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ABSTRACT 

Alzheimer’s disease (AD) Resilient individuals are characterized by having a degree of amyloid 
plaques at level with that of demented individuals, but a reduced amount of abnormal 
neurofibrillary protein “tangles” (NFTs). NFTs, also known to be upregulated under hypoxic 
conditions, become clinically relevant when involved in the stratum radiatum. In this paper, we 
show this region and more to have significant increases of hypoxic adaptive protein, HIF-2α, 
within AD resilient cases. Pericyte staining was present in the stratum lacunosum and radiatum 
of all cases affected by AD pathology (n = 4) but in AD resilient cases were increased by 12-fold 
(n=3) p<.0001. No staining was detected in normal cases (n=2). HIF-2α was also only present in 
hippocampal neuronal nuclei of AD resilient cases, including the dentate gyrus and CA1. 
Cytoplasmic staining of pyramidal neurons within the subiculum was seen in all cases affected 
by AD pathology. The intensity of HIF-2α appears to be specific to known regions of protection 
in AD resilience and to increase on a gradient that corresponds to protection against dementia. 
These results also highlight the stratum lacunosum and radiatum as regions critically impacted 
by hypoxic insult among AD cases.    

Significance  

HIF-2α directly regulates expression of erythropoietin (EPO), a neuroprotective glycoprotein that 

in brain pericytes is completely dependent upon activation of HIF-2α. To date, only indirect 

evidence exists that shows that brain pericyte-derived EPO can reach the bloodstream via HIF-2α 

expression (Urrutia et al, 2016). In this study, we provide novel preliminary findings that directly 

show HIF-2α expression in pericytes of human brains. Additionally, its localization is specific to 

the CA1 of the hippocampus, a region critical for hypoxic adaptation and the progression of 

Alzheimer’s disease. Finally, we present evidence of neuronal expression of HIF-2α in other 

critical regions of protection within AD resilient cases.  

 



Introduction  

In clinical trials, patients diagnosed with “Alzheimer’s disease (AD)” typically exhibit dementia 

and brain histopathology consisting of amyloid “plaques” and neurofibrillary protein “tangles” 

(NFTs). However, non-demented control subjects may exhibit the same degree of 

histopathology, which is with the same degree of amyloid plaques but around half the amount of 

NFTs. The latter AD resilient patients, collectively referred to here as Non-Demented with 

Alzheimer’s (NDAN), deserve a more detailed investigation.  

 

Increasing evidence suggests that hypoxia facilitates the pathogenesis of AD by increasing the 

hyperphosphorylation of tau and promoting the degeneration of neurons and impairing the 

normal functions of the blood-brain barrier (Morris, et. al 2011). Under normoxic conditions, tau 

is enriched in axons where it stabilizes and binds to microtubules. In AD and exposure to 

hypoxia, the hyperphosphorylation of tau at several serine and threonine residues reduces its 

ability to bind to microtubules (Morris et. al 2011). The result of this hyperphosphorylation 

includes destabilized microtubules and accumulation of NFTs (Schettini, 2010; Tala, 2014). This 

accumulation induces impaired cell division, shape changes, motility, and cell differentiation 

such as the formation of neuronal outgrowths. For such reasons, these features have been long 

regarded as the main captains in AD.  

 

As a result of such findings, the role of hypoxia in AD is of increasing interest. However, oxygen 

deprivation and its relationship to NDAN has not been sufficiently investigated. Considering that 

NDAN individuals do not demonstrate the cognitive deficits associated with 

hypoxia/Alzheimer’s, it is laudable that they have managed an appropriate cellular response to 

hypoxic damage. This response may be responsible for reducing the NFTs in NDAN brains 

despite the increase in Aβ. In this paper, we show that NDAN individuals demonstrate a region-

specific increase in HIF-2α, a hypoxia sensitive protein with neuroprotective factors. A further 

understanding of NDAN etiology guided by hypoxic adaptive mechanisms could help narrow the 

crucial determinants for permitting preserved cognition despite elevated levels of AD pathology. 

 

 



Materials and Methods 

 

Paraffin-embedded human subjects of hippocampal tissue were obtained from the Sun Health 

Banner Research Institute in Arizona, CA. Sections were cut from 10% formalin-fixed 

cryoprotected tissue slabs. IHC staining and whole slide scanning were performed by NDB Bio, 

LLC (Baltimore, MD USA, www.ndbbio.com). A positive control for HIF-2α was confirmed 

using human kidney tissue, and a negative control using a section of one of the 6 human subjects 

(no primary antibody) was run.  FFPE sections were deparaffinized and hydrated and heat-

induced antigen retrieval was performed using citrate EDTA buffer.  Primary Antibody used: 

HIF2 (Novus, cat# NB100-122SS) (dil 1:500). The reaction was developed using a biotin-free 

detection system and visualized using DAB. Slides were counterstained with Gill's II 

hematoxylin, then dehydrated and cover slipped. All original microscope images were taken 

using whole slide scanning information: 20x objective (Olympus Plan N NA 0.40). File format: 

".SVS". Image J version 2.0-rc-69/1.52 p was used to analyze and compare images.  

 

Results  

Cytoplasmic HIF-2α staining of the subiculum’s pyramidal neurons was seen only in cases 

affected by AD pathology, with NDAN having the strongest intensity of cytoplasmic staining, 

and also appearing to have the healthiest pyramidal cells in that region (Fig.1 a & c). Size of the 

pyramidal neurons in this region also varied according to the level of HIF-2α expression (Fig. 6). 

Most notable was that all subjects affected by AD pathology had HIF-2α positive pericyte 

staining in the stratum lacunosum and radiatum (Fig. 2) (n=4). In AD resilient cases (n=3), 

staining had a 12-fold more intensity than in AD subjects (n=1) (p< 0.05) P = 0.0381. Blood 

vessels were also much more disfigured in this region as compared to AD resilient and control 

cases (Fig.2). No positive blood vessel staining for HIF-2α was detectable in normal cases (n=2). 

Layer II in the entorhinal cortex was also preserved among AD resilient cases and had specific 

staining of HIF-2α as well (Fig. 5). Other regions of CA1 in NDAN had scattered positive nuclei 

surrounding blood vessels but were not as uniform or intense as was staining in the stratum 

lacunosum (data not shown).     



 
 
 
 



 
 
 



 
 
 

 



 
 



 
 
 
 
 
 

 
Table 1. Data Set Table on Cases studied with varying levels of Alzheimer’s pathology and Test Scores 

 
 
 
 
 

 



 

Discussion 

AD resilience is a phenomenon that is gaining attention in the research field as one that is more 

intricate than just “preclinical” AD. In this study, we showed that the level of HIF-2α has region-

specific increases only in AD affected human subjects and that the most commonplace for its 

strong expression is in the pericytes of the stratum lacunosum and radiatum. Based on our 

results, this area appears to be a losing battle in AD in terms of HIF-2α response when compared 

to AD resilient cases.  

 

All regions affected by HIF-2α in this study are mostly known to be protected in NDAN but are 

also critical for the progression of tau hyperphosphorylation, such as the CA1/subiculum border, 

dentate gyrus and most notably, the stratum lacunosum and radiatum (Thal et al, 2000; Lace et 

al, 2009).  Several other regions affected by HIF-2α did not have a uniform level of expression. 

For example, some NDAN cases showed neurons with positive nuclei staining in CA1 while the 

other two NDAN cases had more cytoplasmic staining in that region. That being said, only 

NDAN cases had positive hippocampal neurons that stained for HIF-2α, and the finding that 

layer II cells of EC were both preserved and HIF-2α positive may help explain why NDAN cases 

have been reported to have the protection of layer II cells(Arnold, et al 2013). This has always 

been a perplexing find, though with these results now made clearer, considering that layer II of 

the EC is significantly compromised in very early stages of AD pathology (Gomez-Isla T et al, 

1996). These findings, namely the expression of HIF-2α in the nuclei CA1 neurons, also help 

shed light onto why the nuclei in this region have been reported to not only have unique 

protection but also significant hypertrophy in NDAN cases as compared to both AD and control 

subjects (Iacono et al, 2009).   

 

Among all three groups, cytoplasmic staining of the pyramidal neurons in the subiculum was 

only seen in those affected by AD pathology. The size of those cells, namely their dendritic 

length, appeared to increase in length with HIF-2α cytoplasmic intensity. More studies done with 

antibodies specific to neurons and dendritic analysis would help us to objectively measure the 



difference in dendrite length among groups and to compare results with varying levels of HIF-2α 

expression.  

 

Conclusion 

 

In this study, the most significant difference in HIF-2α expression was visible in the pericytes of 

all human subjects affected by AD pathology, with a 12-fold increase in expression of HIF-2α 

detected in AD resilient cases. Pericytes are known to serve as oxygen sensors in the brain and 

are responsible for secreting the protective factor and HIF-2α regulated hormone EPO in 

response to hypoxic insult (Ji, 2016). This study’s most clear finding is that the stratum 

lacunosum and radiatum appears to be the primary region of hypoxic insult in AD. In spite of the 

obvious limitations of our study, this is the first report of such significant levels of HIF-2α in 

brains of human subjects with AD pathology. 
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