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Abstract 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associated mortality data from 

England show evidence for an increasing trend with population density until a saturating level, 

after adjusting for local age distribution, deprivation, proportion of ethnic minority population 

and proportion of key workers among the working population. Projections from a mathematical 

model that accounts for this observation deviate markedly from the current status quo for SARS-

CoV-2 models which either assume linearity between density and transmission (30% of models) 

or no relationship at all (70%). Respectively, these standard model structures over- and under-

estimate the delay in infection resurgence following the release of lockdown. Identifying 

saturation points for given populations and including transmission terms that account for this 

feature will improve model accuracy and utility for the current and future pandemics. 
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Introduction 

Like many pathogens that cause respiratory diseases (1-3), severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) appears to be transmitted more effectively in densely populated 

areas (4-6). The increased disease rates reported among high-density populations (4, 5, 7, 8) 

may, however, be an artefact of confounders, such as the higher proportion of individuals of 

lower socioeconomic status or from minority ethnic groups in urban areas (9). Using COVID-19 

associated mortality data from the Office for National Statistics, we aimed to assess the evidence 

for density dependence.  

  

Standard transmission models that either do or do not account for this density dependence have 

been used interchangeably because their projections are generally equivalent when population 

density remains unperturbed or is homogeneous, e.g. at a national level. While the ~1% infection 

fatality rate for COVID-19 (10) is insufficient to destabilize populations, the reaction of most 

countries’ governments to curtail disease spread through mass quarantine (‘lockdown’) and 

social distancing has had unprecedented impacts on the density of mobile human populations. 

For example, the UK’s lockdown, which came into effect on March 23rd 2020, effectively 

reduced the freely moving population from 66.5 million to 10.6 million (key workers) (11). This 

same intervention was employed by numerous countries, similarly impacting their mobile 

populations (12). We evaluate the extent to which models built to inform the epidemiology of 

COVID-19 use an underlying structure that can accommodate the drastic changes and variation 

in densities experienced by most global populations.  

  

As lockdowns are gradually released over the latter part of 2020, global populations will re-

equilibrate to a ‘new normal’ whereby densities of mobile people are increased but in which 

contact patterns are expected to remain reduced through social distancing interventions (13). 

Using a suite of mathematical models we illustrate the impact that the different, routinely 

ignored, assumptions underlying transmission and density may have in projecting infection 

dynamics and measuring intervention effectiveness. 
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Results 

Evidence for saturating density dependence in COVID-19 associated deaths 

COVID-19 associated deaths appear to be strongly correlated with population density, aligning 

with the rural/urban disparities demonstrated in Office for National Statistics bulletins 

(Supplementary Fig 1, (14)). Adjusting for potential confounders (age distribution, deprivation, 

ethnic distribution, proportion of key workers within the local population) via a negative 

binomial generalized linear model a saturating dependence on population density provided the 

best fit to total local authority mortality rates over the period March 3rd to July 31st with respect 

to the leave-one-out information criterion (LOOIC) (Fig 1a). Models independent of, or linearly 

dependent on, density performed similarly since the fitted linear trend was negligibly small, and 

both performed worse than log-linear and saturating forms. The chosen model suggests a 3.6-

fold (90% CrI [2.44, 5.28]) increase in mortality rate for a standard deviation difference in 

density, on the saturated scale. Owing to the heightened risk of earlier outbreak seeding for 

higher density areas, we repeated the analysis additionally adjusting for the lag of the local 

epidemic behind the national. The saturating model was retained as the best fit (Table 1) and 

suggested a similar increase in mortality rate of 4-fold (90% CrI [2.15, 7.08]).  

 

Under the saturating density-dependent model, the impact of lockdown on reducing transmission 

among mobile individuals, and consequently deaths, is heterogeneous - having greatest benefit to 

regions with low population density (>30% reduction in projected deaths for example in Devon, 

Herefordshire and the Derbyshire Dales) but reduced benefit to high-density regions (~5-7% 

reduction for the London boroughs of Tower Hamlets, Hackney, Islington and Camden) (Fig 1b). 

These results were retained when accounting for the lag of the local epidemic behind the national 

(Supplementary Fig 2). 

  

  

Projecting SARS-CoV-2 resurgence after lockdown is released 

A full text review of 100 epidemiological models of SARS-CoV-2 showed that 70% explicitly 

assume that contact rate between people (and, hence transmission) is unaffected by population 

density (Supporting Information). Of the remaining 30% of models, all assumed a linear 

relationship between population density and transmission. 

  

We use a metapopulation model to simulate the infection dynamics among freely moving as well 

as locked-down individuals, incorporating transmission terms that can accommodate density-

independent (referred to as ‘frequency-dependent’) as well as linearly and saturating density-

dependent assumptions. We show that while all functional forms perform equivalently in fitting 
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mortality data leading up to lockdown, dynamics under alternate assumptions may diverge 

markedly during and following the phase when lockdown is released (Fig. 2). We note that any 

adaptive public health responses (i.e. additional interventions) curbing the second wave are 

ignored - this comparison is intended to illustrate the consequences to projected dynamics of 

alternative assumptions underlying density and transmission. 

  

Although final epidemic size and total deaths were equivalent for the alternative classic 

assumptions, transmission was delayed by over a year under a density- versus frequency-

dependent model (Fig 2). This delay occurs because only under the density-dependent 

assumption the force of infection is reduced while any part of the population remains locked 

down. At the very high densities of London populations, locking down 84% of people under our 

saturating density-dependent model had an impact most similar to a frequency-dependent 

assumption. Meaning, if the density of England’s entire population was equivalent to the density 

found in London, infection dynamics and deaths resulting from a saturating density-dependent 

model most closely match the frequency-dependent projections (although, with a 3-month lag). 

However, London has a population density that is an order of magnitude higher than the next 

most populated region in England; and projected infection dynamics diverged more considerably 

under scenarios reflecting densities experienced outside of the capital. The force of infection and 

the timing of peak prevalence for the saturating density-dependent model is constrained between 

the frequency- and linearly density-dependent versions (15) with lower densities tending towards 

the latter.  

  

Assuming a maximum national capacity of 5000 intensive care unit (ICU) beds, we then assess 

the difference between these temporal limits in the projected duration between the release of 

lockdown and a second wave of infection exceeding ICU capacity (Fig. 3). Threshold levels of 

social distancing to interrupt transmission (i.e., maintain effective reproduction number below 

one) are similar for both classic models. However, where interventions fail to achieve this 

threshold, density-dependent transmission resulted in a delay of a year before ICU inundation. 

This is contingent on the timeframe across which lockdown is released, whereby more gradual 

releases extend delays.   
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Discussion 

Projections of COVID-19 infection dynamics following the release of a huge proportion of the 

population from lockdown comprise an urgent and critical component of public health decision 

making (16). The classical forms of modelling infectious diseases among populations have been 

used interchangeably by different research groups because, under most plausible circumstances, 

they exhibit equivalent dynamics. In March 2020, England locked down over four-fifths of its 

population. For most, this fundamentally altered the rate at which people made contact. Under 

the current circumstance of millions of people easing out of lockdown, substantial differences 

between projections from a frequency- and density-dependent transmission assumption emerge. 

Most notably, density dependence results in delayed infection resurgence; and, contingent on the 

timeframe across which lockdown is released and the effectiveness of social distancing, this 

delay can extend to over a year. 

  

The delay is a function of a fundamental aspect of density-dependent transmission: lower host 

densities reduce the force of infection, and there is a threshold host density below which an 

infection cannot spread. Despite its origins in human infectious disease modelling (17), the 

existence of this threshold has historically had limited epidemiological application. The 

phenomenon is discussed more widely in wildlife disease ecology (18) where it underlies key 

disease-control decisions such as culling (19). Current expectation is that lockdowns, either full 

or of a more moderate or localized form, will be reimplemented when cases restart increasing. 

Density effects and thresholds are particularly pertinent in the current pandemic during which 

extreme fluctuations in mobile human density are likely to continue.  

  

Analyzing COVID-19 associated deaths across different regions in England, and accounting for 

known major confounders (9), the non-linear increase in deaths with population density was 

adequately captured by neither classical form of modelling transmission. Using a function that 

captures the saturating increase in deaths with population density resulted in an expedited 

resurgence compared with a linearly density-dependent model and a delayed resurgence 

compared with the popularly used frequency-dependent model.  

  

Less populated areas were shown to have fewer per capita deaths (as per England’s mortality 

data) and slower resurgences following the release of lockdown. This provides more achievable 

targets and considerably more lead time for health services to prepare than would otherwise be 

anticipated. It also highlights a hazard. During and after releases from lockdown, in order to fit a 

prolonged lag in cases, transmission rates derived from most current (frequency-dependent) 

models will underestimate the effective reproduction number. This could exaggerate the 

perceived effectiveness of ongoing interventions, such as social distancing or face masks, with 

potentially serious consequences.  
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Our study is limited by the fact that we do not have comprehensive data on how contact rates 

were affected prior to and over the lockdown period for individuals inhabiting regions of 

differing population density. We also do not know where people were infected, only where they 

were when they died. Instead we have had to resort to mortality rates and locations as a proxy. It 

is possible, for example, that contact rates are not affected by dramatic shifts in population 

density regardless of baseline levels (i.e., the average England resident came into contact with as 

many individuals during lockdown as prior to lockdown, satisfying a frequency-dependent 

assumption), and that the increased per capita fatality seen in more densely populated regions has 

an alternative, thus far unidentified explanation. Mobile phone applications developed to inform 

participants of urgent health information have already gained millions of users in the current 

coronavirus context (20). Piggy-backing on these efforts could help substantiate the evidence for 

the contact-density relationships we have identified. 

Due to the highly complex interactions between population characteristics, behaviors and 

mortality risk, the association discovered between saturating density and mortality rates may 

remain confounded by factors not considered here. Moreover, the criterion used for model 

comparison depends on an independence assumption which may not hold between neighboring 

LTLAs. Work is ongoing to characterize the patterns of spatial correlation in mortality at the 

LTLA level.  

Infectious diseases are emerging at an unprecedented rate (21) and the upwards trend in global 

travel and urbanization increases the likelihood of pandemics (22). Their success in controlling 

SARS-CoV-2 means that widescale lockdowns will not only continue to be enforced as this 

pandemic progresses, but they will likely be more readily applied in future emergencies. It is 

crucial that we use the current opportunity to collect data to inform more precise forms of how 

contact rates are altered at varying stages of lockdown. Future work should also address whether 

the feature we have identified from England’s data is generalizable to other countries. 

Incorporating realistic contact-density relationships into the transmission term of population-

level mathematical models will improve precision of their projections and their utility in public 

health decision making. 
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Materials and Methods 

Experimental Design 

·      A statistical analysis of COVID-19 associated mortality in England at the lower-tier local 

authority level. 

·      A review of SARS-CoV-2 mathematical models (see Supplementary materials). 

·      A mathematical modelling analysis of the consequence of density-dependent SARS-CoV-2 

transmission to post-lockdown resurgence. 

  

Data 

Reported COVID-19-related deaths between the 01-03-2020 and 31-07-2020 were obtained in 

anonymized linelist form from Public Health England, and were filtered to include all deaths 

which occurred within 28 days of positive COVID-19 test (N = 36,311). Individual records were 

aggregated to lower-tier local authority (LTLA), and nationally by 10-year age bands in order to 

calculate age-standardized expected counts.  

  

Local authority shapefiles and single-age population estimates were obtained from ONS (23). 

Four sub-regions of Buckinghamshire (Aylesbury Vale, Chiltern, South Bucks, Wycombe) were 

aggregated in order to match most recent population estimates. The City of London was 

aggregated with Westminster due to its very small resident population, and the Isles of Scilly 

excluded since no COVID-19-related deaths had been reported there during this period. Index of 

multiple deprivation (IMD) (24), percentage of minority ethnic population (25) and percentage 

of key workers among the working population (26) are characteristics of the LTLA population 

potentially associated with both COVID-19 mortality and population density, therefore were 

included as covariates in all models. Percentage of key workers was missing for Westminster and 

Cornwall; these were imputed by the median value across all neighboring LTLAs.  

  

Statistical analysis 

Negative binomial regression models were fit to the number of deaths (n) per LTLA, adjusting 

for the four covariates (IMD, % minority population, % key workers and lag in weeks behind the 

first death nationally). Age distribution within the LTLA was adjusted for via inclusion of age-

adjusted expected deaths (E) as an offset; these were calculated according to national age-

specific rates (deaths per 100,000 per age band) applied to local population estimates in ten-year 

age bands. Population density was accounted for in one of four functional forms: 

A.        Constant/independent of population density 

B.        Linear 

C.        Log-linear 

D.        Saturating 
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This yields the following model specification: 

𝐷𝑖~𝑁𝑒𝑔𝐵𝑖𝑛(𝜇𝑖𝐸𝑖 , 𝜃) 

log(𝜇𝑖) =  𝛽0 +  𝛽1𝑥𝑖
𝐼𝑀𝐷 +  𝛽2𝑥𝑖

𝑚𝑖𝑛𝑜 +  𝛽3𝑥𝑖
𝐾𝑊 +  𝛽4𝑓𝑘(𝑥𝑖

𝑑𝑒𝑛𝑠) 

where  

𝑓𝑘(𝑥) = {

0,   𝑘 = 𝐴
𝑥,   𝑘 = 𝐵

log(𝑥) , 𝑘 = 𝐶

𝑠𝑎𝑡(𝑥, 𝜃), 𝑘 = 𝐷

 

and 

𝑠𝑎𝑡(𝑥, 𝜃) =
2𝜃𝑥

1 + 2𝜃𝑥 + (√(1 + 4𝜃𝑥) 
 

Models were fitted using the rstanarm package (27) with default weakly-informative priors. The 

four model variants were compared on LOOIC, calculated via approximate leave-one-out cross 

validation as implemented in the loo package (28). Interpretation is the same as that of the AIC 

in that smaller values reflect better fit. The value of 𝜃 for the saturating function was determined 

by manual optimization of the glm with respect to LOOIC on a hold-out set of 40% of LTLAs, 

over a range from 0.001 to 1. 

For the saturating model, the impact of an 84% reduction in effective population density as a 

result of lockdown on predicted mortality rates among the freely moving population was 

calculated as a percentage change between mean model-predicted deaths under the original and 

reduced densities.   

  

Mathematical model 

We use a discrete-time, deterministic compartmental model (Fig. 4) with daily timesteps to 

simulate SARS-CoV-2 transmission. From the first day of lockdown (March 23rd 2020), 84% of 

the population enter quarantine in which frequency-dependent transmission occurs. This 

assumption is made for the lockdown sub-population because an individual’s likelihood of 

contracting infection while in their home is limited by their household size (i.e., not impacted by 

the density of individuals under quarantine in different households). Each model is fitted 

independently to England’s COVID-19 associated mortality data (up until August 1st 2020). We 

compare frequency-dependent and both linearly and saturating density-dependent transmission 

among the remaining free-movers for when lockdown is released. We also explore the impact of 

varying rates of migration between locked down and free-moving individuals (Supplementary 

Fig 3). We compare frequency-dependent and linearly density-dependent transmission (the 

limiting cases for the saturating density-dependent model (15)) among the remaining free-

movers for a range of lockdown release schedules (over a period of between 1 and 12 months). 

Contact rates are reduced through two distinct mechanisms under the density-dependent models: 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.08.28.20183921doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.28.20183921
http://creativecommons.org/licenses/by-nd/4.0/


whereas reduced contact through social distancing behavioral changes among the freely moving 

population (e.g. the 2-metre rule) is included in all models, only the density-dependent versions 

assume reduced opportunities for mobile people coming into contact with others because of their 

substantially depleted numbers. Full model specification and sources for its parameterization can 

be found in the Supplementary Materials, and the Python (v3.8) code is freely available from 

https://github.com/lwyakob/COVIDsaturates. 
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Figures and Tables 

 

 
Fig 1. Dependence of observed versus age-specific expected mortality rates (standardized 

mortality ratio, SMR) on population density. a) Four forms of density dependence (and loess 

curve, dashed black line) are illustrated in the left panel, with LOOIC values for each fit 

demonstrating superiority of the saturating density-dependent function. b) The heterogeneous 

impact of 84% effective density reduction on the proportional reduction in predicted mortality 

among the freely moving population according to the saturating model is mapped in the right 

panel. 

  

  
Fig. 2. Population density and SARS-CoV-2 dynamics. COVID-19 associated mortality (top) 

and infection dynamics (bottom) following the release of lockdown ‘LD’ under the three 

different transmission terms (frequency-dependent ‘fd’, linearly density-dependent ‘dd’ and 

saturating density-dependent). Lighter filled areas illustrate saturating density-dependent 

dynamics for lower population density (where England’s density is set to equal that of London at 

5700 people per Km2 , the average English population density at 430 people per Km2 or 

Cornwall at 160 people per Km2). These simulations show a 1-year release of locked down 

individuals and infection preventative behaviors (e.g. face masks) that halve the per contact 

transmission rate. Details of model-fitting are in the supplementary materials. 
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 Fig. 3. Consequences of density dependence on intensive care unit inundation. Difference 

(in days, contours) between models in their projected time before ICU capacity is exceeded, as a 

function of lockdown release schedule and effectiveness of social distancing. The dashed white 

line marks minimum social distancing required to prevent immediate ICU inundation under the 

frequency-dependent model. 

   

  

 

Fig. 4. Model compartments and alternative transmission assumptions. Model compartments 

are: ‘S’usceptible, ‘E’xposed, ‘I’nfectious, ‘P’re-critical infectious, ‘C’ritically ill, ‘D’ead and 

‘R’ecovered. Under a frequency-dependent assumption, the force of infection, λ, is the product 

of the transmission coefficient, β, and the proportion of the total population, N, that are 

infectious. Under a density-dependent assumption, the force of infection is the product of the 

transmission coefficient and the density of infectious individuals. The saturating density-

dependent formulation assumes the force of infection is a product of the transmission coefficient 

and a function of the density of infectious individuals and parameter θ derived from analyzing 

England’s regional mortality data. 
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Table 1. Model comparison for explaining variation in mortality rates. Models additionally 

account for the local epidemic lags behind the national and are compared on LOOIC, with all 

compared to the optimal model (saturating form) in the first row. Saturating and log-linear forms 

are not clearly distinguishable from each other, but both appear preferable over the independent 

and linear forms.   

 LOOIC LOOIC SE Difference elpd Diff. elpd SE 

Saturating 1904 22.7 0.0 0.0 

Log-linear 1908 22.4 -2.4 1.0 

Independent 1923     21.6 -9.6 4.5 

Linear 1924.1     20.6 -10.3 4.4 
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Supplementary Materials 

  

Supplementary Materials and Methods 

Google Scholar search by year ‘2020’ on June 19th 2020: 

coronavirus, OR covid19, OR covid-19 "'(mathematical OR simulation OR transmission) 

model'" 
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Mathematical model equations 

Free-moving subpopulation: 

𝑆𝑡 = 𝑆𝑡−1 − 𝑆𝑡−1(𝜎𝜆 + 𝜀)(1 − 𝜙) − (𝜙𝑆𝑡−1) + (𝜓𝑆𝐿,𝑡−1
2 ) + (𝜅𝑆𝐿,𝑡−1) 

𝐸𝑡 = 𝐸𝑡−1 + [𝜎𝜆𝑆𝑡−1 − (𝛼 + 𝜀)𝐸𝑡−1](1 − 𝜙) − (𝜙𝐸𝑡−1) + (𝜓𝐸𝐿,𝑡−1
2 ) + (𝜅𝐸𝐿,𝑡−1) 

𝐼𝑡 = 𝐼𝑡−1 + [(1 − 𝜌)𝛼𝐸𝑡−1 − (𝛾 + 𝜀)𝐼𝑡−1](1 − 𝜙) − (𝜙𝐼𝑡−1) + (𝜓𝐼𝐿,𝑡−1
2 ) + (𝜅𝐼𝐿,𝑡−1) 

𝑃𝑡 = 𝑃𝑡−1 + [𝜌𝛼𝐸𝑡−1 − (𝜈 + 𝜀)𝑃𝑡−1](1 − 𝜙) − (𝜙𝑃𝑡−1) + (𝜓𝑃𝐿,𝑡−1
2 ) + (𝜅𝑃𝐿,𝑡−1) 

𝐶𝑡 = 𝐶𝑡−1 + [𝜈𝑃𝑡−1 − (𝜇𝜏 + 𝜀 + (1 − 𝜇)𝜔)𝐶𝑡−1](1 − 𝜙) − (𝜙𝐶𝑡−1) + (𝜓𝐶𝐿,𝑡−1
2 ) + (𝜅𝐶𝐿,𝑡−1) 

𝑅𝑡 = 𝑅𝑡−1 + [𝛾𝐼𝑡−1 + (1 − 𝜇)𝜔𝐶𝑡−1 − 𝜀𝑅𝑡−1](1 − 𝜙) − (𝜙𝑅𝑡−1) + (𝜓𝑅𝐿,𝑡−1
2 ) + (𝜅𝑅𝐿,𝑡−1) 

𝐷𝑡 = 𝐷𝑡−1 + 𝜇𝜏𝐶𝑡−1 

 

Locked down subpopulation: 

𝑆𝐿,𝑡 = 𝑆𝐿,𝑡−1 − 𝑆𝐿,𝑡−1(𝜆 + 𝜅) + (𝜙𝑆𝑡−1) − (𝜓𝑆𝑡−1
2 ) + (1 − 𝜙)𝜀𝑆𝑡−1 

𝐸𝐿,𝑡 = 𝐸𝐿,𝑡−1 + 𝜆𝑆𝐿,𝑡−1 − (𝛼 + 𝜅)𝐸𝐿,𝑡−1 + (𝜙𝐸𝑡−1) − (𝜓𝐸𝐿,𝑡−1
2 ) + (1 − 𝜙)𝜀𝐸𝐿,𝑡−1 

𝐼𝐿,𝑡 = 𝐼𝐿,𝑡−1 + (1 − 𝜌)𝛼𝐸𝐿,𝑡−1 − (𝛾 + 𝜅)𝐼𝐿,𝑡−1 + (𝜙𝐼𝑡−1) − (𝜓𝐼𝐿,𝑡−1
2 ) + (1 − 𝜙)𝜀𝐼𝐿,𝑡−1 

𝑃𝐿,𝑡 = 𝑃𝐿,𝑡−1 + 𝜌𝛼𝐸𝐿,𝑡−1 − (𝜈 + 𝜅)𝑃𝐿,𝑡−1 + (𝜙𝑃𝑡−1) − (𝜓𝑃𝐿,𝑡−1
2 ) + (1 − 𝜙)𝜀𝑃𝐿,𝑡−1 

𝐶𝐿,𝑡 = 𝐶𝐿,𝑡−1 + 𝜈𝑃𝐿,𝑡−1 − (𝜇𝜏 + 𝜅 + (1 − 𝜇)𝜔)𝐶𝐿,𝑡−1 + (𝜙𝐶𝑡−1) − (𝜓𝐶𝐿,𝑡−1
2 ) + (1 − 𝜙)𝜀𝐶𝐿,𝑡−1 

𝑅𝐿,𝑡 = 𝑅𝐿,𝑡−1 + 𝛾𝐼𝐿,𝑡−1 + (1 − 𝜇)𝜔𝐶𝐿,𝑡−1 − 𝜅𝑅𝐿,𝑡−1 + (𝜙𝑅𝑡−1) − (𝜓𝑅𝐿,𝑡−1
2 ) + (1 − 𝜙)𝜀𝑅𝐿,𝑡−1 

𝐷𝐿,𝑡 = 𝐷𝐿,𝑡−1 + 𝜇𝜏𝐶𝐿,𝑡−1 

 

  

The transmission rate in the absence of any intervention was set assuming an R0 of 3 (28). Data 

captured deaths pre-lockdown, during lockdown and just following the initial release of 

individuals after lockdown. During lockdown, the population split into two sub-populations. The 

transmission rates were generated by fitting deaths in the model to England’s mortality data 

retrieved from (29). At the same time as lockdown, social distancing also reduced per capita 

contact rates among the free-moving population: 

  

𝜎 = {
𝑟𝑎𝑛𝑔𝑒(0.1 − 1) 𝑖𝑓 𝑡 > 𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

For the full range of social distancing, the model was refitted to the mortality data (more 

stringent social distancing among free-movers requiring less of a reduction in the lockdown 

transmission rate, βL). Least squares fitting using the Levenberg-Marquardt minimization 

algorithm was conducted using ‘lmfit’ in Python v3.8.  
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Supplementary figures 

 
Fig S1. COVID-19 associated mortality and population density in England. Age-

standardized mortality ratios are mapped in the left panel and population density per km2 in the 

right, by lower-tier local authority. 

 

  
Fig S2. Dependence of observed versus age-specific expected mortality rates (standardized 

mortality ratio, SMR) on population density. The effects of different outbreak seed timings 

for different LTLAs are incorporated. a) Four forms of density dependence (and loess curve, 

dashed black line) are illustrated in the left panel, with LOOIC values for each fit demonstrating 

superiority of the saturating density-dependent function. b) The heterogeneous impact of 84% 

effective density reduction on the proportional reduction in predicted mortality among the freely 

moving population according to the saturating model is mapped in the right panel. 

 

  

a b 
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Fig. S3. Sensitivity analysis of movements between sub-populations. The difference between 

functional forms in projected time (contours=days) until the ICU capacity is exceeded by 

critically ill patients. Left: 50% movement (‘ε’), Middle: 100% ε, Right: 150% ε. For each value 

of ε the model was refitted to the data (the density-dependent model was insensitive to 

movement; for the frequency-dependent model, higher rates of movement required slightly less 

of a reduction in transmission among the lockdown sub-population). Black lines mark thresholds 

for interrupting transmission for density-independent (dashed) and -dependent (solid) models. 

Dashed white lines mark minimum social distancing required to prevent immediate ICU 

inundation under the frequency-dependent model. 

 

 

 

Supplementary tables 

Table S1. Mathematical model variables 

Variable Definition 

St , SL,t Susceptible population at time ‘t’; subscript ‘L’ denotes lockdown sub-population 

Et , EL,t Exposed population at time ‘t’ 

It , IL,t Infected population at time ‘t’ 

Pt , PL,t Pre-critically infected population at time ‘t’ 

Ct , CL,t Critically infected population at time ‘t’ 

Rt , RL,t Recovered population at time ‘t’ 

Dt , DL,t Dead population at time ‘t’ 
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Table S2. Mathematical model parameters 

Parameter Definition Value Source 

𝜆 Force of infection (composite of other parameters and variables) n/a n/a 

𝛽′′ Transmission rate (linearly density-dependent assumption)  derived 

𝛽 Transmission rate   derived 

𝛽𝐿  Transmission rate while under lockdown (frequency dependent)  derived 

𝜀 Daily rate of movement from free-moving to lockdown sub-pop 0.1 but see 

sensitivity 

analysis section 

𝜅 Daily rate of movement from lockdown to free-moving sub-pop 

𝜙 Pulsed, mass movement of 84% free-movers into lockdown 0.84 (11) 

𝜓 Daily rate of release of lockdown sub-pop Wide range tested 

𝜎 Fold change in social contacts among free-movers Wide range tested 

𝛼 Inverse of infection latent period 1/5.8 (31) 

𝜌 Proportion of infected individuals becoming critically infected  0.02 (32) 

𝛾 Inverse of recovery period 1/5 (33) 

𝜈 Inverse of additional delay before symptoms become critical 1/7 (34) 

𝜇 Proportion of critically infected that die 0.427 (35) 

𝜏 Inverse of time for critically ill to die 1/7 (36) 

𝜔 Inverse of time for critically ill to recover 1/7.2 (35) 
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