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ABSTRACT 
 
Exome association studies to date have generally been underpowered to systematically 

evaluate the phenotypic impact of very rare coding variants. We leveraged extensive haplotype 

sharing between 49,960 exome-sequenced UK Biobank participants and the remainder of the 

cohort (total N~500K) to impute exome-wide variants at high accuracy (R2>0.5) down to minor 

allele frequency (MAF) ~0.00005. Association and fine-mapping analyses of 54 quantitative 

traits identified 1,189 significant associations (P<5 x 10-8) involving 675 distinct rare protein-

altering variants (MAF<0.01) that passed stringent filters for likely causality; 600 of the 675 

variants (89%) were not present in the NHGRI-EBI GWAS Catalog. We replicated the effect 

directions of 28 of 28 height-associated variants genotyped in previous exome array studies, 

including missense variants in newly-associated collagen genes COL16A1 and COL11A2. 

Across all traits, 49% of associations (578/1,189) occurred in genes with two or more hits; 

follow-up analyses of these genes identified long allelic series containing up to 45 distinct likely-

causal variants within the same gene (on average exhibiting 93%-concordant effect directions). 

In particular, 24 rare coding variants in IFRD2 independently associated with reticulocyte 

indices, suggesting an important role of IFRD2 in red blood cell development, and 11 rare 

coding variants in NPR2 (a gene previously implicated in Mendelian skeletal disorders) 

exhibited intermediate-to-strong effects on height (0.18-1.09 s.d.). Our results demonstrate the 

utility of within-cohort imputation in population-scale GWAS cohorts, provide a catalog of likely-

causal, large-effect coding variant associations, and foreshadow the insights that will be 

revealed as genetic biobank studies continue to grow. 
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INTRODUCTION 

 

Exome association studies have observed that rare coding variants tend to have larger 

phenotypic effects than common variants and collectively contribute an important component of 

complex trait heritability1–4. However, the phenotypic effects of very rare coding variants have 

been difficult to comprehensively assess, as exome sequencing studies have not yet reached 

the sample sizes needed to power such analyses (N>100,000)5–10, and imputation of rare 

variants into cohorts of this scale has been insufficiently accurate11. The largest exome-wide 

association studies conducted to date have analyzed cohorts of N~50,000 exome-sequenced 

individuals, and while these studies have identified modest numbers of variants and genes 

associated with phenotypes, they have largely been underpowered to evaluate the effects of 

individual very rare coding variants7–10. 

 

The UK Biobank (UKB) is a powerful resource for genetic association analyses because 

of its large sample size (N~500,000) and deep phenotyping12. Previous studies of UKB have 

examined disease associations of protein-truncating variants genotyped on the UK Biobank 

array, which was designed to include the majority of predicted loss-of-function (LoF) variants 

with MAF>0.02% and missense variants with MAF>0.2%13,14. However, most LoF variants are 

ultra-rare (MAF<0.01%), such that only ~14% of rare LoF variants detected in whole-exome 

sequencing (WES) of 49,960 UKB participants had been genotyped on the UK Biobank array8.  

 

We reasoned that although exome sequencing of ~10% of the UKB cohort provided 

insufficient power to directly assess the effects of ultra-rare variants (which have <10 carriers in 

N~50,000 sequenced participants), we could leverage the extensive haplotype sharing within 

the UKB cohort15,16 to accurately impute these variants into up to ~100 carriers in the full cohort, 

thereby powering association analysis. By combining this exome-wide imputation strategy with 

careful fine-mapping of significant associations to identify causal effects of rare coding variants 

on 54 quantitative traits, we identified hundreds of novel likely-causal variant-trait associations 

and obtained insights into widespread allelic heterogeneity and pleiotropy.  
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RESULTS 

 

Exome-wide imputation, association, and fine-mapping in UK Biobank 

 

We leveraged whole-exome sequencing of 49,960 UKB participants together with SNP-

array genotyping in the full cohort to impute exome-wide variants into all UKB participants as 

follows (full details in Methods). First, we created an imputation reference panel by phasing 

WES genotype calls together with SNP-array genotypes in the WES cohort using Eagle216, 

restricting to 4.9 million variants with minor allele count (MAC) at least 2. Second, we used 

Minimac411 to impute these variants into phased SNP-array haplotypes we had previously 

generated for 487,409 UKB participants17. This strategy achieved accurate imputation (R2>0.5) 

of rare variants down to MAF~0.00005 (Fig. 1a, Supplementary Table 1, and Supplementary 
Note), roughly one order of magnitude deeper into the rare allele frequency spectrum than the 

current UKB imputation release (v3)1, which used the Haplotype Reference Consortium (HRC) 

and UK10K / 1000 Genomes reference panels18,19. 

 

We tested the imputed variants for association with 54 heritable quantitative traits 

(measuring anthropometric traits, blood pressure, lung function, bone mineral density, blood cell 

indices, and serum biomarkers; Supplementary Table 2) by running linear mixed model 

association analysis on N=459,259 participants of European ancestry using BOLT-LMM20,21, 

which we verified was robust to potential population stratification in rare variant association 

analysis (Methods and Supplementary Note). This procedure identified tens of thousands of 

associations between coding variants and traits that reached nominal genome-wide significance 

(P<5 x 10-8); however, we expected that most of these associations were not causal but rather 

reflected linkage disequilibrium with nearby causal variants. 

 

To filter detected associations to a high-confidence subset primarily containing causal 

variants, we developed a stringent filtering pipeline that combined variant annotation filters (to 

increase the prior on causality) with statistical fine-mapping (Fig. 1b and Methods). First, we 

restricted to rare (MAF<1%) variants predicted to have high protein-altering impact based on 

either of the following criteria: (i) Combined Annotation Dependent Depletion (CADD)22 score ³ 

20 (for coding variants annotated by VEP23, including canonical splice variants); or (ii) SpliceAI24 

score ³ 0.5 (for noncanonical splice variants). In our primary analyses, we further restricted to 

variants with high estimated imputation accuracy (INFO>0.5) and with imputed MAF>10-5. 
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These filters left 529,602 rare coding variants under consideration, of which 440,253 (83%) 

either were not present or were poorly imputed (INFO<0.5) in the HRC-based UKB imputation 

release. Among the 529,602 variants, 1,647 distinct variants associated (P<5 x 10-8) with at 

least one phenotype, accounting for a total of 2,706 variant-trait associations (Fig. 1b). 

 

We combined our variant annotation filters with a statistical fine-mapping filter to exclude 

associations that could be explained by linkage disequilibrium with other variants. Our primary 

filter required that each association remain significant (P < 5 x 10-8, slightly conservative for 

529,620 variants tested) after conditioning on any other more-strongly-associated variant within 

3 megabases (considering in turn each variant from either our WES imputation or the UKB 

imputation v3 release; Methods). This filter was more robust for our rare variant analyses than 

standard fine-mapping software packages, which aim to find small sets of variants that explain 

maximal phenotypic variance, making configurations which include rare variants less likely to be 

considered the most probable25,26. Fine-mapping algorithms do have the advantage of 

accounting for the possibility of variants tagging combinations of multiple nearby causal variants 

(which our pairwise conditional filter did not consider); to account for this possibility, we applied 

a second filtering pipeline based on iterative runs of the FINEMAP software25 (Methods). 

Together, these filters reduced the set of associations to a final “likely-causal” set of 1,189 

associations involving 675 unique variants (Fig. 1b and Supplementary Table 3). Both the 

variant annotation filters and the fine-mapping filters were designed to be very stringent, with the 

goal of producing a conservative set of associations with high confidence of causality for 

downstream analysis. Association data for all variants (including those that failed filters) are also 

available (see Data availability). 

 

Among the 1,189 likely-causal associations, 30% could only be discovered using imputation 

from UKB exome-sequencing data, demonstrating the power of this approach for causal variant 

discovery (Fig. 1c,d). The remaining associations could previously have been discovered using 

either the UKB SNP-array (51% of likely-causal associations, reflecting the inclusion of rare 

coding variants on the array), the HRC-based UKB imputation v3 release (an additional 16%), 

or association analysis within the WES cohort (an additional 3%). Furthermore, among likely-

causal associations involving ultra-rare variants (MAF<0.01%), the large majority (197 of 253 

associations; 78%) were discoverable only using imputation from the UKB WES cohort (Fig. 
1c). Most likely-causal variants (600 of 675; 89%) were not reported in the NHGRI-EBI GWAS 

catalog for association with any trait, underscoring the power of exome imputation within UKB to 
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detect novel rare coding associations (Supplementary Fig. 1). Effect sizes generally increased 

with decreasing minor allele frequency among likely-causal rare coding variants 

(Supplementary Fig. 2), which collectively explained an average of 0.6% of variance per trait 

(Supplementary Table 2). 

 

We expected that the linear mixed models we used for association tests had adequately 

controlled any potential confounding from population stratification or relatedness21. To verify 

robustness of our results, we performed multiple confirmatory analyses. First, we attempted to 

replicate associations with traits for which large-scale exome array studies (not including UKB 

participants) had previously been published. For height, 28 variants we identified as likely-

causal had been analyzed in a previous ExomeChip study of height2; for all 28 variants, the 

direction of effect replicated, and 21 of the 28 variants reached nominal significance (P < 0.05) 

in the replication data set (Table 1). Similarly, effect directions replicated for 75 out of 75 lipid 

associations for which association statistics were available from the Global Lipids Genomics 

Consortium (GLGC)3 and for 9 out of 10 blood pressure associations for which data was 

available from the CHARGE-BP Consortium4 (Supplementary Table 4). Second, we verified 

that associations were robust to restricting analysis to a genetically homogeneous subset of 

unrelated British UKB participants (N=337,539): effect sizes (R2=0.985), association strengths 

(R2=0.998), and allele frequencies (R2=0.999) were all very consistent within this subset 

(Methods and Supplementary Fig. 3). Third, we verified that likely-causal rare alleles had 

geographical distributions nearly identical to MAF-matched background variants 

(Supplementary Fig. 4 and Supplementary Note). These results indicate that while subtle 

stratification in large genetic analyses may affect some types of epidemiological studies27, the 

strong, highly localized stratification required to confound rare variant association analyses28 is 

unlikely to be present in UK Biobank. 

 

Likely-causal rare coding variants are enriched for deleteriousness 

 

The 675 rare coding variants that we identified as likely-causal were roughly evenly 

distributed across the full range of allele frequencies we considered (MAF = 10-5 to 10-2; Fig. 
2a). In contrast, the 972 rare coding variants that were annotated as high-impact and associated 

significantly with at least one trait but were filtered after considering linkage disequilibrium with 

other associated variants were enriched for more-common variants (MAF = 10-3 to 10-2), 
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suggesting that many of these filtered variants – which constituted the majority of trait-

associated rare coding variants – merely tagged causal common variants (Fig. 2a). 

 

To assess enrichment of measures of deleteriousness among the 675 likely-causal variants 

while controlling for MAF (which is modestly negatively correlated with deleteriousness; 

Supplementary Fig. 5), we compared features of these variants to a MAF-matched background 

distribution that we generated by subsampling the 529,602 predicted-high-impact variants we 

tested (Methods). The average CADD score of likely-causal variants was +1.6 higher than in 

the background distribution (mean CADD = 27.3 vs. 25.3; P = 1.6 x 10-23, two-sample t-test) 

(Fig. 2b). Furthermore, predicted loss of function mutations (including frameshifts, stop gains, 

and canonical splice variants) were 2.1-fold enriched (P = 3.7x 10-16, Fisher’s exact test) among 

likely-causal variants (comprising 19.1% of likely-causal variants vs. 8.9% of variants from the 

background distribution; Fig. 2c). In contrast, variants that failed our fine-mapping filters had 

CADD and variant type distributions similar to background, providing further evidence against 

causality of most of these variants (Fig. 2b,c). Missense variants, which comprised the majority 

of both likely-causal and background variants, produced broadly more severe amino acid 

substitutions (as measured by BLOSUM62 scores) across likely-causal variants compared to 

background (mean BLOSUM62 score = -0.78 vs. -0.57; P = 0.003, two-sample t-test) (Fig. 2d). 

Cryptic splice variants (computationally predicted by SpliceAI) accounted for 11 of the 675 

likely-causal variants and were slightly depleted relative to background, suggesting that these 

variants were on average slightly less likely to affect function than missense variants with CADD 

³ 20 (Fig. 2c); however, our statistical power here was limited. 

 

Rare coding variants form long allelic series with consistent effect directions 
 

Among the 1,189 likely-causal variant-trait associations we identified, roughly half (578 out 

of 1,189; 49%) occurred in genes containing multiple likely-causal rare coding variants for the 

same trait. The observation of two or more rare coding hits in the same gene strengthened our 

evidence for these associations and suggested the possibility of longer allelic series within these 

genes (containing very rare causal coding variants that either had not reached genome-wide 

significance or had been excluded by our stringent filters). To increase our power to detect 

additional independently-associated rare coding variants within these genes, we performed 

follow-up analyses in which we relaxed the significance threshold (to a 5% false discovery rate 

within each gene-trait pair) and relaxed our fine-mapping filter (conditioning only on a set of 
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associated variants selected by FINEMAP) and annotation-based filter (considering all protein-

altering variants regardless of CADD score; Methods). 

 

These analyses revealed very long allelic series of rare coding variants likely to alter 

phenotypes: for 56 gene-trait pairs, the allelic series contained 10 or more variants on distinct 

haplotypes, and eight distinct genes contained allelic series of 30 or more variants (Fig. 3 and 

Supplementary Table 5). In the longest allelic series, 45 rare coding variants in ALPL – out of 

76 such variants tested – independently associated with serum alkaline phosphatase levels, all 

with negative effect directions for the rare minor allele. This consistency in effect directions was 

broadly displayed across the allelic series we identified (93% mean concordance with the 

majority effect direction; Supplementary Fig. 6). Somewhat surprisingly, the amino acid 

residues modified by missense variants within these allelic series tended not to cluster in 

specific protein domains (Fig. 3a-d and Supplementary Fig. 7); instead, they appeared to be 

distributed throughout protein structures, suggesting that protein structures may often contain 

many domains that are sensitive to mutation. 

 

Most of the allelic series we identified extended previously-described allelic series (such as 

in PCSK9 and IQGAP2; Fig. 3a,b); however, several genes contained long allelic series in 

which most or all variants represented novel associations. At IFRD2 (interferon-related 

developmental regulator 2, which has an unknown function), 24 rare coding variants 

independently associated with high light scatter reticulocyte count (Fig. 3c and Supplementary 
Table 5), suggesting an important role of IFRD2 in red blood cell development; interestingly, 

these associations were specific to reticulocyte indices and did not extend to red blood cell 

count. A common IFRD2 eQTL variant (rs1076872, which is synonymous in one IFRD2 

transcript and in the 5’ UTR of another transcript) exhibited the strongest association with 

reticulocyte indices (P = 1.8 x 10-545), and variants in linkage disequilibrium with rs1076872 have 

been reported by many association studies of blood cell indices. However, IFRD2 has no 

common protein-altering variants, such that its apparent sensitivity to coding mutations had not 

previously been observable: among the 24 variants we identified, only two had MAF>0.1%. Of 

the remaining 22 very rare IFRD2 variants, 19 variants had positive, large effects on high light 

scatter reticulocyte count (median +0.61 s.d.); intriguingly, homozygotes and compound 

heterozygotes for these variants exhibited extreme phenotypes (mean +2.52 s.d.; s.e.m., 0.25 

s.d.). 
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At NPR2, which encodes a natriuretic peptide receptor involved in bone growth regulation29, 

11 rare coding variants independently associated with height (Fig. 3d and Supplementary 
Table 5). Loss-of-function and gain-of-function variants in NPR2 have previously been 

implicated in Mendelian skeletal disorders with very strong, mirror effects on stature; however, 

well-powered exome array studies have not linked NPR2 polymorphisms to height in the 

general population2. Our exome-imputation approach uncovered many more NPR2 alleles that 

appear to exert milder (but still strong) effects on height in the UK population, with estimated 

effect sizes ranging from -1.09 (0.18) s.d. to +0.25 (0.04) s.d. 

 

At PLA2G12A and PLIN1, allelic series containing up to seven rare coding variants in 

PLA2G12A and eight in PLIN1 associated with serum lipid levels (Supplementary Fig. 7 and 

Supplementary Table 5), and the lead association in each series replicated in GLGC data 

(PLA2G12A missense SNP rs41278045: P = 3.3 x 10-4 for HDL and P = 2.3 x 10-6 for 

triglycerides; PLIN1 missense SNP rs139271800: P = 1.2 x 10-4 for HDL). PLA2G12A encodes 

a secretory phospholipase that liberates arachidonic acid for eicosanoids with many 

downstream effects; PLIN1 encodes a protein that coats lipid droplets. While frameshift variants 

in PLIN1 have been implicated in Mendelian lipodystrophies30, the contribution of rare variants 

in each gene to population variation in blood lipid levels has been largely unexplored. 

 

Rare coding variants often exhibit pleiotropic effects 
 

 Of the 371 genes involved in at least one variant-trait association, 151 genes contained 

likely-causal variants for two or more traits. These associations often involved related traits or 

traits connected by pathways known to involve the gene in question. For example, the cell cycle 

regulators CHEK2 and JAK2 both contained likely-causal variants associated with white blood 

cell, red blood cell and platelet traits; a JAK2 missense variant also associated with IGF-1 

measurements (Supplementary Table 6). Additionally, three genes that regulate Rho GTPases 

(DENND2C, DOCK8, and KALRN) contained likely-causal variants associated with multiple 

platelet traits, consistent with the key role of Rho GTPases in platelet function31. Other genes 

associated with more-distinct sets of traits (Supplementary Table 6). APOC3 exhibited the 

widest variety of likely-causal associations, with the splice donor variant rs138326449 

associating with 13 distinct traits including lipid levels, white blood cell and red blood cell traits, 

and kidney biomarkers. In PDE3B, the stop gain variant rs150090666 associated likely-causally 

with 10 distinct traits, including expected associations with waist-hip-ratio and lipid 
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measurements, but also associations with red blood cell traits, SHBG levels, and height. Further 

work will be required to determine which of these associations represent direct biological effects 

versus downstream effects of perturbed regulatory networks (as posited by the omnigenic 

model)32. 

 

Exome imputation uncovers novel large-effect variants for anthropometric traits 
 

Our ability to probe the effects of ultra-rare variants revealed 10 variants in 10 different 

genes with very large estimated effects on height (³ 0.5 s.d.; Supplementary Table 7); in 

contrast, the largest effect sizes detected in a recent exome array study of height were ~0.3 

s.d.)2. Four of these genes (NPR2, COL2A1, HERC1, and PCNA) have been implicated in 

Mendelian diseases manifesting short stature or skeletal disorder phenotypes; however, the 

specific variants we identified were not previously reported in ClinVar33, consist with their effects 

being less-extreme and contributing to complex genetic variation in height. We also detected 

one very-large-effect variant for BMI in MC4R (+0.62 (0.12) s.d.; Supplementary Table 7); this 

variant had previously been associated with obesity in a Mendelian fashion34. 

 

Rare coding variants with more-moderate effects on height also yielded new insights into the 

genetic basis of height. Among the 28 height-associated likely-causal variants for which we 

could replicate effect directions in the ExomeChip study of Marouli et al.2 (Table 1), seven 

altered genes that did not contain any variants that had previously reached significance, 

representing potentially novel height loci. Many of these genes had functions suggestive of their 

association with height, including two collagen genes, COL16A1 and COL11A2. Gene Ontology 

(GO) analysis of all genes containing likely-causal height variants implicated numerous 

biological processes relating to skeletal system development and extracellular matrix 

organization (Supplementary Table 8)35,36. 

 

Biomarker-associated rare coding variants confer downstream disease risk 
 

Many phenotypes we analyzed measured blood cell indices or biomarkers for liver, kidney, 

cardiovascular, or endocrine function, suggesting the possibility that rare coding variants 

affecting these molecular or cellular phenotypes might have downstream impacts on diseases of 

the corresponding systems. To test this hypothesis, we analyzed likely-causal variants from our 

blood and biomarker association analyses for association with disease status for related 
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disorders (Methods). Seventeen associations involving 12 distinct variants reached FDR<0.05 

significance (P < 1.5 x 10-4; Supplementary Table 9), all of which either replicated previous 

results37 or added to allelic series at known disease genes (e.g., a MAF=0.1% splice donor in 

SLC34A3 that conferred threefold-increased risk of kidney stones (P = 2.0 x 10-5, OR = 3.1 (2.0-

4.8)). In contrast to our analyses of quantitative traits, in which nearly one-third of the 

associations we identified were discoverable only through exome imputation, 11 of the 12 

disease-associated variants had either been genotyped on the UKB SNP-array or accurately 

imputed from the HRC panel (the only exception being a MAF=0.04% LDLR missense variant 

previously implicated in familial hypercholesterolemia; Supplementary Table 9). This behavior 

was consistent with the greater difficulty of identifying robust statistical associations with disease 

traits (for which causal variants tend to have low penetrance) as compared to molecular or 

cellular traits (for which causal variants can have much more direct effects). The rarest of the 12 

disease-associated variants we identified had MAF=0.04%; to identify ultra-rare variants that 

influence disease in population cohorts, even larger sample sizes will be needed. 

 

Single-variant association analyses implicate many genes missed by burden analyses 
 

Most exome association analyses conducted to date have used gene-based association 

tests to aggregate signal from very rare variants within the same gene8,9,38, motivating a 

comparison between results from our single-variant analyses and a gene-based test using 

imputed coding variants. In light of our observation that most likely-causal variants from our 

single-variant analyses had consistent effect directions (Fig. 3e), we aggregated variants within 

a burden test framework (rather than using a kernel test that trades off power in this scenario to 

account for bidirectional effects39). A key consideration in performing burden tests is deciding 

which variants to include as potentially deleterious; as such, we considered two possible 

functional criteria (protein-altering with CADD³20 vs. predicted LoF) and three possible MAF 

cutoffs (MAF<1%, <0.1%, or <0.01%) for variants to include (Methods). Of these six parameter 

combinations, the least stringent option (CADD³20 and MAF<1%) appeared to be the most 

powerful (Supplementary Table 10) and was used for subsequent analyses.   

 

Among gene-trait pairs implicated by our single-variant association tests, 32% were not 

detected by burden analysis, indicating that single-variant analysis can often be more powerful 

than gene-based tests for discovering novel loci associated with complex traits (Supplementary 
Table 11). Conversely, most gene-trait associations identified by burden analysis (1130 of 1572; 
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71% of associations) involved at least one variant that reached significance in single-variant 

analysis. Notably, a sizable minority of these associations (414 of 1130; 37% of top-associated 

variants) had failed our linkage disequilibrium (LD)-based filters that detected potential tagging 

of other causal variants, suggesting that many statistically significant results from the burden 

analysis could represent false-positive associations. The confounding effects of linkage 

disequilibrium were apparent in several large clusters of gene-trait associations near large-effect 

loci (e.g., 8 genes within 1 Mb of APOE associated with apoB levels; Supplementary Table 
11). While burden analyses are somewhat less susceptible to confounding from LD because 

they aggregate signal across several variants, approximately half of the burden test 

associations that reached significance (51%) contained a variant accounting for the majority of 

alleles counted by the burden, explaining these observations. These results highlight the need 

to account for linkage disequilibrium even in the context of burden analysis, which may 

generally be better suited for case-control analyses of Mendelian traits (driven by high-

penetrance, ultra-rare variants under strong negative selection) than for complex trait analyses 

in population cohorts. 

 

DISCUSSION 
 
 These results demonstrate the power of using a large, well-matched reference panel to 

impute very rare variants into biobank data. Whereas exome sequencing on ~50,000 UK 

Biobank samples offered limited power to detect associations between coding variants and 

phenotypes8,9, imputation into the remainder of the UK Biobank cohort enabled a 

comprehensive survey of the effects of rare coding variation on 54 quantitative phenotypes (with 

adequate power even for ultra-rare, MAF<0.01% variants). In combination with fine-mapping 

analyses, this strategy uncovered many new large-effect coding variants, revealed long allelic 

series within core genes for many traits, and produced a resource of likely-causal rare coding 

variant associations for future study. More broadly, our results suggest that sequencing 10% of 

a cohort and imputing into the remaining 90% can be a cost-efficient strategy for designing 

genetic association studies. This is true regardless of the homogeneity of the larger cohort as 

long as the sequenced cohort proportionally reflects the ancestral diversity present in the larger 

set. Accurate imputation tends to be possible for variants with at least 5-10 carriers in a 

reference panel11,18; when the panel represents 10% of a cohort, this frequency corresponds to 

50-100 carriers in the full cohort, which matches well with the minimum number of carriers 

typically needed to detect a moderate-effect association.  
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 Our results also have several implications for the analysis of exome association studies. 

First, single-variant analysis is a viable strategy for extremely large exome association studies. 

Second, linear mixed model association analysis is robust to population stratification for rare 

variants as well as for common variants. Third, careful fine-mapping is critical for identifying 

causal associations even when analyzing rare coding variants predicted to have high impact 

(CADD ³ 20): even for such variants, most associations appear not to be causal but rather to 

tag associations of other variants in linkage disequilibrium (Fig. 2). 

 

 Our study does have important limitations. First, we restricted our primary analyses to 

quantitative traits; a comprehensive study of rare coding variant effects on UKB disease traits 

will require a separate analytical pipeline designed to handle unbalanced binary traits40. Second, 

while we could filter associations potentially explained by linkage disequilibrium with other 

variants imputed from exome sequencing or the HRC reference panel, we could not account for 

potential tagging of variants unavailable to us (e.g., very rare noncoding variants or structural 

variants). This limitation is shared by all fine-mapping studies conducted to date; here, we 

expect that our annotation-based filters (requiring that likely-causal coding variants be rare and 

have high predicted impact) ameliorate this concern. This intuition appears to be borne out by 

our replication analysis of height variants (in a pan-European meta-analysis that presumably 

contained different linkage disequilibrium patterns) and qualitatively by the large proportion of 

likely-causal associations that involved genes with clear biological relevance (Supplementary 
Table 3). 

 

 Our study of UK Biobank exome data also gives an indication of the analyses that will 

become feasible as exome association studies grow even larger. Very large exome-sequenced 

cohorts provide a natural genetic perturbation experiment: the 49,960 UK Biobank exomes we 

studied here contained ~7 million missense variants that modified ~3.7 million different amino 

acids, a sizable fraction of the ~9 million amino acids encoded by all genes in the human 

genome23. Most of these variants were singletons or doubletons and were therefore difficult or 

impossible to impute; however, when exome sequencing of the full UK Biobank cohort is 

complete, whole-exome imputation into even larger cohorts will enable characterization of the 

effects of much of the viable coding variation in the genome.  
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METHODS 
 
UK Biobank genetic data. The UK Biobank cohort was previously genotyped using genome-

wide SNP-arrays which produced genotype data for 488,377 UK Biobank participants at 

784,256 autosomal SNPs passing quality control12. We analyzed these data together with 

whole-exome sequencing (WES) data available for 49,960 participants8. We analyzed WES 

genotype calls at 10.2 million autosomal variants from the SPB pipeline8, filtering to a subset of 

9.8 million variants that unambiguously lifted to hg19 using UCSC liftOver, among which 4.9 

million had minor allele count at least 2. We also analyzed imputed genotypes available for 

487,409 participants from the UK Biobank imp_v3 data release, which consisted of 93 million 

variants imputed using the Haplotype Reference Consortium and UK10K / 1000 Genomes 

reference panels12. 

 

We restricted our primary analyses to individuals who reported European ancestry (459,327 

participants comprising 94% of the cohort). In supplementary analyses to ensure that our 

association analyses were not affected by confounding sample structure, we further restricted to 

a genetically homogeneous, unrelated (at third-degree or closer) subset of 337,539 white British 

participants12 (Supplementary Note). We excluded a small number of participants who 

withdrew from UK Biobank (up to a maximum of 149 withdrawals by the time we completed our 

study). 

 

UK Biobank phenotype data. We analyzed 54 heritable quantitative traits measured by UK 

Biobank for most participants. These traits included body measurements (3 anthropometric 

traits and 1 bone mineral density trait), blood pressure (2 traits), lung function (2 traits), blood 

cell indices (19 traits), and serum biomarker levels (7 lipid traits and 20 other biomarkers for 

liver, kidney, or endocrine function; Supplementary Table 2). We analyzed all available blood 

cell traits except for nucleated red blood cell count and percentage (which were mostly zero) 

and blood cell percentage traits (which were highly correlated with the corresponding blood cell 

counts). We analyzed all available serum biomarker traits except for oestradiol, testosterone, 

and rheumatoid factor (which had measurable levels in only half or less of the cohort). We 

performed basic quality control on serum biomarker traits by masking extreme outliers (>1000 

times the interquartile range), stratifying by sex and menopause status, applying inverse-normal 

transformation, regressing out covariates (ethnic group, alcohol use, smoking status, age, 
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height, and BMI), and re-applying inverse-normal transformation. Quality control and 

normalization of the other quantitative traits was previously described21. 

 

We also analyzed disease traits affecting organ systems corresponding to molecular and 

cellular traits above. We analyzed health outcomes in the “first occurrence” data fields that UK 

Biobank generated by aggregating information from self-report, inpatient hospital data, primary 

care, or death record data. 

 
Phasing and imputation of WES variants. To generate an imputation reference panel from 

the WES cohort, we phased the 4.9 million non-singleton autosomal variants from WES 

together with variants genotyped on the UK Biobank array (using Eagle216 with --Kpbwt=20000). 

We phased the data in chunks of 50,000 variants with an overlap of at least 5,000 variants 

between consecutive chunks, resulting in a total of 126 chunks across all autosomes. We then 

imputed the WES-derived variants into phased haplotypes we had previously generated17 for 

487,409 participants in the full cohort (using Minimac411 with noncoding variants from the UK 

Biobank array used as the imputation scaffold). We benchmarked the accuracy of this 

imputation approach by computing correlations between imputed genotype dosages and direct 

genotype calls at well-typed coding variants included on the UK Biobank genotyping array, 

which were excluded from the imputation scaffold (Supplementary Note). 

 
Association tests. We tested variants for association with each of the 54 quantitative traits 

using the non-infinitesimal linear mixed model association test implemented in BOLT-LMM20 (--

lmmforceNonInf) with assessment center, genotyping array, sex, age, age squared, and 20 

genetic principal components included as covariates. We fit the mixed model on directly-

genotyped autosomal variants with MAF>10-4 and missingness<0.1 and computed association 

test statistics for WES-imputed variants and variants from the UK Biobank imp_v3 release. In 

our primary analyses, we included all participants with non-missing phenotypes who reported 

European ancestry (and had not withdrawn from the study). We also performed association 

analyses that further restricted the sample set to the WES cohort to determine which 

associations were detectable in the WES cohort alone.  

 
Filtering associations using coding variant annotations. To focus our analyses on variants 

likely to have protein-altering effects, we filtered significant associations to those involving 

variants predicted (by genome annotation algorithms) to impact function. For variants modifying 
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protein-coding sequence or canonical splice sites, we required a CADD v1.3 score ³ 20 and a 

VEP annotation of missense, inframe deletion, inframe insertion, start lost, stop lost, splice 

acceptor, splice donor, frameshift, or stop gained22,23. For variants that affected multiple 

transcripts (for one or more genes), we assigned the most severe VEP annotation (in the order 

listed above) across all affected transcripts. We also included potential cryptic splice variants 

predicted by SpliceAI v1.2 (specifically, variants with a delta score ³ 0.5 for at least one of the 

four splice modifier categories: gain or loss of a splice acceptor or a splice donor)24. 

 
Filtering associations potentially explained by linkage disequilibrium with more-strongly-
associated variants. To further filter significant associations to a high-confidence set of likely-

causal associations, we analyzed linkage disequilibrium (LD) between pairs of associated 

variants to identify and remove any associations potentially attributable to tagging of another 

variant in LD. We took this approach because while many algorithms have been developed for 

fine-mapping common variant associations, these methods are not optimized for rare variants: 

intuitively, they maximize the heritable variance that can be explained by a configuration of 

causal variants, making configurations which include rare variants – which typically account for 

very little heritability even though they can have large effect sizes – less likely to be considered 

probable25,26. 

 

Our filter, which was equivalent to requiring that each association remain significant (P < 5 x 10-

8) after conditioning on any other more-strongly-associated variant nearby, proceeded as 

follows. For each rare coding variant 𝑖	significantly associated with a phenotype, we calculated 

its correlation 𝑟!" (i.e., in-sample LD) with each other more-strongly-associated variant 𝑗 

(including both WES-imputed variants and variants from the HRC-based imputation release) 

using plink “--r”41. We then computed the approximate chi-square statistic that would be 

obtained for variant 𝑖 in a model including variant 𝑗 as a covariate: 

𝜒!	|	"% = 	𝜒!%(1 − 𝑟!"*𝜒"%/𝜒!%)	% 

where 𝜒!% and 𝜒"% denote the chi-square test statistics computed by BOLT-LMM for variants 𝑖 

and 𝑗. In order to retain variant 𝑖’s association as likely-causal, we required the conditional chi-

square statistic 𝜒!	|	"%  to exceed 29.7168 (corresponding to P < 5 x 10-8) for every variant 𝑗 with 

𝜒"% > 𝜒!%. 
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Filtering associations potentially explained by linkage disequilibrium with multiple 
variants. The filter described above was designed to eliminate associations involving variants 

that primarily tagged one other variant in LD; however, in theory, non-causal variants could 

escape this filter by tagging a combination of multiple other variants. To account for this 

possibility, we used the FINEMAP software25 to determine, for each gene harboring a rare 

coding variant of interest, whether the local genetic architecture appeared to involve multiple 

causal variants, and if so, to assess whether the rare coding variant(s) under consideration 

remained significantly associated after conditioning on the variants selected by FINEMAP. 

 

We performed this analysis using a two-step procedure. First, we ran FINEMAP’s shotgun 

stochastic search algorithm (“--sss”) to identify up to 5 putatively causal variants among all 

significantly associated variants within 500kb of the gene under consideration. This run 

produced a most probable configuration of 1-5 variants, most of which were typically common. 

We then ran FINEMAP a second time, adjusting the number of allowed causal variants to be 

one greater than the number selected for the top configuration in the first run, and limiting the 

set of potential causal variants to those variants in the top configuration from the first run along 

with all significantly-associated rare coding variants in the gene under consideration. The 

purpose of this second run was to ascertain whether each rare coding variant remained 

significant in a model conditioning on multiple common variants. Specifically, we extracted the 

conditional z-scores output by FINEMAP in its “.snp” files and dropped variants with z-score £ 4. 

This filter only removed 20 variants involved in 36 associations, suggesting that most rare 

variants that tagged other causal variants were primarily tagging just one neighboring variant. 

We set the z-score threshold to £ 4 after exploring other cut-offs such as z £ 5.45, the 

equivalent of a genome-wide significance threshold. The z £ 5.45 threshold filtered an additional 

54 variants; however, several associations with z-scores around 5 that failed this filter appeared 

to be real (e.g., high-CADD or stop gain mutations in genes known to alter lipid levels). In light 

of this observation and the stringent filtering we had already performed using pairwise tests, we 

decided to set a threshold of z-score £ 4, which appeared to filter primarily spurious 

associations. Applying this filter together with the previous two filters left us with the final list of 

1,189 significant rare coding variant associations involving 675 unique variants for 54 

quantitative traits.  

 
Variant lookup in the NHGRI-EBI GWAS Catalog. We compared the variants we identified to 

those reported in the NHGRI-EBI GWAS Catalog (accessed January 15, 2020)42. Each variant 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.28.20180414doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.28.20180414


17 
 

was checked to see if it was reported in the catalog for any phenotype to exclude the possibility 

that the variant was previously reported for a related phenotype.   

 
Replication analyses. Several traits we analyzed had previously been studied in large-scale 

meta-analyses using exome arrays, providing the opportunity for replication of likely-causal 

associations that involved variants assayed on the exome arrays. We compared the 

associations of likely-causal variants we identified for height, blood pressure, and lipid 

measurements (LDL cholesterol, HDL cholesterol, triglycerides, and total cholesterol) to 

association statistics previously published by the GIANT Consortium2 (N=381,625), the 

CHARGE-BP Consortium4 (N=120,473), and the Global Lipids Genetics Consortium 

(N≈300,000), respectively3; all of these meta-analyses predominantly studied participants of 

European ancestry, and none included UK Biobank. While most variants were too rare to attain 

statistical significance in these replication data sets (probably due to allele frequency differences 

between the UK and other European populations), 112 out of 113 associations exhibited the 

same effect direction in UK Biobank and the replication data set (Table 1 and Supplementary 
Table 4). We also compared our height associations to association statistics reported from 

exome-sequencing of the FinMetSeq cohort43 (N=19,241), which provided replication support for 

a few additional variants that happened to have higher allele frequencies in Finns 

(Supplementary Table 4). 

 

MAF-matched background distribution for assessing deleteriousness enrichment. To 

identify trends in the deleteriousness of likely-causal rare coding variants as compared to all 

rare coding variants, we generated a background distribution of rare coding variants with a MAF 

distribution matching that of the likely-causal variants (to account for the tendency of rarer 

variants to have higher deleteriousness scores). We first stratified likely-causal variants into 

three MAF bins: 10-5-10-4, 10-4-10-3, and 10-3-10-2. We then subsampled the set of all rare coding 

variants considered in our analyses (regardless of whether or not they had a significant 

association) using the R “sample” function to generate a set of variants with the same fraction of 

variants in each MAF bin as in the likely-causal set. We included all variants in the highest MAF 

bin (as this bin contained the fewest variants), which set the total number of variants in the 

background distribution at 47,142 variants. 

 
Allelic series analyses. As our primary analysis pipeline for identifying likely-causal rare coding 

variant associations implemented strict filters on statistical significance (in both single-variant 
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analysis and conditional analyses), we applied a secondary analysis pipeline that relaxed these 

filters to identify additional rare coding variant associations with good statistical support within 

genes with two or more likely-causal variants for a trait (indicating strong evidence for the gene-

trait association). This pipeline applied a two-step approach (detailed in the Supplementary 
Note) using FINEMAP in a manner somewhat similar to the approach we used to filter 

associations that could be explained by combinations of other variants. Here, we again 

performed a first run of FINEMAP to allow it to select a multiple-causal-variant model (this time 

containing up to 15 causal variants chosen from common and low-frequency variants as well as 

rare coding variants), and we then ran FINEMAP a second time to perform an iterative 

conditional analysis using the selected variants together with rare coding variants. We used 

conditional P-values from the second FINEMAP run to assess the extent to which each rare 

coding variant exhibited a trait association independent of previous variants. Finally, we 

converted P-values to q-values to determine the set of rare coding variants that reached 

significance at a false discovery rate of 5%.  

 

The expanded allelic series we identified at FDR<0.05 significance often contained many 

variants. (For genes with multiple transcripts, we counted the lengths of the allelic series for the 

transcript that contained the most FDR<0.05-significant variants, treating cryptic splice variants 

as belonging to all transcripts.) To visualize the effects of missense variants, we plotted the 

affected amino acids on previously-generated protein structures. Experimentally-derived protein 

structures for PCSK9 (2P4E), ANGPTL3 (6EUA), IQGAP2 (5CGJ), and GOT1 (3II0) were 

retrieved from PDB44. Computationally predicted structures for NPR2 (P20594 monomer) and 

IFRD2 (Q12894 monomer) were retrieved from SWISS-MODEL45. 

 
Associations with health outcomes. We tested likely-causal variants we identified for cellular 

and molecular phenotypes (blood cell traits, liver biomarkers, diabetes biomarkers, renal 

biomarkers, and cardiovascular biomarkers) for associations with corresponding disease 

outcomes coded by UK Biobank using ICD-10 codes (blood disorders, D50-D77; liver diseases, 

K70-K77; type 2 diabetes, E11; gout and kidney diseases, M10 and N00-N29; cardiovascular 

diseases, I20-I25 and I63). To further reduce multiple testing burden, we further restricted to 

diseases with at least 500 reported cases. These criteria left 40 phenotypes under consideration 

(i.e., an average of 8 phenotypes tested for each likely-causal variant for each of the 5 classes 

of cellular/molecular phenotypes) and resulted in 5,508 separate tests. Setting a false discovery 

rate threshold of 5% across the 5,508 tests resulted in a significance threshold of P < 1.5 x 10-4.  
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Gene-based burden tests. We assessed the performance of gene-based association analyses 

using burden tests that collapsed the genotypes of imputed rare coding variants within each 

gene. We considered six different criteria for inclusion of rare coding variants in the burden. 

These six criteria were defined by three different allele frequency thresholds (MAF £ 1%, 0.1%, 

and 0.01%) and two different variant annotation criteria (protein-altering with CADD ³ 20 or 

predicted loss-of-function as annotated by VEP). Collapsed genotypes were coded as 0 (if an 

individual had no variants meeting these requirements) or 1 (if the individual carried at least one 

of these variants). We performed association tests against the 54 quantitative traits using BOLT-

LMM with the same settings as in our single-variant analyses, and we applied a Bonferroni-

corrected P-value threshold of P < 2.7 x 10-6 to account for 18,530 genes tested. We compared 

the results of these analyses to those previously reported in burden analyses of N=49,960 

exome-sequenced UK Biobank participants8,9. Among phenotypes in common between our 

analyses and the previous analyses, we replicated 13/15 associations from Van Hout et al.8 and 

48/58 associations from Cirulli et al.9. Non-replicated results might arise from different selection 

criteria for variants and to a lesser extent from singletons that were included in the previous 

analyses but excluded from our imputation. 

 

Data availability. Access to the UK Biobank Resource is available by application 

(http://www.ukbiobank.ac.uk/). Exome-wide summary association statistics for the 54 

quantitative traits we analyzed are available at 

https://data.broadinstitute.org/lohlab/UKB_exomeWAS/, and data files containing allelic series 

for all gene-trait associations with multiple likely-causal variants are also available at this 

website. 

 

Code availability. The following publicly available software packages were used to perform 

analyses: Eagle2 (v2.3.5), https://data.broadinstitute.org/alkesgroup/Eagle/; Minimac4 (v1.0.1), 

https://genome.sph.umich.edu/wiki/Minimac4; BOLT-LMM (v2.3.4), 

https://data.broadinstitute.org/alkesgroup/BOLT-LMM/; FINEMAP (v1.3.1), 

http://www.christianbenner.com/; plink (v1.9 and v2.0), https://www.cog-genomics.org/plink2/. 

Scripts used to perform the downstream analyses described above are available from the 

authors upon request. 
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Figure 1. Whole-exome imputation, association, and fine-mapping identify rare coding variants likely to 
causally associate with 54 quantitative traits. (a) Imputation within UK Biobank using 49,960 exome-
sequenced participants as a reference panel (orange) enables accurate imputation of much rarer variants than 
the HRC+UK10K-based imputation release (purple). Error bars, 95% CIs. (b) Schematic of our analytical 
pipeline, which combined UK Biobank whole-exome sequences with SNP-array genotypes to impute exome-
wide genotypes into the full cohort. We analyzed imputed exome variants together with the genome-wide UK 
Biobank imputation release to find significant variant-trait associations independent of neighboring variants, 
and we restricted to rare (MAF<0.01) protein-altering variants with CADD ³ 20 or SpliceAI support to form a 
final list of likely-causal variants. (c) Distribution of first UK Biobank genetic data set in which each association 
could have been detected. Roughly one-third of all likely-causal variants – and nearly all very rare likely-causal 
variants – were only discoverable using WES imputation. (d) WES imputation enabled identification of new 
rare coding variants for all but one trait (immature reticulocyte fraction) among 54 quantitative traits analyzed. 
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Figure 2. Likely-causal coding variants are rare and enriched for deleteriousness. (a) Likely-causal 
variants (pink) had minor allele frequencies distributed relatively evenly across the range under consideration 
(MAF = 10-5 to 10-2), whereas variants that failed linkage disequilibrium (LD)-based filters (blue) tended to be 
less rare. (b) Likely-causal variants had elevated CADD scores compared to those that failed LD-based filters 
and compared to a randomly-sampled background distribution of rare coding variants (green). (c) Likely-causal 
variants were enriched for predicted loss-of-function mutations. Error bars, 95% CIs. (d) Likely-causal 
missense variants were enriched for higher-impact amino acid substitutions (as measured by more negative 
BLOSUM62 scores). 
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Figure 3. Many genes contain long allelic series of rare coding variants with consistent effect 
directions. (a-d) Allelic series of rare coding variants with statistically independent phenotype associations 
(reaching FDR<0.05 significance) for: (a) PCSK9 and LDL cholesterol, (b) IQGAP2 and mean platelet volume, 
(c) IFRD2 and high light scatter reticulocyte count, and (d) NPR2 and height. Top, protein structures with 
altered amino acids (modified by missense variants) color-coded by effect direction (red for trait-increasing 
variants and blue for trait-decreasing variants). Bottom, per-variant effect sizes (error bars, 95% CIs) and allele 
frequencies. Protein structures were previously determined experimentally (for PCSK9 and IQGAP2) or 
computationally predicted (for IFRD2 and NPR2). Functional domains of PCSK9 are shaded in different colors. 
IQGAP2 is represented as a homodimer in its crystal structure. (e) Distributions of effect directions for all gene-
trait pairs with 10 or more variants in an allelic series. 
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Table 1. Replication of likely-causal associations between rare coding variants and height. P-values and 
effect sizes are compared for the 28 height-associated variants that were included in the ExomeChip analysis 
previously performed by Marouli et al.2 Effect directions replicated for all 28 variants, most of which had not 
previously reached exome-wide significance. The last column indicates whether any variants in the affected 
gene had previously reached significance; several implicated genes were novel relative to Marouli et al. 
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