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Abstract 
 
Limitations in laboratory diagnostic capacity and reporting delays have hampered efforts to 
mitigate and control the ongoing coronavirus disease 2019 (COVID-19) pandemic globally. To 
augment traditional lab and hospital-based surveillance, Bangladesh established a participatory 
surveillance system for the public to self-report symptoms consistent with COVID-19 through 
multiple channels. Here, we report on the use of this system, which received over 3 million 
responses within two months, for tracking the COVID-19 outbreak in Bangladesh. Although we 
observe considerable noise in the data and initial volatility in the use of the different reporting 
mechanisms, the self-reported syndromic data exhibits a strong association with lab-confirmed 
cases at a local scale. Moreover, the syndromic data also suggests an earlier spread of the 
outbreak across Bangladesh than is evident from the confirmed case counts, consistent with 
predicted spread of the outbreak based on population mobility data. Our results highlight the 
usefulness of participatory syndromic surveillance for mapping disease burden generally, and 
particularly during the initial phases of an emerging outbreak.  
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1. Introduction 
The ongoing coronavirus disease 2019 (COVID-19) pandemic has overwhelmed the healthcare 
systems of countries around the world, exposing the challenges faced by public health agencies 
when responding to rapidly emerging outbreaks. In particular, the scarcity of reliable data on the 
incidence of COVID-19 cases has hindered a timely response. On a national scale, control 
efforts should be guided by accurate data on cases and disease burden, ideally captured 
through widespread surveillance. However, very few countries affected by COVID-19 have 
sufficient viral testing capacity to monitor cases occurring in the community adequately. 
Hospitalization and death rates provide relatively robust indicators of SARS-CoV-2 transmission 
in some areas, but these are lagged by about 2 and 3 weeks, respectively. Identifying 
alternative indicators of transmission that reflect the timing of new infections is therefore an 
important priority for responding to the epidemic.  
 
The first COVID-19 confirmed case occurred in Bangladesh on March 8th, with nearly 200,000 
confirmed cases by July 15. SARS-CoV-2 testing capacity has increased significantly from a 
daily average of fewer than 100 tests in March to about 15,000 in June. However, as in most 
countries, the testing capacity can only cover a small fraction of even symptomatic cases. 
Reporting delays in rural and remote parts of the country also make it difficult to monitor the 
epidemic across the country in real-time. To augment surveillance, a participatory surveillance 
system based on self-reported symptoms via national telephone hotlines and the internet, 
assisted by a telemedicine team of clinicians, was deployed in March and rapidly scaled up over 
the course of the first few months of the outbreak.  
 
The participatory surveillance system was set up through a public-private partnership, and is 
designed to collect syndromic information, to identify potential disease hotspots, and to provide 
information about COVID-19 to participants. Any surveillance data that relies on self-reported 
symptoms to monitor transmission will be subject to a range of biases, including the extent to 
which people are aware of and know how to use the system, and reporting behavior of people in 
the middle of a pandemic, which has naturally created much fear and uncertainty. Given the 
lack of specificity of the main symptoms of COVID-19, namely fever and cough, we also expect 
many people experiencing symptoms to have another disease unrelated to the coronavirus 
outbreak. Nevertheless, an uptick in individuals reporting symptoms consistent with COVID-19, 
particularly if verified through an interview with a clinician, may provide important insights into 
transmission hotspots.  
 
While participatory crowdsourced syndromic surveillance has been utilized in many contexts 
[1]–[7] , including for COVID-19 [8], [9], their ability to track an emerging outbreak at a high 
spatial resolution has not been evaluated previously. Here, we show that one such system, 
though noisy, provides an indication of where and when to expect new cases, suggesting that it 
could be a useful model in other places that need to map COVID-19 risk for decision making. 
The syndromic data suggests that the outbreak had spread across the country much faster than 
is evident from official case counts, consistent with geographic spread based on population 
mobility data. This system was developed rapidly, and we emphasize that the methods used to 
analyze the data are simple, reflecting both the urgency of establishing surveillance and the 



 

ease and reproducibility of the analysis. Nevertheless, we believe this is a useful, generalizable 
approach for participatory surveillance during an emerging epidemic.  
 

2.  Methods 
Data 
The self-reported syndromic surveillance data analyzed here was compiled from three main 
sources: 1) a hotline number equipped with an Interactive Voice Response (IVR) system, 2) 
several internet and mobile applications and 3) an unstructured supplementary service data 
(USSD) based messaging system (see Figure 1). All systems are available free of charge to the 
user. Individuals are asked to report on their symptoms (cough, fever, and shortness of breath), 
contact with people with symptoms, contact with someone who had tested positive for COVID-
19, and in some cases, their age and gender (see Supplementary Methods S1 for additional 
detail). Each response in the system is geolocated based on the nearest cell phone tower of the 
respondent, and mapped to upazilas, the operationally relevant administrative units in 
Bangladesh.  
 
A subset of individuals reporting symptoms is connected with a human verifier - telemedicine 
doctors, healthcare professionals or trained field workers - for a preliminary diagnosis, based on 
their responses to the questions and algorithms specific to each mobile phone operator (see 
Supplementary Methods S1 for additional detail). Following an evaluation over the phone with a 
human verifier, individuals are then classified as having high or low risk for COVID-19. This 
classification is based on the reported symptoms, contact with people with symptoms, and, to 
some extent, the judgement of the human verifier. In the initial phase of the outbreak, high risk 
classification was also based on whether or not the individual was from an area with confirmed 
COVID-19 cases. Hence, we see a stronger correlation of the number classified as high risk 
with reported cases at the start of the outbreak (Supplementary Figure S1). Since self-reported 
data is inherently noisy, here we focus on the subset of people reporting multiple symptoms 
consistent with COVID-19 and those who were connected with a human verifier. 

 
Figure 1: Self-reported syndromic data streams and human verification process 
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We combine these data from the multiple sources to establish i) the number of individuals 
reporting multiple symptoms consistent with COVID-19 and ii) the number of suspected cases 
that are classified as high risk following human verification. We estimate these values for each 
of the 544 upazilas. To adjust for variations in population density in different upazilas, we 
calculate both the raw counts as well as the per capita count for each metric using population 
data from Worldpop [10]. The self-reported syndromic surveillance system was ramped up and 
widely advertised starting at the beginning of April. Here, we analyze data available from April 1 
to June 15. To reduce noise in the daily data, we sum the measures by week. Results are 
qualitatively similar when using two-week windows.  
 
Validation of syndromic data with confirmed case counts 
While testing capacity is limited and spatially heterogeneous, in the absence of other robust 
indicators it is currently used as the key epidemiological indicator guiding decision-making in 
Bangladesh. To establish how well the self-reported data reflects at least this imperfect signal of 
the epidemic, we compare the trends in the number reporting symptoms and those classified as 
high risk cases - which we assume reflect symptom onset - to lab-confirmed cases with varying 
time lags, to account for the delay in lab-confirmed testing and reporting. In the early phase of 
the outbreak, before testing capacity was expanded, individuals were identified for testing 
through the human verification process. Again, this can explain the stronger correlation of the 
number classified as high risk with confirmed cases at the start of the outbreak (Supplementary 
Figure S1). The syndromic surveillance system is not currently used to inform testing locations, 
so would not influence the association between confirmed cases and self-reported data.   
 
We calculated correlations between lab-confirmed cases and each of the syndromic indicators 
in an upazila for every week separately to understand potential changes in the association over 
time (Supplementary Figures S1 and S2). We also fitted a linear mixed-effects model to 
estimate the relationship between the syndromic indicators and confirmed cases over time, with 
a random effect to capture upazila-level differences. Specifically, we modeled the number of 
confirmed cases in each upazila in each week as a linear combination of the syndromic 
indicator, the lagged value of the syndromic measure at one and two weeks, and a random 
effect for each upazila. We estimated separate models for the two syndromic indicators (see 
Supplementary Methods S2 for full model specification).  
 
Comparison with predicted importation based on population mobility  
Since test capacity was especially limited at the start of the outbreak, particularly in places 
outside Dhaka, we also compare the syndromic data to predictions of imported cases from 
Dhaka to the rest of the country. The predictions are similar to those based on a Chikungunya 
outbreak in 2017 [11] and are based on population mobility estimates from mobile phone data 
and estimated prevalence at the start of the outbreak assuming a simple exponential growth 
model (Supplementary Methods S3). We use previously described methods to construct 
population mobility estimates from mobile phone call detail records (CDR) from the largest 
mobile phone operator in Bangladesh, with over 64 million subscribers. Here, we use CDR data 
available for April 2017 as an estimate for the pre-lockdown movement patterns in Bangladesh. 
To test the validity of this assumption, we compare the CDR data for April 2017 to CDR data 



 

available for May 2020. We find a strong correlation between the proportion of travelers 
traveling from Dhaka to all other upazilas in 2017 and in 2020 (Supplementary Figure S3). Since 
the CDR data for 2020 is unavailable for the pre-lockdown business-as-usual period in March, 
we use the 2017 mobility estimates to derive the relative distribution of travelers from Dhaka to 
each upazila outside Dhaka district, and adjust the volume of travel with the 2020 population 
estimate for Dhaka. We estimate the probability of importing at least one infected person, using 
the mobility estimates and an estimated prevalence for Dhaka at the start of the outbreak. Using 
previously described methods for the spread of COVID-19 [12], we estimate the probability of 
importing one or more infected cases in the first 16 days of the outbreak (i.e. prior to any travel 
restrictions) for each upazila outside Dhaka district. 
 

3. Results 
 
The self-reported syndromic surveillance system received nearly 3.5 million responses between 
April 1 and June 15. There is considerable temporal variation in the total response volume 
across the three systems. For instance, a large spike occurred in the responses to the USSD 
system in April due to targeted messaging from the four mobile phone operators 
(Supplementary Figure S4). Despite the noise and initial volatility, the number of people 
reporting symptoms and the number classified as high risk following human verification exhibits 
a general increasing trend in line with the epidemic trajectory in Bangladesh (Figure 2).  
 
Association with confirmed case counts 
The syndromic surveillance data shows strong associations with confirmed cases over the same 
time period and with a lag time of one to two weeks (Figures 2 and 3). A spike in the number of 
people reporting symptoms, and those considered high risk, occurred nationally during the first 
few weeks of May, and a spike in lab confirmed cases followed at the end of the month. The 
erratic pattern of confirmed cases at the end of May is most likely a result of the major Eid 
holidays, during which both testing and the reporting of test results may have been delayed. 
Interestingly, there is also a decline in the self-reported numbers during the Eid holidays, 
perhaps reflecting a lower propensity of reporting symptoms during the holiday period. 
 
 
 



 

 
 
Figure 2: Timeseries of (A) daily number of confirmed cases, (B) total number classified as a 
suspected COVID-19 case and (C) the total number classified as being high risk of COVID-19 
following human verification (bottom) from April 15 to June 15. Data prior to April 15 are not 
comparable as several of the systems were not set up until April 15 and are, thus, not shown 
here. The blue line shows the seven-day rolling average. The spatial distributions are shown in 
(D), (E), and (F) respectively. The heatmaps show each measure summed over a two-week 
window from June 1 to June 15 (on a log scale). 
 



 

 
The number of people reporting symptoms consistent with COVID-19 and the number classified 
as high risk are both significantly correlated with observed cases in the same time period, as 
well as at lags of one and two weeks. The correlation for the most recent seven days (June 8 to 
June 15) is shown in Figure 3 (correlations for each week is shown in Supplementary Figures 
S1 and S2). When we compare the timeseries and include a random effect to account for 
upazila-level differences, such as population size, we find the largest positive association 
between confirmed cases and the syndromic data in the same time period followed by lags of 
one week and two weeks (Figure S5). The observed positive relationship suggests that the self-
report system may be a useful indicator of an uptick in cases in particular regions as the 
epidemic unfolds. We see a stronger association between high risk cases and confirmed cases 
at the start of the outbreak (likely due to reasons described above), and, interestingly, a stronger 
association between the number reporting symptoms and confirmed cases in more recent time 
periods (Figure S2). Monitoring and evaluating these temporal changes will be crucial for 
assessing the reliability of self-reported data as the pandemic evolves. 
 

 
 
Figure 3: Top row: Correlation between confirmed cases per 100,000 and the number of people 
who are classified as high risk for COVID-19 following human verification (summed over a one 
week window from June 8 to June 14) for the same time period, with a one week lag, and a two 
week lag. Bottom row: Correlation between confirmed cases per 100,000 and the number of 
people reporting symptoms consistent with COVID-19 infection (summed over a one-week 



 

window from June 8 to June 14) for the same time period, with a one-week lag, and a two-week 
lag. All plots show the Pearson correlation coefficient for the bivariate relationship and 
associated p-values. 
 
 
Early spread of COVID-19 in Bangladesh  
Data from the syndromic surveillance suggests that the outbreak was much more widespread at 
the start of April, about a month after the first confirmed case, than is evident from the data on 
confirmed cases. Confirmed case counts remained low in the month following the first detected 
case on March 8, reflecting the very limited testing capacity at the start of the outbreak. Initial 
testing was limited to travelers arriving from abroad and known contacts of confirmed cases. 
Until March 27 a single laboratory was responsible for administering and analyzing COVID-19 
tests in Bangladesh, and only about 1600 total samples were tested nationally by the end of 
March [13]. Testing was also largely limited to Dhaka until the end of March [14]–[16]. 
 
While the number of laboratory-confirmed cases remained low in March and April, even as early 
as April 1 (when the syndromic surveillance system was not yet fully set up), nearly all upazilas 
had individuals reporting symptoms consistent with COVID-19. The vast majority of upazilas 
had individuals reporting symptoms as well as individuals classified as being at high risk for 
COVID-19 before the first confirmed case was reported (Figure 5), with a median lead time of 
10 days. Confirmed cases in many upazilas were first reported at the beginning of April, and 
cases across the country began to increase from mid-April onwards, reflecting the increase in 
testing capacity and the expansion of testing beyond Dhaka.  
 
The early spread of the outbreak suggested by the syndromic surveillance is also consistent 
with the predicted importation across the country based on population mobility data. We find a 
significant positive association between the probability of an upazila having an imported case by 
March 19, before the lockdown and physical distancing measures were put in place, and the 
syndromic surveillance indicators. Taken together, these results are indicative of an early 
spread of the outbreak, which is not captured in the official case counts. These results also 
demonstrate the potential usefulness of participatory surveillance as an early-warning system 
during the initial phases of an emerging outbreak. 
 
 
 
 
 



 

 
Figure 5: Days between the first confirmed case and the first high risk classification based on 
the self-reported syndromic surveillance. Spatial variation in the time between the first confirmed 
case and the first high risk classification shown in (A) and the respective dates by upazila are 
shown in (B). Upazilas are ordered according to the date of their first high risk classification in 
(B). (C) shows the density plot for the lag between first high risk classification and first confirmed 
case. Red line indicates zero days of lag time. A positive lag time indicates that the first high risk 
classification was reported before the first confirmed case. The median lag time across all 
upazilas was 10 days. 
 

 
 
Figure 6: Correlation between syndromic data (for first two weeks that data from all surveillance 
streams is available: April 15 to April 28) and probability of importation estimated using mobile 
phone data. Both plots show the Pearson correlation coefficient for the bivariate relationship and 
associated p-values. 
 



 

4. Discussion 
 
The ongoing COVID-19 pandemic has highlighted the limitations of traditional surveillance 
systems in terms of their timeliness and scalability. Unlike traditional surveillance that requires 
patients to interact with the healthcare system, and are limited by testing capacity and reporting 
delays, participatory surveillance relies on the self-reporting of symptoms. Crowdsourced 
participatory surveillance, through phone hotlines, mobile phone applications, and the internet, 
have been used in many contexts and have shown the greatest promise for influenza 
surveillance [7], [17]–[20]. Given the rapid global increase in the use of mobile phones and 
access to the internet, these surveillance systems can provide a useful complement for more 
traditional surveillance systems [2].  
 
Here, we show the potential use of participatory syndromic surveillance for tracking the COVID-
19 outbreak in Bangladesh. These self-reported systems were set up very rapidly as the 
COVID-19 epidemic started to emerge in Bangladesh. Although we observe considerable noise 
in the data and initial volatility in the use of the different reporting mechanisms, as expected, the 
self-reported data is positively correlated with confirmed cases at the upazila level a week later. 
Since the data from this tool is not being used to guide testing currently, we can be reasonably 
confident that the signal is not the cause of more testing, but it remains difficult to determine 
how tests are allocated across the country. We must therefore rely on confirmed cases as a way 
to establish the congruence of these indicators, but we acknowledge that there could be 
unobserved epidemic dynamics that remain hidden from both kinds of surveillance data.  
 
The self-reported surveillance system also suggests an earlier spread of the outbreak across 
Bangladesh than is evident from the confirmed case counts. On average, the first high risk 
classification based on the self-reported data preceded the first confirmed case by a little over a 
week. Nevertheless, we observed a more wave-like dynamic among the high-risk classified calls 
compared to confirmed cases, which emerged very rapidly across the country. We believe this 
is likely to reflect the roll-out of testing capacity, and that the self-report data offers reasonable 
insights into the early stage of the epidemic. The lead-time offered by this kind of system could 
be particularly important for monitoring reintroductions and potential resurgence across different 
parts of the country in the future. This system can also be useful for prioritizing the efforts of 
community support teams that are currently being deployed in parts of the country to increase 
awareness and promote non-pharmaceutical interventions.  
 
The self-reported surveillance system is inherently noisy and subject to a range of reporting 
biases. Nevertheless, we believe this system provides a useful approach to augment 
surveillance for a disease like COVID-19, where testing capacity is limited, and symptoms are 
relatively non-specific. Ideally, this would be combined with other syndromic surveillance data 
from clinics and hospitals, as well as hospitalization and death rates that are COVID-19 specific. 
As the epidemic unfolds in Bangladesh, this system can be continuously validated and 
improved, and maintained in its aftermath as a more general public health surveillance system. 
By directly engaging with the population at risk, participatory surveillance also provides a 



 

channel for disseminating public health guidelines and information and can enable a more rapid 
response to public health emergencies. 
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