for a control [Moor et al., 2019]. Lastly, the relative onset matching is when the matched onset
time is defined as the relative time since ICU admission until sepsis onset for the case [Futoma
et al., 2017a].

3.6 Quality of included studies

The results of the quality assessment are shown in Table 3. One study [Reyna et al., 2019],
showcasing the results of the PhysioNet/Computing in Cardiology Challenge 2019, was excluded
from the Quality Assessment, which was intended to assess the quality of the implementation
and reporting of specific prediction models. The quality of the remaining 21 studies ranged from
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poor (satisfying  40% of the quality criteria) to very good (satisfying � 90% of the quality
criteria). None of the studies fulfilled all 14 criteria. A single criterion was met by 100% of the
studies: all studies highlighted the limits in current non-machine-learning approaches in the
introduction. Few studies provided the code used for the data cleaning and analysis (n = 2; 9.5%),
provided data or code for the reproduction of the exact sepsis labels and onset times (n = 2;
9.5%), and validated the machine learning models on an external data set (n = 3; 14.3%). For the
interpretation, power, and validity of machine learning methods, considerable sample sizes are
required. With the exception of one study [Lukaszewski et al., 2008], all studies had sample sizes
larger than 50 sepsis patients.
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(a) Offline training

Case ICU stay
Feature window

Sepsis onset

Control ICU stay
Matched onset (relative)

Matched onset (absolute) Matched onset (random)

(b) Horizon evaluation

Case ICU stay

11111111Labels

Sepsis onset

Control ICU stay

00000000Labels

Matched onset

Figure 3: (a): Offline training scenario and case–control matching. Every case has a specific sepsis onset. Given a
random control, there are multiple ways of determining a matched onset time: (i) relative refers to the
relative time since intensive care unit (ICU) admission (here, 75% of the ICU stay); (ii) absolute refers
to the absolute time since ICU admission; (iii) random refers to a pseudo-random time during the ICU
stay, often with the requirement that the onset is not too close to ICU discharge. (b): Horizon evaluation
scenario. Given a case and control, with a matched relative sepsis onset, the look-back horizon indicates
how early a specific model is capable of predicting sepsis. As the (matched) sepsis onset is approached, this
task typically becomes progressively easier. Notice the difference in the prediction targets (labels) (shown in
red for predicting a case, and blue for predicting a control.)

Case ICU stay

0 0 0 0 0 0 01 1 1Labels

Sepsis onset

Control ICU stay

Labels 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4: Online training and evaluation scenario. Here, the model predicts at regular intervals during an ICU
stay (we show predictions in 1 h intervals). For sepsis cases, there is no prima facie notion at which point
in time positive predictions ought to be considered as true positive (TP) predictions or false positive (FP)
predictions (mutatis mutandis, this applies to negative predictions). For illustrative purposes, here we
consider positive predictions up until 1 h before or after sepsis onset (for a case) to be TP.
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Table 2: An overview of experimental details: The used sepsis definition, the exact prediction task, and which type of
temporal case–control alignment was used (if any).

Study Prediction task Sepsis definition Case-control alignment Inclusion Criteria

1 Abromavicius 2020 Online training,
online evaluation Sepsis-3 (with modified time windows) – –

2 Barton 2019 Offline training,
horizon evaluation Sepsis-3 Random onset matching Inpatients, age �18 years, at least one observation per

measurement, prediction times between 7-2000 hours

3 Bloch 2019 Offline training,
horizon evaluation

Sepsis-2 related: SIRS criteria plus
diagnosis of infection

Random onset matching (at least
12 hours after admission to the
ICU)

age >18 years, admitted to ICU; minimum stay of 12
hours in the ICU; patients did not meet SIRS criteria at
time of admission to the ICU; Continuous documented
measurements were available for at least 12 hours for vital
signs

4 Calvert 2016 Offline training,
horizon evaluation

Sepsis-2 related: ICD-9 code 995.9 and
a 5h persisting window of fulfilled
SIRS

– Medical ICU, age > 18 years, SIRS not fulfilled upon
admission, measurements for set of 9 variables available

5 Desautels 2016

Offline training,
horizon evaluation,
but retrained for
each prediction
horizon

Sepsis-3 –

Age � 15 years, any measurements present, Metavision
logging, for cases: sepsis onset between 7 and 500 hours
after ICU admission, all variables at least once measured,
excluded patients that received antibiotics before ICU

6 Futoma 2017 Offline training,
horizon evaluation

Sepsis-2 related: SIRS fulfilled and
blood culture drawn and 1 abnormal
vital (time windows not stated)

Relative onset matching Entire EHR cohort included

7 Kaji 2019 Offline training,
horizon evaluation

Sepsis-2 related: SIRS criteria plus
ICD-9 code consistent with infection

Fixed length of 14 days in ICU
(truncation if longer, zero filling
and masking if shorter)

Individual patient ICU admissions 2 days or longer were
identified

8 Kam 2017 Offline training,
horizon evaluation

Sepsis-2 related: ICD-9 code 995.9 and
the first 5h persisting window of
fulfilled SIRS

insufficient detail: during training,
5h windows are randomly
extracted from case before sepsis
and entire control stay, during
testing it is not stated which data
is used for controls

Medical ICU, age >18 years, patient can be checked for 5h
SIRS window plus ICD-9 995.9 code (if only one of the two
was available, patients were excluded)

9 Lauritsen 2020 Offline training,
horizon evaluation

Sepsis-2 related: SIRS criteria plus
clinically suspected infection

Random onset matching
(excluding the first and last three
hours)

Inpatients, admissions � 3 hours, hospital departments
with sepsis prevalence � 2%, �1 observations for each
vital sign measurement

10 Lukaszewski 2008

Offline training,
offline evaluation
(fixed 24-hour
horizon)

Sepsis-2 related: SIRS criteria plus
positive microbiological culture

Insufficient detail (but
age-matching between cases and
controls; healthy volunteers used
as controls)

Blood samples taken daily; last sample on day of diagnosis
or last stay in ICU

11 Mao 2018

Offline training,
offline evaluation
(single fixed 4-hour
horizon)

Sepsis-2 related (suspected infection
and first hour of fulfilled SIRS criteria),
Severe Sepsis: ICD-9 plus SIRS plus
organ dysfunction criteria; Septic
Shock: ICD-9 plus manually-defined
conditions

–
Inpatients, age � 18 years, � 1 observations for each vital
sign measurement, prediction time between 7 and 2000
hours

12 McCoy 2017

Offline training,
evaluation on
retrospective
dataset,
prospective
evaluation
implemented as
risk score

Sepsis-3, Severe Sepsis (SIRS criteria
plus 2 organ dysfunction lab values) –

Age > 18 years; two or more sirs criteria during stay (hard
to tell ”Patient encounters were included in the
sepsis-related outcome metrics if they met two or more
SIRS criteria at some point during their stay.” Is this an
inclusion criterion or their label definition?)

13 Moor 2019 Offline training,
horizon evaluation Sepsis-3 Absolute onset matching

Age � 15 years, chart data including ICU
admission/discharge time available, Metavision logging,
cases: onset at least 7 hours into ICU stay

14 Nemati 2018 Offline training,
horizon evaluation Sepsis-3 (with modified time windows) – Age � 18 years; sepsis onset not earlier than 4 hours

within ICU admission

15 Reyna 2020 Online training,
online evaluation Sepsis-3 (with modified time windows) – � 8 hours of measurements

16 Schamoni 2019

Offline training,
horizon evaluation
as well as
prediction of
severity (ordinal
regression)

Sepsis tag by ICU clinicians via
electronic questionnaire – Sepsis onset not earlier than on the second day after ICU

admission

17 Scherpf 2019 Offline training,
horizon evaluation

Sepsis-2 related: ICD-9 codes plus
SIRS criteria

Random onset matching via
drawing fixed size time windows

Age � 18 years, at least one measurement for SIRS
parameters, no sepsis on admission, at least 5 hours plus
prediction time of measurements

18 Shashikumar 2017a

Offline training,
Offline prediction
(single fixed 4-hour
horizon)

Sepsis-3 – –

19 Shashikumar 2017b

Offline training,
Offline prediction
(single fixed 4-hour
horizon)

Sepsis-3 – –

20 Sheetrit 2019

Offline training,
horizon evaluation
on two prediction
windows (12 hours
and 1 hour)

Sepsis-2 related: ICD-9 Codes 995.91 or
995.92 plus antibiotics administered.
Onset time is defined as the earliest of
either antibiotics prescription or
fulfilled qSOFA criteria

Insufficient detail: the paper uses
the ”equivalent time” as the
feature window of the control
group

ICU admission, age � 15 years, for sepsis cases: onset not
before third day

21 van Wyk 2019a Offline training,
horizon evaluation

Sepsis-2 related: SIRS criteria plus
suspicion of infection, indicated by the
presence of a blood culture and the
administration of antibiotics during the
encounter, along with relevant ICD10

Insufficient detail: the paper uses
”a given 6h observational period”
for the control group

At least 8 hours of continuous data, absence of
cardiovascular disease

22 van Wyk 2019b Offline training,
horizon evaluation

Sepsis-2 related: SIRS criteria plus
suspicion of infection, indicated by the
presence of a blood culture and the
administration of antibiotics during the
encounter, along with relevant ICD10

Insufficient detail: the paper uses
”a given 3h observational period”
for the control group

Age > 18 years, physiological data available for at least 3
or 6 hours, respectively; absence of cardiovascular disease

Abbreviations: EHR = Electronic Health Record; ICD-9: International Classification of Disease Version 9; ICU = Intensive Care Unit; qSOFA = quick Sequential
Organ Failure Assessment; SIRS = Systemic Inflammatory Response Syndrome
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4 Discussion

In this study, we systematically reviewed the literature for studies employing machine learning
algorithms to facilitate early prediction of sepsis. A total of 22 studies were deemed eligible for
the review and 21 were included in the quality assessment. The majority of the studies used data
from the MIMIC-III database [Johnson et al., 2016b], containing deidentified health data associated
with ⇡ 60,000 intensive care unit admissions and/or data from Emory University Hospital 2).
With the exception of one, all studies used internationally-acknowledged guidelines for sepsis
definitions, namely Sepsis-2 [Levy et al., 2003] and Sepsis-3 [Singer et al., 2016]. In terms of
the analysis, a wide range of machine learning algorithms were chosen to leverage the patients’
digital health data for the prediction of sepsis. Driven by our findings from the reviewed studies,
this section first highlights four major challenges that the literature on machine learning driven
sepsis prediction is currently facing: (i) asynchronicity, (ii) comparability, (iii) reproducibility, and
(iv) circularity. We then discuss the limitations of this study, provide some recommendations for
forthcoming studies, and conclude with an outlook.

4.1 Asynchronicity

While initial studies employing machine learning for the prediction of sepsis have demonstrated
promising results [Calvert et al., 2016, Desautels et al., 2016, Kam and Kim, 2017], the literature
since has been diverging on which are the most pressing open challenges that need to be addressed
to further the goal of early sepsis detection. On the one hand, corporations have been propelling
the deployment of the first interventional studies [Burdick et al., 2020, Shimabukuro et al., 2017],
while on the other hand, recent findings have cast doubt on the validity and meaningfulness of the
experimental pipeline that is currently being implemented in most retrospective analyses [Scha-
moni et al., 2019]. This can be partially attributed to circular prediction settings (for more details,
please refer to Section 4.4). Ultimately, only the demonstration of favourable outcomes in large
prospective randomised controlled trials (RCTs) will pave the way for machine learning models
entering the clinical routine. Nevertheless, not every possible choice of model architecture can
be tested prospectively due to the restricted sample sizes (and therefore, number of study arms).
Rather, the development of these models is generally assumed to occur retrospectively. However,
precisely those retrospective studies are facing multiple obstacles, which we are going to discuss
next.

4.2 Comparability

Concerning the comparability of the reviewed studies, we note that there are several challenges
that have yet to be overcome, namely the choice of (i) prediction task, (ii) case–control onset match-

2The dataset was not publicly available. However, with the 2019 PhysioNet Computing in Cardiology Challenge, a
pre-processed dataset from Emory University Hospital has been published [Reyna et al., 2019].
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ing, (iii) sepsis definition, (iv) implementation of a given sepsis definition, and (v) performance
measures. We subsequently discuss each of these challenges.

4.2.1 Prediction task

As described in Section 3.5, we found that the vast majority of the included papers follow one
of two major approaches when implementing the sepsis onset prediction task: Either an offline
training step was followed by a horizon evaluation, or both the training and the evaluation were
conducted in an online fashion. As one of our core findings, we next highlight the strengths
but also the intricacies of these two setups. Considering the most frequently-used strategy, i.e.
offline training plus horizon evaluation, we found that the horizon evaluation provides valuable
information about how early (in hours before sepsis onset) the machine learning model is able
to recognise sepsis. However, in order to train such a classifier, the choice of a meaningful time
window (and matched onset) for controls is an essential aspect of the study design (for more
details, please refer to Section 4.2.2). By contrast, the online strategy does not require a matched
onset for controls (see Figure 4), but it removes the convenience of easily estimating predictive
performance for a given prediction horizon (i.e. in hours before sepsis onset). Nevertheless,
models trained and evaluated in an online fashion may be more easily deployed in practice, as
they are by construction optimised for continuously predicting sepsis while new data arrives.
Meanwhile, in the offline setting, the entire classification task is retrospective because all input
data are extracted right up until a previously-known sepsis onset. Whether a model trained this
way would generalise to a prospective setup in terms of predicting sepsis early remains to be
analysed in forthcoming studies. In this review, the only study featuring prospective analysis
focused on (and improved) prospective targets other than sepsis onset, namely mortality, length
of stay, and hospital readmission. Finally, we observed that the online setting also contains a
non-obvious design choice, which is absent in the offline/horizon approach: How many hours
before and after a sepsis onset should a positive prediction be considered a true positive or rather a
false positive? In other words, how long before or after the onset should a model be incentivised
to raise an alarm for sepsis? Reyna et al. [2019] proposed a clinical utility score that customises
a clinically-motivated reward system for a given positive or negative prediction with respect
to a potential sepsis onset. For example, it reflects that late true positive predictions are of
little to no clinical importance, whereas late false negatives predictions can indeed be harmful.
While such a hand-crafted score may account for a clinician’s diagnostic demands, the resulting
score remains highly sensitive to the exact specifications for which there is currently neither an
internationally-accepted standard nor a consensus. Furthermore, in its current form, the proposed
clinical utility score is hard to interpret.

4.2.2 Case–control onset matching

Futoma et al. [2017b] observed a drastic drop in performance upon introducing their (relative)
case–control onset matching scheme as compared to an earlier version of their study, where the
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classification scenario compares sepsis onsets with the discharge time of controls [Futoma et al.,
2017a]. Such a matching can be seen as an implicit onset matching, which studies that do not
account for this issue tend to default to. This suggests that comparing the data distribution
of patients at the time of sepsis onset with the one of controls when being discharged could
systematically underestimate the difficulty of the relevant clinical task at hand, i.e. identifying
sepsis in an ICU stay. Futoma et al. [2017b] also remarked that “For non-septic patients, it is not
very clinically relevant to include all data up until discharge, and compare predictions about
septic encounters shortly before sepsis with predictions about non-septic encounters shortly before
discharge. This task would be too easy, as the controls before discharge are likely to be clinically
stable.” The choice of a matched onset time is therefore crucial and highlights the need for a
more uniform reporting procedure of this aspect in the literature. Furthermore, Moor et al. [2019]
proposed to match the absolute sepsis onset time (i.e. perform absolute onset matching) to prevent
biases that could arise from systematic differences in the length of stay distribution of sepsis cases
and controls (in the worst case, a model could merely re-iterate that one class has shorter stays
than the other one, rather than pick up an actual signal in their time series). Lastly, Table 2 lists
four studies that employed random onset matching. Given that sepsis onsets are not uniformly
distributed over the length the ICU stay (for more details, please refer to Section 4.4), this strategy
could result in overly distinct data distributions between sepsis cases and non-septic controls.

4.2.3 Defining and implementing sepsis

A heterogeneous set of existing definitions (and modifications thereof) was implemented in the
reviewed studies. The choice of sepsis definition will affect studies in terms of the prevalence
of patients with sepsis and the level of difficulty of the prediction task (due to assigning earlier
or later sepsis onset times). We note that it remains challenging to fully disentangle all of these
factors: on the one side, a larger absolute count of septic patients is expected to be beneficial
for training machine learning models (in particular deep neural networks). On the other side,
including more patients could make the resulting sepsis cohort a less severe one and harder to
distinguish from non-septic ICU patients. Then again, a more inclusive sepsis labelling would
result in a higher prevalence (i.e. class balance), which would be beneficial for the training stability
of machine learning models. To further illustrate the difficulty of defining sepsis, consider the
prediction target in-hospital mortality. Even though in-hospital mortality rates (and therefore any
subsequent prediction task) vary between cohorts and hospitals, their definition typically does
not. Sepsis, by contrast, is inherently hard to define, which over the years has led to multiple
refinements of clinical criteria (Sepsis 1–3) for trying to capture sepsis in one easy-to-follow,
rule-based definition [Bone et al., 1992, Levy et al., 2003, Singer et al., 2016]. It has been previously
shown that applying different sepsis definitions to the same dataset results in largely dissimilar
cohorts [Johnson et al., 2018]. Furthermore, this specific study found that using Sepsis-3 is too
inclusive, resulting in a large cohort showing mild symptoms. By contrast, practitioners have
reported that Sepsis-3 is indeed too restrictive in that sepsis cannot occur without organ dysfunc-
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102 103 104

Number of sepsis encounters

Figure 5: A boxplot of the number of sepsis encounters reported by all studies, with the median number of encounters
being highlighted in red. Since the numbers feature different orders of magnitude, we employed logarithmic
scaling. The marks indicate which definition or modification thereof was used. Sepsis-3: squares, Sepsis-2:
triangles, domain expert label: asterisk.

tion any more [Johnson et al., 2018]. This suggests that even within a specific definition of sepsis,
substantial heterogeneity and disagreement in the literature prevails. On top of that, we found
that even applying the same definition on the same dataset has resulted in dissimilar cohorts.
Most prominently, in Table 1, this can be confirmed for studies employing the MIMIC-III dataset.
However, the determining factors cannot be easily recovered, as the code for assigning the labels
is not available in 19 out of 21 (90.4%) studies employing computer-derived sepsis labels.
Another factor exacerbating comparability is the heterogeneous sepsis prevalence. This is partially
influenced by the training setup of a given study, because certain studies prefer balanced datasets
for improving the training stability of the machine learning model [Bloch et al., 2019, Van Wyk
et al., 2019, van Wyk et al., 2019], while others preserve the observed case counts to more realisti-
cally reflect how their approach would fare when being deployed in ICU. Furthermore, the exact
sepsis definition used as well as the applied data pre-processing and filtering steps influence the
resulting sepsis case count and therefore the prevalence [Johnson et al., 2018, Moor et al., 2019].
Figure 2 depicts a boxplot of the prevalence values of all studies. Out of the 22 studies, 10 report
prevalences  10%, with the maximum reported prevalence being 63.6% [Kaji et al., 2019]. In
addition, Figure 5 depicts the distribution of all sepsis encounters, while also encoding the sepsis
definition (or modification thereof) that is being used.

4.2.4 Performance measures

The last obstacle impeding comparability is the choice of performance measures. This is entangled
with the differences in sepsis prevalence: simple metrics such as accuracy are directly impacted
by class prevalence, rendering a comparison of two studies with different prevalence values
moot. Some studies report the area under the receiver operating characteristic curve (AUROC,
sometimes also reported as AUC). However, AUROC also depends on class prevalence and is
known to be less informative if the classes are highly imbalanced [Lobo et al., 2008, Saito and
Rehmsmeier, 2015]. The area under the precision–recall curve (AUPRC, sometimes also referred
to as average precision) should be reported in such cases, and we observed that n = 6 studies
already do so. AUPRC is also affected by prevalence but permits a comparison with a random
baseline that merely “guesses” the label of a patient. AUROC, by contrast, can be high even
for classifiers that fail to properly classify the minority class of sepsis patients. This effect is
exacerbated with increasing class imbalance. Recent research suggests reporting the AUPRC of
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models, in particular in clinical contexts [Pinker, 2018], and we endorse this recommendation.

4.2.5 Comparing studies of low comparability

Our findings indicate that quantitatively comparing studies concerned with machine learning
for the prediction of sepsis in the ICU is currently a nigh-impossible task. While one would
like to perform meta-analyses in these contexts to aggregate an overall trend in performance
among state-of-the-art models, at the current stage of the literature this would carry little meaning.
Therefore, we currently cannot ascertain the best performing approaches by merely assessing
numeric results of performance measures. Rather, we had to resort to qualitatively assess study
designs in order identify underlying biases which could lead to overly optimistic results.

4.3 Reproducibility

Reproducibility, i.e. the capability of obtaining similar or identical results by independently
repeating the experiments described in a study, is the foundation of scientific accountability. In
recent years, this foundation has been shaken by the discovery of failures to reproduce prominent
studies in several disciplines [Baker, 2016]. Machine learning in general is no exception here, and
despite the existence of calls to action [Crick et al., 2014], the field might face a reproducibility
crisis [Hutson, 2018]. The interdisciplinary nature of digital medicine comes with additional
challenges for reproducibility [Stupple et al., 2019], foremost of which is the issue of dealing
with sensitive data (whereas for many theoretical machine learning papers, benchmark datasets
exist), but also the issue of algorithmic details such as pre-processing. Our quality assessment
highlights a lot of potential for improvement here: only two studies [Kaji et al., 2019, Moor
et al., 2019], both from 2019, share their analysis code and the code for generating a “label” (to
distinguish between cases or controls within the scenario of a specific paper). This amounts to
less than 10% of the eligible studies. In addition, only four studies [Abromavičius et al., 2020, Kaji
et al., 2019, Mao et al., 2018, Moor et al., 2019] report results on publicly-available datasets (more
precisely, the datasets are available for research after accepting their terms and conditions). This
finding is surprising, given the existence of high-quality, freely-accessible databases such as
MIMIC-III [Johnson et al., 2016a] or eICU [Pollard et al., 2018]. An encouraging finding of our
analysis is that a considerable number of studies (n = 6) report hyperparameter details of their
models. Hyperparameter refers to any kind of parameter that is model-specific, such as the
regularisation constant and the architecture of a neural network [Wu et al., 2019]. This information
is crucial for everyone who attempts to reproduce computational experiments.

4.4 Circularity

Considering that the exact sepsis onset is usually unknown, most of the existing works have
approximated a plausible sepsis onset via clinical criteria such as Sepsis-3 [Singer et al., 2016].
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However, these criteria comprise a set of rules to apply to vital and laboratory measurements.
Schamoni et al. [2019] pointed out that using clinical measurements for predicting a sepsis label,
which was itself derived from clinical measurements, could potentially be circular (a statistical
term referring to the fact that one uses the same data for the selection of a model and its subse-
quent analysis). This runs the risk being unable to discover unknown aspects of the data, since
classifiers may just confirm existing criteria instead of helping to generate new knowledge. In
the worst case, a classifier would merely reiterate the guidelines used to define sepsis without
being able to detect patterns that permit an earlier discovery. To account for this, Schamoni and
colleagues chose a questionnaire-based definition of sepsis and clinical experts manually labelled
the cases and controls. While this strategy may reduce the problem of circularity, a coherent and
comprehensive definition of sepsis cannot be easily guaranteed. Notably, Schamoni et al. [2019]
report very high inter-rater agreement. They assign, however, only daily labels which is in contrast
to automated Sepsis-3 labels that are typically extracted in an hourly resolution. Furthermore, it is
plausible that even with clinical experts in the loop, some level of (indirect) circularity could still
take place, because a clinician would also consult the patients’ vital and laboratory measurements
in order to assign the sepsis tag, it would merely be less explicit. Since Schamoni et al. [2019]
proposed a way to circumvent the issue of circularity, this also means that no existing work has
empirically assessed the existence (or the relevance) of circularity in machine learning-based
sepsis prediction. For Sepsis-3, if the standard 72 h window is used for assessing an increase in
SOFA (sequential organ failure assessment score) score, i.e. starting 48 h before suspected infection
time until 24 h afterwards, and if the onset happens to occur at the very end of this window,
then measurements that go 72 h into the past have influenced this label. Since the SOFA score
aggregates the most abnormal measurements of the preceding 24 h [Vincent et al., 1996], Sepsis-3
could even “reach” 96 h into the past. Meanwhile, the distribution of onsets using Sepsis-3 tends
to be highly right-skewed, as can be seen in Moor et al. [2019], where removing cases with an onset
during the first 7 h drastically reduced the resulting cohort size. Therefore, we conjecture that
with Sepsis-3, it could be virtually impossible to strictly separate data that is used for assigning
the label from data that is used for prediction, without overly reducing the resulting cohort.
Finally, the relevance of an ongoing circularity may be challenged given first promising results (in
terms of mortality reduction) of the first interventional studies applying machine learning for sep-
sis prediction prospectively [Shimabukuro et al., 2017], without explicitly accounting for circularity.

4.5 Limitations of this study

A limitation of this review is that our literature search was restricted to articles listed in Embase,
Google Scholar, PubMed/Medline, Scopus, and Web of Science. Considering the pace at which
the research in this area—in particular, in the context of machine learning—is moving forward, it
is likely that the findings of the publications described in this paper will be quickly complemented
by further research. The literature search also excluded grey literature (e.g. preprints, reports), the
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importance of which to this topic is unknown3, and thus might have introduced another source
of search bias. The lack of studies reporting poor performance of machine learning algorithms
regarding sepsis onset prediction suggests high probability of publication bias [Dickersin and
Chalmers, 2011, Kirkham et al., 2010]. Publication bias is likely to result in studies with more
positive results being preferentially submitted and accepted for publication [Joober et al., 2012].
Finally, our review specifically focused on machine learning applications for the prediction of
sepsis and severe sepsis. We therefore used a stringent search term that potentially excluded
studies pursuing a classical statistical approach of early detection and sepsis prediction.

5 Recommendations

This section provides recommendations how to harmonise experimental designs and reporting of
machine learning approaches for the early prediction of sepsis in the ICU. This harmonisation is
necessary to warrant meaningful comparability and reproducibility of different machine learning
models, ensure continued model development as opposed to starting from scratch, and establish
benchmark models that constitute the state-of-the-art.

As outlined above, only few studies score highly with respect to reproducibility. This is
concerning, as reproducibility remains one of the cornerstones of scientific progress [Stupple
et al., 2019]. The lack of comparability of different studies impedes progress because a priori,
it may not be clear which method is suitable for a specific scenario if different studies lack
common ground (see also the aforementioned issues preventing a meta-analysis). The way
out of this dilemma is to improve reproducibility of a subset of a given study. We suggest
the following approach: (i) picking an openly-available dataset (or a subset thereof) as an
additional validation site, (ii) reporting results on this dataset, and (iii) making the code for this
analysis available (including models and labels). This suggestion is flexible and still enables
authors to showcase their work on their respective private datasets. We suggest that code
sharing—within reasonable bounds—should become the default for publications as modern
machine learning research is increasingly driven by implementations of complex algorithms.
Therefore, a prerequisite of being able to replicate the results of any study, or to use it in a
comparative setting, is having access to the raw code that was used to perform the experiment. This
is crucial, as any pseudocode description of an algorithm permits many different implementations
with potentially different runtime behaviour and side effects. With only two studies sharing
code, method development is stymied. We thus encourage authors to consider sharing their
code, for example via platforms such as GitHub (https://github.com). Even sharing only
parts of the code, such as the label generation process, would be helpful in many scenarios
and improve comparability. The availability of numerous open source licences [Rosen, 2004]
makes it possible to satisfy the constraints of most authors, including companies that want to
protect their intellectual property. A recent experiment at the International Conference of Machine
Learning (ICML) demonstrated that reviewers and area chairs react favourably to the inclusion of

3In the machine learning community, for example, it is common practice to use preprints to disseminate knowledge
about novel methods early on.
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Box 1

Recommendation Remarks Details

Make code publicly
available or usable

A prerequisite of being able to replicate the re-
sults of any study, or to use any model in a com-
parative setting, is having access to the raw code
or a binary variant thereof that was used to per-
form the experiments. Authors are encouraged
to share their code, for example via platforms
such as GitHub, or their binaries using container
technologies like Docker.

GitHub, Docker

Use external val-
idation for the
machine learning
model

External validation of a classifier is crucial for
assessing the model’s generalisability. Several
publicly-available data sources exist that can be
used for this purpose.

MIMIC-II,
MIMIC-III, eICU,
HiRID

Provide exact defi-
nition of sepsis la-
bel

Implementations vary drastically in terms of
prevalence and number of sepsis encounters.
Thus, reporting the label generation process is es-
sential, particularly when labels deviate from the
international definitions of sepsis. For instance,
when using the eICU dataset, microbiology mea-
surements are under-reported for defining sus-
pected infection, yet the exact modifications of
sepsis implementations have not explicitly been
stated [Komorowski et al., 2018].

Provide code of
how sepsis label
was determined.

Make data avail-
able

If possible and in compliance with international
data protection laws, data sources should be
made accessible to bona fide researchers. There
are multiple data repositories, which researchers
can use to make their data accessible, while com-
plying with data protection laws.

Harvard Dataverse,
PhysioNet, Zenodo

Ensure comparabil-
ity of models and
their performances

To advance the field, it is important that re-
searchers compare their models to existing mod-
els in order to evaluate and compare the perfor-
mance across different studies. This necessitates
improvements in prevalence reporting as well as
the choice of different performance metrics.

Report prevalence
and AUPRC in ad-
dition to other met-
rics.

Use licences for
code

Licences protect the creators and the users of
code. Numerous open source licences exist, mak-
ing it possible to satisfy the constraints of most
authors, including companies that want to pro-
tect their intellectual property.

Apache licence,
BSD licences, GPL
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code [Chaudhuri and Salakhutdinov, 2019]. If code sharing is not possible, for example because
of commercial interests, there is the option to share binaries, possibly using virtual machines or
“containers” [Elmenreich et al., 2018]. Providing containers would satisfy all involved parties:
intellectual property rights are retained but additional studies can compare their results.

As for the datasets used in a study, different rules apply. While some authors suggest that
peer-reviewed publications should be come with a waiver agreement for open access data [Hry-
naszkiewicz and Cockerill, 2012], we are aware of the complications of sharing clinical data. We
think that a reasonable middle ground can be reached by following the suggestion above, i.e. using
existing benchmark datasets such as MIMIC-III [Johnson et al., 2016b] to report performance.

Moreover, we urge authors to report additional details of their experimental setup, specifically
the selection of cases and controls and the label generation/calculation process. As outlined above,
the case–control matching is crucial as it affects the difficulty (and thus the significance) of the
prediction task. We suggest to either follow the absolute onset matching procedure [Moor et al.,
2019], which is simple to implement and prevents biases caused by differences in the length of
stay distribution. In any case, forthcoming work should always report their choice of case–control
matching. As for the actual prediction task, given the heterogeneous prediction horizons that
we observed, we suggest that authors always report performance for a horizon of 3 h or 4 h (in
addition to any other performance metrics that are reported). This reporting should always use
the area under the precision–recall curve (AUPRC) metric as it is the preferred metric for rare
prevalences [Ozenne et al., 2015]. Last, we want to stress that a description of the inclusion process
of patients is essential in order to ensure comparability.

6 Conclusions and future directions

This study performed a systematic review of publications discussing the early prediction of sepsis
in the ICU by means of machine learning algorithms. Briefly, we found that the majority of
the included papers investigating sepsis onset prediction in the ICU are based on data from
the same centre, MIMIC-II or MIMIC-III [Johnson et al., 2016b], two versions of a high-quality,
publicly-available critical care database. Despite the data agreement guidelines of MIMIC-III
stating that code using MIMIC-III needs to be published (paragraph 9 of the current agreement
reads “If I openly disseminate my results, I will also contribute the code used to produce those
results to a repository that is open to the research community.”), only two studies [Kaji et al.,
2019, Moor et al., 2019] make their code available. This leaves a lot of room for improvement,
which is why we recommend code (or binary) sharing (Box 1). Of 22 included studies, only one
reflects a non-Western (i.e. neither North-American nor European) cohort, pinpointing towards a
significant dataset bias in the literature (see Supplemental Table 4 for an overview of demographi-
cal information). In addition to demographic aspects such as ethnicity, differing diagnostic and
therapeutic policies as well as the availability of input data for prediction are known to impact the
generation of the sepsis labels. This challenge hampers additional benchmarking efforts unless
more diverse cohorts are included. Moreover, since the prediction task is highly sensitive to
minor changes in study specification (including, but not limited to, the sepsis definition and the
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case–control alignment), the majority of investigated papers do not permit a straightforward repro-
duction/replication and comparison of their employed cohorts and their presented prediction task.
Meta-analyses are therefore impossible, as the reported metrics pertain to different, incomparable
scenarios: both prevalence and case counts are highly variable, even on the same dataset, and
previous work [Futoma et al., 2017b] indicated that minor changes in the experimental setup can
substantially affect the difficulty of the prediction task. As a consequence, we are currently not
able to identify the most predictive method for recognising sepsis early, which then ought to be
further investigated in prospective trials. All in all, we found this state of the art to leave lots of
room for improvement; it would be beneficial to be able to compare different models as to their
generalisability, in particular when deploying machine learning algorithms in a prospective study.
We see our paper as a “call to arms” for the community and hope that our recommendations are
taken in the spirit of improving this task together.
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