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Abstract

In this work, we further the investigation of an SEIRS model to study the dynamics
of the Coronavirus Disease 2019 pandemic. We derive the basic reproduction number
R0 and study the local stability of the disease-free and endemic states. Since the con-
dition R0 < 1 for our model does not determine if the disease will die out, we consider
the backward bifurcation and Hopf bifurcation to understand the dynamics of the dis-
ease at the occurrence of a second wave and the kind of treatment measures needed to
curtail it. Our results show that the limited availability of medical resources favours
the emergence of complex dynamics that complicates the control of the outbreak.

1 Introduction

Since the first cases of Coronavirus Disease 2019 (COVID-19) were reported in Wuhan,
China in December 2019, the number of cases of this disease has increased exponentially
and the pandemic has become a global threat. The outbreak of COVID-19 has spread
all over the world and has been declared a public health emergency by the World Health
Organization (WHO). Many researchers have proposed mathematical models based on
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alexandervictor16@yahoo.com (V. A. Okhuese), makram 0451@hotmail.com (M. Akram)

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.28.20183723doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.08.28.20183723
http://creativecommons.org/licenses/by-nc-nd/4.0/


systems of differential equations to describe the dynamics of the COVID-19 outbreak as
time progresses, and these models have been proved useful to investigate the effect of
applying different strategies to contain the epidemic.

In the paper [1], the authors discussed the global analysis of an SEIRS model for
COVID-19 with saturated incidence and treatment response where, among other results,
they derived the basic reproduction number and established the local and global stabilities
of the disease-free and endemic states, thus concluding that the effectiveness of the treat-
ment response applied determines whether an endemic situation is imminent within the
population. The SEIRS model proposed in [1] is an extension the SEIRUS model studied
in [2, 3] (where S represents the susceptible class, E is the exposed class in the latent
period, I is the infectious class, R is the recovered class and U is the undetectable class),
obtained as a result of collapsing the U class due to the fact that the undetected class and
the recovered class can only be certified COVID-19 free when they test negative twice. The
SEIRUS model as conceived by the Centre for Disease Control in 2017 was built on the
premise that on recovery there is no reinfection. Currently, there is no definite answer to
the question whether people who recover from COVID-19 can be reinfected with the virus
[4]. It is not clear whether some patients who have recovered and later tested positive again
have truly been reinfected, or, at the time of their “recovery”, they still had low levels of
the virus in their systems [4, 5].

There are growing concerns from trend analysis of COVID-19 that endemic situations
may be imminent in some parts of the world such that when the current disease trend is
long forgotten, the disease may become endemic in some parts as in the case of Lassa Fever
in Nigeria [6], Ebola in D.R. Congo [7] to mention a few.

Some studies [8–10] have shown that the dynamics of the model proposed are deter-
mined by the disease’s basic reproduction number, R0. The fact which is generally known
to epidemiologists that if R0 < 1, the disease can be eliminated from the community,
whereas an epidemic occurs when R0 > 1 [11]. Meanwhile other studies such as Alexander
et al. [12] and Arino et al. [13] established that the criterion for R0 < 1 is not always suf-
ficient to control the spread of the disease, a phenomenon known as backward bifurcation.
Mathematically, when a backward bifurcation occurs, there are at least three equilibria
for a certain range of parameters with R0 < 1: the stable disease-free equilibrium, a
large stable endemic equilibrium and a small unstable endemic equilibrium which acts as
a boundary between the basins of attraction for the two stable equilibria. In some cases, a
backward bifurcation leading to bistability can occur, which makes the disease endemic in
the population given a sufficiently large initial outbreak. Several examples of this bistable
behaviour have been found in mathematical models for COVID-19, such as [5, 14–16].
These phenomena pose significant epidemiological consequences for disease management
since their existence implies that the basic reproduction number of the disease should be
reduced to a value much lower than one to ensure the eradication of the epidemic.

A common assumption in classical epidemic models is that the rate of treatment against
the disease is directly proportional to the number of infective individuals. However, in
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the case of COVID-19, the availability of medical resources such as ventilators, hospital
beds and trained medical personnel is too limited compared to the increasing number of
infected cases, which has inflicted a great pressure on the healthcare systems around the
world. Hence, when developing mathematical models for this disease, it would be more
adequate to consider a saturated treatment rate, which increases more slowly when the
size of infected population becomes too large.

2 Model description

In this paper, we propose to study the following model:

S′(t) = A− µS − βSI

1 + αI
+ δR,

E′(t) =
βSI

1 + αI
− (γ + µ)E,

I ′(t) = γE − (σ + µ+ ϕ)I − T (I),

R′(t) = σI − (δ + µ+$)R+ T (I),

(1)

with the total population being

N(t) = S(t) + E(t) + I(t) +R(t).

Here, S(t) is the number of susceptible individuals, E(t) is the number of exposed indi-
viduals, I(t) is the number of infectious individuals, and R(t) is the number of individuals
that are quarantined and expecting recovery or have recovered from the infection.

The parameter A is the recruitment rate of the population, µ is the natural death rate
of the population per time unit, α is the saturation parameter that measures the inhibitory
effect, β is the rate of transmission, γ is the rate of developing infection after being ex-
posed, σ is the natural recovery rate, δ is the proportion of the removed population that
becomes susceptible again, ϕ is the disease-induced death rate of the infected population
not quarantined, $ is the disease-induced death rate of quarantined infected population,
βSI/(1 + αI) is the saturated incidence rate, 1/(1 + αI) is the inhibitory factor and T (I)
is the saturated treatment response defined as

T (I) =
rI

1 + bI

(here if b = 0, the treatment becomes bilinear, and if r = 0, the treatment is null). All
parameters are assumed positive, except δ, which is non-negative. Notice that δ = 0
represents the case when reinfection is not possible, that is, recovery from the disease gives
permanent immunity. The flow diagram of the model can be seen in Figure 1.

The SEIRS model (1) is based on the one studied in [1] but replacing the piecewise
linear treatment function by a saturated function. We can see that model (1) is similar to
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Figure 1: Schematic diagram of the model.

Agrawal et al.’s model in [17]. Here, we will extend the research done in [1] and [17] by
studying the backward and Hopf bifurcation dynamics of model (1).

The rest of this paper is structured as follows. In Section 3, we compute the basic
reproduction number of our model. In Section 4, we determine conditions for the existence
of endemic equilibria. We study the local stability of equilibria in Section 5. We provide
conditions for the occurrence of backward bifurcation in Section 6 and for Hopf bifurcation
in Section 7. In Section 8, we fit the parameter values to the reported data of the COVID-
19 pandemic and perform some numerical simulations. Finally, we discuss our results and
provide some conclusions in Section 9.

3 Basic reproduction number

Considering the feasible region of the system (1) as

Ω =

{
(S,E, I,R) ∈ R4

+ : lim sup
n→∞

(S + E + I +R) ≤ A

µ
, S ≥ 0, E ≥ 0, I ≥ 0, R ≥ 0

}
.

It follows that the region Ω is positively invariant with respect to the system (1), which
implies that the ω-limit sets of all solutions of the model in R4

+ are contained in Ω for all
time and those outside Ω are eventually attracted to that region. Hence, the system (1) is
epidemiologically well posed.

Now, we will find the basic reproduction number R0 of the system (1) by obtaining the
Jacobian of the system and using the Next Generation Matrix due to van den Driessche
and Watmough [18]. The Jacobian matrix evaluated at en equilibrium (S∗, E∗, I∗, R∗) is
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given by

J(S∗, E∗, I∗, R∗) =


−µ− βI∗

1+αI∗ 0 − βS∗

(1+αI∗)2 δ
βI∗

1+αI∗ −(γ + µ) βS∗

(1+αI∗)2 0

0 γ −
(
σ + µ+ ϕ+ r

(1+bI∗)2

)
0

0 0 σ + r
(1+bI∗)2 −(δ + µ+$)

 .

(2)
We derive the disease-free equilibrium of system (1) with I = 0 and S = A/µ as the
Jacobian of the system in (2) reduces to

J(A/µ, 0, 0, 0) =


−µ 0 −βA

µ δ

0 −(γ + µ) βA
µ 0

0 γ − (σ + µ+ ϕ+ r) 0
0 0 σ + r −(δ + µ+$)

 . (3)

Using the next generation matrix, it is clear that the reproduction number R0 is the spectral
radius of the next generation matrix derived from the exposed and infected class, i.e.,

R0 = ρ(K),

where ρ(K) is the spectral radius of the operator K and K = FV −1 is the next generation
matrix. F is derived from the exposed and infected class and V are the remaining terms
after F is taken.

Thus,

F =

(
0 βA

µ

0 0

)
, (4)

V =

(
−(γ + µ) 0

γ − (σ + µ+ ϕ+ r)

)
, (5)

V −1 =

(
γ + µ 0
−γ σ + µ+ ϕ+ r

)
, (6)

so

K = FV −1 =

(
0 βA

µ

0 0

)(
γ + µ 0
−γ σ + µ+ ϕ+ r

)

=

 γβA

µ(µ+ γ)(σ + µ+ ϕ+ r)

βA

µ(µ+ γ)(σ + µ+ ϕ+ r)
0 0

 (7)

is the next generation matrix of the system (1).
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The spectral radius is

ρ(K) =
γβA

µ(µ+ γ)(σ + µ+ ϕ+ r)
.

Hence the basic reproduction number R0 of system (1) is

R0 =
γβA

µ(µ+ γ)(σ + µ+ ϕ+ r)
. (8)

4 Equilibria of the model

The equilibria of model (1) are given by the system of equations

A− µS − βSI

1 + αI
+ δR = 0, (9)

βSI

1 + αI
− (γ + µ)E = 0, (10)

γE − (σ + µ+ ϕ)I − rI

1 + bI
= 0, (11)

σI − (δ + µ+$)R+
rI

1 + bI
= 0. (12)

If we substitute I = 0 in the above system, we obtain the disease-free equilibrium of the

model, given by P0 =
(
A
µ , 0, 0, 0

)
.

We will determine now the endemic equilibria of the model by considering the case
when I is positive. Solving for E and R in equations (11) and (12), respectively, we obtain

E =

(
σ + µ+ ϕ+ r

1+bI

)
I

γ
(13)

and

R =

(
σ + r

1+bI

)
I

δ + µ+$
. (14)

Then, from equations (10) and (13), we also get

S =
(1 + αI)(γ + µ)E

βI
=

(1 + αI)(γ + µ)

βγ(1 + bI)

[
(1 + bI)(σ + µ+ ϕ) + r

]
. (15)

Lastly, it follows from (9) and (10) that A−µS+δR−(γ+µ)E = 0. Substituting equations
(13)–(15) and simplifying, we obtain the following equation in I:

ÃI2 + B̃I + C̃ = 0, (16)
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where

Ã = b

[
(γ + µ)(σ + µ+ ϕ)(αµ+ β)− βγδσ

δ + µ+$

]
,

B̃ = (γ + µ)
[
bµ(σ + µ+ ϕ) + (αµ+ β)(σ + µ+ ϕ+ r)

]
−Abβγ − βγδ(σ + r)

δ + µ+$
,

C̃ = µ(γ + µ)(σ + µ+ ϕ+ r)(1−R0).

(17)

Therefore, the endemic equilibria of system (1) take the form (S∗, E∗, I∗, R∗), where

S∗ =
(1 + αI∗)(γ + µ)

βγ(1 + bI∗)

[
(1 + bI∗)(σ + µ+ ϕ) + r

]
, E∗ =

(
σ + µ+ ϕ+ r

1+bI∗

)
I∗

γ
,

R∗ =

(
σ + r

1+bI∗

)
I∗

δ + µ+$
,

and I∗ is a positive root of the polynomial

P (I) := ÃI2 + B̃I + C̃. (18)

Since δ ≥ 0 and the other parameters of the model are positive, we have 0 ≤ δ/(δ+µ+$) <
1, and then

(γ + µ)(σ + µ+ ϕ)(αµ+ β)− βγδσ

δ + µ+$
> (γ + µ)(σ + µ+ ϕ)(αµ+ β)− βγσ > 0.

Thus, the coefficient Ã in (17) is always positive, and C̃ > 0 (C̃ < 0) if R0 < 1 (R0 > 1,
respectively). Since Ã > 0, the existence of the positive solutions of (18) depends on the
signs of B̃ and C̃. If R0 > 1, then P (0) = C̃ < 0 and the graph of P (I) is an upwards
parabola that crosses the horizontal axis at a positive value and a negative value of I (see
Figure 2); hence, (18) has exactly one positive root and thus there is a unique endemic
equilibrium.

If R0 = 1, then C̃ = 0 and there is a unique non-zero solution of (18), I = −B̃/Ã,
which is positive if and only is B̃ < 0. In this case, there is a positive endemic equilibrium
if B̃ < 0, and none otherwise.

Lastly, we consider the case when R0 < 1 and then C̃ > 0. If B̃ ≥ 0, it is easy to see
by Descartes’ rule of signs that P (I) has no positive roots. If B̃ < 0, the solutions of (18)
are given by

I =
−B̃ ±

√
B̃2 − 4ÃC̃

2Ã
.

These solutions are positive and distinct only when B̃2− 4ÃC̃ > 0, in which case there are
two endemic equilibria. The solutions of (18) coalesce into a double root when B̃2−4ÃC̃ =
0, so there is only one endemic equilibrium in that case. Thus, we can establish the
following.
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I

P (I)

P (0)

1
Figure 2: Graph of P (I) in the case when R0 > 1.

Theorem 1. The model (1) has

(i) A unique endemic equilibrium if R0 > 1;

(ii) A unique endemic equilibrium if B̃ < 0, and R0 = 1 or B̃2 − 4ÃC̃ = 0;

(iii) Two endemic equilibria if R0 < 1, B̃ < 0 and B̃2 − 4ÃC̃ > 0;

(iv) No endemic equilibrium otherwise.

By this it is clear from Theorem 1 case (i) that the model has a unique equilibrium
whenever R0 > 1. We also see from case (iii) that there exists the possibility of backward
bifurcation, which is when the locally asymptotically stable disease-free equilibrium coexists
with a locally endemic equilibrium.

Notice that, when b = 0, the coefficient B̃ reduces to

B̃ = (γ + µ)(αµ+ β)(σ + µ+ ϕ+ r)− βγδ(σ + r)

δ + µ+$

> βγ(σ + r)− βγδ(σ + r)

δ + µ+$

= βγ(σ + r)

(
1− δ

δ + µ+$

)
> 0.

(19)

This shows that B̃ will always be positive for b > 0 sufficiently small. Thus, it is noted
from Theorem 1 that the backward bifurcation phenomenon will not take place if b is close
to 0, which occurs when the saturation effect of the non-linear treatment rate rI/(1 + bI)
is reduced.

5 Local stability analysis

In this section, we will study the local stability of the disease-free and endemic equilibria
of model (1).
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5.1 Local stability of the disease-free equilibrium

Theorem 2. The disease-free equilibrium (P0) is:

(a) Locally asymptotically stable if R0 < 1.

(b) Unstable if R0 > 1.

Proof. The Jacobian matrix of the system at the disease-free equilibrium is given by

J(P0) =


−µ 0 −βA

µ δ

0 −(γ + µ) βA
µ 0

0 γ − (σ + µ+ ϕ+ r) 0
0 0 σ + r −(δ + µ+$)

 .

Then, the characteristic equation of the system (1) at P0 is

(µ+λ)(δ+µ+$+λ)

[
λ2 + (γ + σ + ϕ+ r + 2µ)λ+ (σ + µ+ ϕ+ r)(γ + µ)− γβA

µ

]
= 0.

(20)
By (20) it is clear that λ1 = −µ and λ2 = −(δ+µ+$) are two roots of the characteristic

equation. The other roots of are determined by the equation

λ2 + (γ + σ + ϕ+ r + 2µ)λ+ (σ + µ+ ϕ+ r)(γ + µ)− γβA

µ
= 0,

which has negative roots if and only of (σ+µ+ϕ+r)(γ+µ)− γβA
µ > 0, which implies that

the reproduction number R0 is less than one. This implies that the disease-free equilibrium
P0 is locally asymptotically stable when R0 < 1 and unstable when R0 > 1.

Thus, having establish the threshold quantity R0 in the system (1), which measures
the average number of infections generated by a single infected individual in a completely
susceptible population, Theorem 2 states that when R0 < 1, the introduction of a small
number of infected individuals into the community would not lead to large outbreak and
the disease dies out in time but when R0 > 1, the disease persists. However, the study
of backward bifurcation shows that the disease may persist even when the reproduction
number is less than unity (R0 < 1), as we will study in Section 6.

5.2 Local stability of the endemic equilibrium

Theorem 3. Let P ∗(S∗, E∗, I∗, R∗) be an endemic equilibrium of (1). Then P ∗ is locally
asymptotically stable if and only if

a3 > 0, a4 > 0 and a1a2a3 > a23 + a21a4, (21)
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where

a1 = γ + σ + ϕ+ δ +$ + 4µ+
βI∗

1 + αI∗
+

r

(1 + bI∗)2
,

a2 = (δ + µ+$)

(
µ+

βI∗

1 + αI∗

)
+ (γ + µ)

(
δ +$ + 2µ+

βI∗

1 + αI∗

)
+

(
σ + µ+ ϕ+

r

(1 + bI∗)2

)(
γ + δ +$ + 3µ+

βI∗

1 + αI∗

)
− γβS∗

(1 + αI∗)2
,

a3 =

(
µ+

βI∗

1 + αI∗

)
(δ + µ+$)

(
γ + σ + ϕ+ 2µ+

r

(1 + bI∗)2

)
+ (γ + µ)

(
δ +$ + 2µ+

βI∗

1 + αI∗

)(
σ + µ+ ϕ+

r

(1 + bI∗)2

)
− γβS∗

(1 + αI∗)2
(δ +$ + 2µ),

a4 =

(
µ+

βI∗

1 + αI∗

)
(γ + µ)(δ + µ+$)

(
σ + µ+ ϕ+

r

(1 + bI∗)2

)
− γβ

1 + αI∗

[
µ(δ + µ+$)S∗

1 + αI∗
+ δ

(
σ +

r

(1 + bI∗)2

)
I∗
]
.

(22)

Proof. We recall the Jacobian of system (1) at the endemic state P ∗:

J(S∗, E∗, I∗, R∗) =


−µ− βI∗

1+αI∗ 0 − βS∗

(1+αI∗)2 δ
βI∗

1+αI∗ −(γ + µ) βS∗

(1+αI∗)2 0

0 γ −
(
σ + µ+ ϕ+ r

(1+bI∗)2

)
0

0 0 σ + r
(1+bI∗)2 −(δ + µ+$)

 .

The characteristic equation is∣∣∣∣∣∣∣∣∣∣∣

−
(
µ+ λ+ βI∗

1+αI∗

)
0 − βS∗

(1+αI∗)2 δ
βI∗

1+αI∗ −(γ + µ+ λ) βS∗

(1+αI∗)2 0

0 γ −
(
λ+ σ + µ+ ϕ+ r

(1+bI∗)2

)
0

0 0 σ + r
(1+bI∗)2 −(λ+ δ + µ+$)

∣∣∣∣∣∣∣∣∣∣∣
= 0.

After some row and column operations, we derive the characteristic equation

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (23)

where a1, a2, a3 and a4 are given in (22).
Thus, by the Routh–Hurwitz criterion, it follows that the endemic equilibrium P ∗ is

locally asymptotically stable if and only if a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a23 + a21a4.
Due to positivity of parameters, a1 is always positive, so the stability condition can be
given by (21).
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6 Backward bifurcation analysis

Following the analysis in Section 4, we can obtain a range of values for R0 in which model
(1) can have two positive endemic equilibria. According to Theorem 1, this can only occur
when the discriminant B̃2−4ÃC̃ is positive. Thus, to find the value where the two endemic
equilibria merge into one, B̃2 − 4ÃC̃ is set to zero and solved for the critical value of R0,
denoted by Rc, given by

Rc = 1− B̃2

4Ãµ(µ+ γ)(σ + µ+ ϕ+ r)
. (24)

Hence, Rc < R0 is equivalent to B̃2 − 4ÃC̃ > 0 and therefore, backward bifurcation would
occur for values of R0 such that Rc < R0 < 1. By this and Theorem 1, the following result
is established.

Lemma 1. The system (1) has two endemic equilibria when B̃ < 0 and Rc < R0 < 1.

At this juncture we establish a stronger result based on a theorem due to Carr [19]
and restated in Castillo-Chavez and Song [20], which is based on the general centre man-
ifold theory and is not only useful in determining the local stability of the nonhyperbolic
equilibrium but also settles the question of the existence of another equilibrium which has
bifurcated from the nonhyperbolic equilibrium.

Theorem 4. Let

α∗ =
rb

σ + µ+ ϕ+ r
− k1
γA(δ + µ+$)

(25)

and

k1 = µ
[
(δ + µ+$ + ϕ+ r + σ)(γ + µ) + (δ +$)(ϕ+ r + σ)

]
+ γ$(ϕ+ r + σ) + δγϕ.

Then the system of equations in (1) undergoes backward bifurcation at R0 = 1 if α < α∗

and forward bifurcation if α > α∗.

Proof. We simplify and change the variables on the system (1). Let S = x1, E = x2, I = x3
and R = x4, so that N = x1 + x2 + x3 + x4. Using vector notation X = (x1, x2, x3, x4)

T ,
the system (1) can be written in the form

dX

dt
= (f1, f2, f3, f4)

T .
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Thus,

x′1(t) = f1 := A− µx1 −
βx1x3

1 + αx3
+ δx4,

x′2(t) = f2 :=
βx1x3

1 + αx3
− (γ + µ)x2,

x′3(t) = f3 := γx2 −
(
σ + µ+ ϕ+

r

1 + bx3

)
x3,

x′4(t) = f4 :=

(
σ +

r

1 + bx3

)
x3 − (δ + µ+$)x4.

(26)

Consider the case when R0 = 1. Suppose that β is chosen as a bifurcation parameter.
Solving for β from R0 = 1 gives

β = β∗ =
µ(µ+ γ)(σ + µ+ ϕ+ r)

γA
. (27)

The eigenvalues of Jacobian of the system (1), evaluated at P0 with β = β∗, are given by

λ1 = −µ, λ2 = −(µ+ δ +$), λ3 = −(2µ+ γ + σ + ϕ+ r), λ4 = 0.

Thus λ4 = 0 is a simple zero eigenvalue and the other eigenvalues are real and negative.
Hence, when β = β∗ (equivalently, when R0 = 1), the disease-free equilibrium P0 is a
non-hyperbolic equilibrium, the assumption (A1) in Theorem 4.1 of [20] is thus verified on
the system (1). Hence, a right eigenvector associated with the zero eigenvalue λ4 = 0 is
given by

w = (w1, w2, w3, w4)
T ,

where

w1 = − k1
γµ(δ + µ+$)

, w2 =
σ + µ+ ϕ+ r

γ
, w3 = 1, w4 =

σ + r

δ + µ+$
(28)

and

k1 = µ
[
(δ + µ+$ + ϕ+ r + σ)(γ + µ) + (δ +$)(ϕ+ r + σ)

]
+ γ$(ϕ+ r + σ) + δγϕ.

Furthermore, we obtain a left eigenvector associated with the zero eigenvalue λ4 = 0
satisfying v · w = 1 given by

v = (v1, v2, v3, v4)
T ,

where

v1 = 0, v2 =
γ

2µ+ γ + σ + ϕ+ r
, v3 =

µ+ γ

2µ+ γ + σ + ϕ+ r
, v4 = 0 (29)

The coefficients ã and b̃ defined by Theorem 4.1 in [20] are computed as follows.
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Considering the system of equations in (26), the associated non-zero second partial
derivatives of the right-hand side functions (fi) evaluated at (P0, β

∗) are given by

∂2f1
∂x1∂x3

(P0, β
∗) =

∂2f1
∂x3∂x1

(P0, β
∗) = −β∗,

∂2f2
∂x1∂x3

(P0, β
∗) =

∂2f2
∂x3∂x1

(P0, β
∗) = β∗,

∂2f1
∂x23

(P0, β
∗) =

2αβ∗A

µ
,

∂2f2
∂x23

(P0, β
∗) = −2αβ∗A

µ
,

∂2f1
∂x3∂β

(P0, β
∗) = −A

µ
,

∂2f2
∂x23

(P0, β
∗) =

A

µ
,

∂2f3
∂x23

(P0, β
∗) = 2rb,

∂1f4
∂x23

(P0, β
∗) = −2rb.

(30)

Thus, using the expressions (27)–(30), we compute ã and b̃ as

ã =
2∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(P0, β
∗)

= 2v1w1w3
∂2f1
∂x1∂x3

(P0, β
∗) + 2v2w1w3

∂2f2
∂x1∂x3

(P0, β
∗)

+ v1w
2
3

∂2f1
∂x23

(P0, β
∗) + v2w

2
3

∂2f2
∂x23

(P0, β
∗) + v3w

2
3

∂2f3
∂x23

(P0, β
∗) + v4w

2
3

∂2f4
∂x23

(P0, β
∗)

= 2
γ

2µ+ γ + σ + ϕ+ r

(
− k1
γµ(δ + µ+$)

)
β∗ +

γ

2µ+ γ + σ + ϕ+ r

(
−2αβ∗A

µ

)
+

µ+ γ

2µ+ γ + σ + ϕ+ r
(2rb),

=
2(µ+ γ)

2µ+ γ + σ + ϕ+ r

[
−k1(σ + µ+ ϕ+ r)

γA(δ + µ+$)
− α(σ + µ+ ϕ+ r) + rb

]
,
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b̃ =

2∑
k,i=1

vkwi
∂2fk
∂xi∂β

(P0, β
∗)

= v1w3
∂2f1
∂x3∂β

(P0, β
∗) + v2w3

∂2f2
∂x3∂β

(P0, β
∗)

=
γ

2µ+ γ + σ + ϕ+ r

A

µ
.

It is found that the coefficient b̃ is always positive. The coefficient a is positive if α < α∗

and negative if α > α∗, where α∗ is given by (25). Therefore, by [20, Theorem 4.1], system
(1) undergoes backward bifurcation if α < α∗ and forward bifurcation if α > α∗.

As an example, consider the set of parameters A = 1000, µ = 0.001, δ = 0.2, γ = 0.1,
σ = 1/3, ϕ = 0.04, $ = 0.05, r = 1/7, b = 4 with variable values for α and β. Then, we can
calculate α∗ = 1.1047 according to (25). Notice that the value of R0 varies proportionally
to β, and R0 = 1 corresponds to β = 5.2236 × 10−7. Theorem 4 implies that a backward
bifurcation occurs at R0 = 1 if α < 1.1047, while if α > 1.1047, the bifurcation is forward.

An example of the bifurcation diagram for model (1) when α = 0.1 < α∗ can be seen
in Figure 3, which depicts the number of infected individuals at equilibria as R0 varies.
There is a critical value Rc = 0.8530 such that for R0 ∈ (R∗, 1) there exist two endemic
equilibria. As R0 crosses the value Rc, the two endemic equilibria merge at a limit point
(labelled LP in the figure) and disappear via a saddle-node bifurcation.

7 Hopf bifurcation analysis

We will now focus on studying the phenomenon of Hopf bifurcation, which could occur
around an endemic equilibrium of our system when the real part of two complex, conjugate
eigenvalues with nonzero imaginary part crosses zero.

By the analysis in Section 5, we know that the characteristic equation of system (1) at
an endemic equilibrium P ∗(S∗, E∗, I∗, R∗) takes the form λ4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0,

where a1, a2, a3 and a4 are given by (22). Then, following the theory in [21], we can obtain
a necessary and sufficient condition for the occurrence of a Hopf bifurcation around P ∗.
This is stated in the following result.

Theorem 5. Let P ∗(S∗, E∗, I∗, R∗) be an endemic equilibrium of (1). A Hopf bifurcation
generically arises around P ∗ if and only if

a2 =
a3
a1

+
a1a4
a3

(31)

and sign(a1) = sign(a3).
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Figure 3: Backward bifurcation diagram of the model. The horizontal axis represents the
value of the basic reproduction number. The vertical axis indicates the size of infected
population at equilibria. LP denotes the saddle-node bifurcation point.

7.1 Numerical example of Hopf bifurcation

For further studying the existence of Hopf bifurcation for system (1), we will choose the
treatment rate r as a bifurcation parameter. If we substitute the expressions for a1, a2,
a3 and a4 given by (22) in equation (31), we can solve for r in the resulting equation and
obtain thus a critical value r = r∗ where the Hopf bifurcation occurs. However, due to the
complexity of the calculations, we do not give an explicit expression for the value of r∗;
instead, we will compute an approximate value using the numerical continuation package
Matcont [22], which also allows us to determine the direction of bifurcation.

If we consider the set of parameters A = 20289, µ = 2.49 × 10−5, σ = 1/10, γ = 1/4,
δ = 0.05, β = 1.5 × 10−9, α = 1 × 10−6, b = 5 × 10−5, ϕ = 0.142857, $ = 0.142857 and
r = 0.08, we can see that system (1) has a unique endemic equilibrium P ∗(S∗, E∗, I∗, R∗) ≈
(185894582, 70962, 67952, 41639) and R0 = 3.7850. By an application of Theorem 3, P ∗

is locally asymptotically stable. Figure 4 shows the solution of system (1) with the initial
conditions S(0) = 189000000, E(0) = 70000, I(0) = 60000, R(0) = 40000, and it can be
seen that all sub-populations converge to positive values, which represent the case when
COVID-19 becomes endemic in the population.

However, if we increase the value of the treatment rate r while keeping all other param-
eters fixed, a Hopf bifurcation occurs. Indeed, when r = r∗ := 0.0948775, the coefficients
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Figure 4: Time evolution of the solutions for the model when r = 0.08 and the endemic
equilibrium is locally asymptotically stable.

of the characteristic equation at the unique endemic equilibrium become a1 = 0.6909,
a2 = 0.09607, a3 = 7.1989 × 10−6 and a4 = 1.0009 × 10−6, which satisfy the hypotheses
of Theorem 5. Hence, P ∗ switches from stable to unstable at r = r∗. The first Lyapunov
coefficient, as computed by Matcont, is 5.11344× 10−17 > 0, which implies that the bifur-
cation is subcritical. Thus, an unstable limit cycle exists near P ∗ for values of r slightly
less than r∗.

Figure 5 depicts the solution of the system when r = 0.10 > r∗ and all other parameters
and initial conditions are the same as in Figure 4. In this case, the endemic equilibrium
P ∗(S∗, E∗, I∗, R∗) ≈ (189146563, 70805, 66548, 42475) is unstable even though R0 =
3.5642 is greater than one. We can see in Figure 5 that the number of infected individuals
does not settle down at a constant value but presents oscillations that increase in magnitude
as time passes.

8 Parameter fitting based on real data

In this section, we perform some numerical simulations for model (1) using a set of param-
eter values fitted to the reported data of the COVID-19 pandemic in Nigeria.

Data were collected from the Johns Hopkins University repository [23] for the period
from 28 February 2020 to 26 July 2020. We considered the daily data for cumulative
infected cases, recovered cases and deaths.
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Figure 5: Time evolution of the solutions for the model when r = 0.10 and the endemic
equilibrium is unstable.

Since it is known that people infected with 2019-nCoV can transmit the pathogen to
other people even when they have no visible symptoms of the disease (asymptomatic in-
fection), we need to subdivide the I-class of the model into two subclasses: symptomatic
infectious (I1(t)) and asymptomatic (I2(t)) infectious. Individuals in the exposed popu-
lation become infectious at a rate γ. This means that, after 1/γ time units, an exposed
individual becomes symptomatically infectious with a probability p or asymptomatically
infectious with a probability 1/p. Hence, for performing the parameter fitting and simula-
tions, we consider the system

S′(t) = A− µS − βSI

1 + αI
+ δR,

E′(t) =
βSI

1 + αI
− (γ + µ)E,

I ′1(t) = pγE − (σ + µ+ ϕ)I1 −
rI1

1 + bI1
,

I ′2(t) = (1− p)γE − (σ + µ+ ϕ)I2,

R′(t) = σI − (δ + µ+$)R+
rI1

1 + bI1
.

(32)

Notice that the saturated treatment response T (I) = rI/(1+bI) is included in the equation
for I1 but not in the equation for I2, because asymptomatic infectious individuals recover
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Table 1: Values of the parameters used in numerical simulations.

Parameter Value Unit Source

A 20289 people/day [24]
µ 2.49× 10−5 1/day [24]
σ 1/10 1/day [25]
p 0.7 – [26]
γ 1/4 1/day [27]
δ Variable 1/day Assumed
β 1.5× 10−9 1/(people · day) Estimated
α 3.33× 10−4 1/people Estimated
r 1× 10−4 1/day Estimated
b 5× 10−5 1/people Estimated
ϕ 1× 10−5 1/day Estimated
$ 5× 10−4 1/day Estimated

naturally from the disease without receiving treatment.
In order to compare the temporal dynamics of each class as predicted by the model

with the real data, we will also consider the cumulative number of symptomatic infectious
cases, which we will denote by C(t) and is governed by the equation

C ′(t) = pγE. (33)

We denote by R1(t) the number of individuals removed by death due to the virus. The
dynamics of this class can be described by

R′1(t) = ϕ(I1 + I2) +$R. (34)

The parameter values used in the simulations are shown in Table 1. The values for the
recruitment rate A and the natural death rate µ were chosen according to the birth and
death statistics for the population of Nigeria [24]. The values for σ, p and γ are biological
constants that have been estimated in the literature [25–27]. The rate of transfer δ from
the recovered population to the susceptible population is considered variable, and the rest
of the parameter values were fitted according to the reported data of cumulative infected
cases, recovered cases and deaths.

We considered first the case of no reinfection, that is, when δ = 0. In this case, a
comparison of the estimated dynamics of the model and the reported data can be seen
in Figure 6 for the cumulative symptomatic infections, Figure 7 for the recovered cases
and Figure 8 for the number of deaths. We also plot the estimated number of exposed
individuals in Figure 9 and active infectious individuals (symptomatic and asymptomatic)
in Figure 10.
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Figure 6: Cumulative number of symptomatic infectious individuals estimated by the model
(C(t)) and reported data.

Our simulations indicate that the cumulative number of infected and recovered cases
will keep on increasing in an almost linear fashion, at least until October 2020. The
number of deaths will also increase, but its growth rate will become larger as time passes
(see Figure 8). This implies that there will still be a long time until the pandemic goes
extinct. Although the official reported data do not include information on the number
of exposed individuals, our simulations show that the exposed cases would stabilize at a
number slightly larger than 2500 people from July 2020 onwards (Figure 9).

In the case when reinfection is possible, the value 1/δ represents the average time that
an individual spends in the recovered class before becoming susceptible to a reinfection by
2019-nCoV, i.e., 1/δ is the length of the immunity period. We plotted the dynamics of the
model for several values of δ, including the case δ = 0 (permanent immunity): Figure 11
shows the recovered cases and Figure 12 represents the death toll. The graphs for the other
compartments are not shown since there are no perceivable differences with the graphs for
the case δ = 0.

Our results show that the number of recoveries and deaths would be lower in the case
when reinfection is possible after recovery; moreover, it becomes even lower as the length
of the immunity period is reduced from one year to 60 days. On the other hand, the
cumulative number of infections is not visibly affected by the possibility of reinfection, at
least for the time period we considered in our simulations.
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Figure 7: Number of recovered individuals estimated by the model (R(t)) and reported
data.
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Figure 8: Death toll estimated by the model (R1(t)) and reported data.
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Figure 9: Number of exposed individuals estimated by the model (E(t)).
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Figure 10: Number of symptomatic (I1(t)) and asymptomatic (I2(t)) infectious individuals
estimated by the model.
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Figure 11: Number of recovered individuals estimated by the model for different values of
δ.
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Figure 12: Death toll estimated by the model for different values of δ.
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9 Discussion and conclusion

We proposed and studied an SEIRS COVID-19 epidemic model that includes saturated
incidence and a saturated Holling type II treatment response. Due to the limitations in
the number of hospital beds and intensive care units that exist in every country, we believe
that this model is more realistic than those with a linear treatment response, which grows
at the same rate irrespectively of the number of infected people at a given time. We have
extended the results published in [17], where a similar model was studied for a general
disease, but the authors there did not delve into the study of bifurcation dynamics. In
the present paper, we discussed the backward and Hopf bifurcation of model (1) to help
government and policy makers decide an efficient response plan to combat a second wave of
the COVID-19 pandemic, which has been widely reported in places like Asia and Europe.

Epidemiologically, we understand the role of reproduction number in controlling disease,
but there are times that R0 < 1 does not represent the eradication of the disease and at that
critical phase a reemergence can occur which may be more endemic than the first. Thus,
our results show that limited availability of medical resources favours the reemergence of
complex dynamics that complicates the control of the outbreak.

Our analysis showed that model (1) presents the phenomenon of backward bifurcation
for certain values of the parameters. When this type of bifurcation occurs, the eradication
of the epidemic may not be guaranteed by simply reducing the basic reproduction number
R0 below unity; instead, R0 should be further reduced to a critical value Rc < 1.

As we proved in Section 4, backward bifurcation cannot take place if the parameter
b, which measures the saturation effect in treatment response, is sufficiently close to 0.
The reduction of this parameter, however, can only be achieved when a community has
sufficient medical capacity for the treatment of COVID-19, which is an unrealistic assump-
tion. A more plausible way to avoid the backward bifurcation scenario is by increasing
the parameter α so that it becomes larger than α∗ (see Theorem 4). A larger value for α
indicates that the incidence function βSI/(1 + αI) saturates for smaller values of I. The
interpretation of this is that the number of infectious contacts between persons must be
reduced at a time when the number of infected individuals is still small. Therefore, we
conclude that the application of social distancing and stay-at-home policies should be made
since the early stages of the epidemic.

Although backward bifurcation is not a new phenomenon in the study of epidemic
disease dynamics, several possible causes for the appearance of this bifurcation in COVID-
19 models have been identified. For example, the authors in [15] studied a model with
a compartment for lockdown population and analysed the effects of lockdown efficacy;
they showed that the backward bifurcation can be caused by an imperfect lockdown. In
[16], the authors studied a COVID-19 model that can present backward bifurcation only if
the recovered individuals have temporary immunity, instead of permanent immunity. We
should remark, however, that the models in [15] and [16] did not include saturation effects in
the treatment rate. Our results for model (1) show that the limitation of medical resources
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alone can be a cause for bistability behaviour and backward bifurcation, similarly to what
was studied in [5] and [14]. Moreover, we considered a saturation effect in the incidence
rate that was not included in the above mentioned literature.

We proved that the inclusion of both saturated incidence and saturated treatment is
also a cause of Hopf bifurcation. This is a topic of research that has been scarcely studied
for the dynamics of COVID-19 (see, e.g., the analysis of delay-induced Hopf bifurcation
in [28] and [29]) and has important implications for epidemic control, because this type of
bifurcation can produce oscillatory patterns in the number of infected individuals. Further
research should still be made to improve our understanding of the different dynamics that
can occur in this epidemic outbreak.
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