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Abstract 

Introduction The new coronavirus disease (COVID-19) is a challenge for clinical 

decision-making and the effective allocation of healthcare resources. An accurate 

prognostic assessment is necessary to improve survival of patients, especially in 

developing countries. This study proposes to predict the risk of developing critical 

conditions in COVID-19 patients by training multipurpose algorithms. 

Methods A total of 1,040 patients with a positive RT-PCR diagnosis for COVID-

19 from a large hospital from São Paulo, Brazil, were followed from March to 

June 2020, of which 288 (28%) presented a severe prognosis, i.e. Intensive Care 

Unit (ICU) admission, use of mechanical ventilation or death. Routinely-collected 

laboratory, clinical and demographic data was used to train five machine learning 

algorithms (artificial neural networks, extra trees, random forests, catboost, and 

extreme gradient boosting). A random sample of 70% of patients was used to 

train the algorithms and 30% were left for performance assessment, simulating 

new unseen data. In order to assess if the algorithms could capture general 

severe prognostic patterns, each model was trained by combining two out of 

three outcomes to predict the other.  

Results All algorithms presented very high predictive performance (average 

AUROC of 0.92, sensitivity of 0.92, and specificity of 0.82). The three most 

important variables for the multipurpose algorithms were ratio of lymphocyte per 

C-reactive protein, C-reactive protein and Braden Scale.  

Conclusion The results highlight the possibility that machine learning algorithms 

are able to predict unspecific negative COVID-19 outcomes from routinely-

collected data. 

Keywords: prognosis; COVID-19; machine learning; Brazil.  
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Introduction 

The COVID-19 epidemic that first appeared in Wuhan, China, has rapidly spread 

worldwide and still continues to affect most countries, through late initial infections1,2 and 

second waves3,4. Currently, there have been more than 14 million cases and five 

hundred and ninety thousand confirmed deaths5. In critical patients, the disease has 

been shown to rapidly worsen a few days after infection6,7 requiring immediate clinical 

decisions, especially in developing countries with limited resources8,9. An accurate 

COVID-19 prognosis assessment is crucial for screening and treatment procedures and 

may increase patient survival10,11. 

The consequences of COVID-19 have been disastrous for health systems in 

middle and low-income countries (LMICs) 12, especially in Brazil13. The lack of 

established knowledge about the disease has made it difficult to identify risk criteria to 

support clinical conducts and to allocate human and physical resources in health 

facilities and hospitals14. Currently, many Brazilian cities are at their saturation capacity 

for the provision of clinical care, especially regarding ICU beds and mechanical 

ventilators15,16. 

Previous studies have used blood tests17, CT images18,19, sociodemographic and 

comorbidities history20 to develop COVID-19 diagnostic and prognostic models, including 

machine learning techniques21-23. Biomarkers from blood tests have emerged as 

important variables for poor prognostic factors24, which are a promising tool in poorer 

regions, due to its low cost and inclusion in standard protocols for clinical care. However, 

the majority of studies25 rely on algorithms trained on a single prognostic outcome, which 

in theory require the training of specific algorithms for each distinct negative outcome.  

This study proposes to develop multipurpose machine learning algorithms to 

analyze if it is possible to predict overall poor prognosis for COVID-19 patients. We aim 

to test if the algorithms can generalize risk patterns for severe conditions, so they can be 
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used as tools to assist in the prognosis of distinct negative outcomes for COVID-19 

patients.  

Methods  

Data Source 

A cohort of 3,280 patients with a RT-PCR diagnostic exam for COVID-19 from a 

large hospital chain in the city of São Paulo (BP- A Beneficência Portuguesa de São 

Paulo) were followed between March 1, 2020, and 28 June, 2020. Of these, 1,040 

(31.7%) patients were positive for COVID-19 and were included in the analysis. The 

study was approved by the Institutional Review Board (IRB) of BP - A Beneficência 

Portuguesa de São Paulo (CAAE:31177220.4.3001.5421), including a waiver of 

informed consent. The study followed the guidelines of the transparent reporting of a 

multivariable prediction model for individual prognosis or diagnosis (TRIPOD).26 

Individual patient data was collected from electronic medical records. We 

included as predictors only variables collected in early hospital admission, i.e. within 24 

hours before and 24 hours after the RT-PCR exam. A total of 57 routinely-collected 

variables were used for the development of the predictive models, including 

demographic data, laboratory tests and vital signs (the complete list is described in 

Supplementary Table 1). Figure 1 illustrates the overall process. 
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Fig. 1 Process overview. a From hospital admission to a final outcome. b Population 

inclusion criteria and outcomes intersection. c The algorithm trained and tested using a 

combination of two outcomes. The same algorithm was then used to predict the 

remaining outcome. 

Machine learning techniques 

Five of the most popular machine learning models for structured data (artificial 

neural networks27, extra trees28, random forests29, catboost30, and extreme gradient 

boosting31) were trained with 70% of the data, and tested in the other 30%, simulating 

new unknown data. All the results reported in this study are from the test set. K-fold 

cross-validation with 10 folds was used to adjust the hyperparameters with Bayesian 

optimization (HyperOpt). Due to the unbalanced nature of the outcomes, random 

undersampling was performed in the training set, by randomly selecting examples from 

the majority class for exclusion. This technique was implemented using the 

RandomUnderSampler imbalanced-learn class32.  

Variables with more than two categories were represented by a set of dummy 

variables, with one variable for each category. Continuous variables were standardized 

using the z-score. Variables with a correlation greater than 0.90 (mean arterial pressure, 
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total bilirubin, and creatine kinase) were discarded, and missing values were imputed by 

the median. To assess the performance of the models, measures such as accuracy, 

sensitivity (also known as recall), specificity, positive predictive value (PPV) (also known 

as precision), negative predictive value (NPV), and F1 score were analyzed. The value 

of the AUROC was used to select the best model. 

To understand the individual contribution of each variable to the predictive 

models, we calculated their respective Shapley values. All the analyzes were performed 

using the Python programming language with the scikit-learn library. 

Patient and public involvement 

Patients and the public were not directly involved in the design and conduct of 

this research. 

 

Results 

Descriptive statistics 

Table 1 shows the descriptive statistics for the demographic characteristics of the 

patients. The sample of the study (1,040 patients with COVID-19) was mostly comprised 

by men (53.3%), with an average age of 51.7 years, and the majority of patients (63.8%) 

were white. The full descriptive statistics for all variables are presented in Supplementary 

Table 1. 
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Table 1 – Descriptive statistics of the demographics characteristics of the sample. 

Variable ICU MV Death Total 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Age (years) 63.2 (17.1) 65.4 (16.2) 73.7 (14.4) 51.7 (18.9) 

 

Weight (kg) 79.80 (17.8) 78.9 (16.4) 74.5 (12.0) 80.9 (18.7) 

 

 

BMI 28.2 (5.4) 27.8 (4.4) 27.1 (4.1) 28.8 (5.9) 

 

 

Height (cm) 146.1 (56.5) 147.9 (55.9) 152.4 (47.1) 154.9 (44.0) 

 

 

Sex      

   Female (%) 42.0 34.9 42.4 46.7  

Race (%)      

Asian 1.4 0.9 1.1 1.2  

White 71.2 72.6 81.5 63.8  

Indigenous 0.4 0.9 1.1 0.2  

Black 3.6 1.9 1.1 3.2  

Mixed 16 20.8 13 14.1  

N/A 7.5 2.8 2.2 17.5  

 

 

Algorithms performance 

We analyzed the predictive performance of the algorithms for three negative 

prognostic outcomes: ICU admission (n=263, 25.5%), mechanical ventilation (MV) 

intubation (n=106, 10.2%) and death (n=92, 9.4%). We first tested the predictive 

performance of the machine learning algorithms for a specific individual outcome (e.g. 

death). We then used the other two outcomes (in this specific example, mechanical 

ventilation and ICU admission) to train another model, and then tested this model 

performance to predict the previous outcome (death). We then compared the 

performance of the two strategies using the 95% confidence interval of the area under 

the receiver operating characteristic curve (AUROC).  
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Table 2 shows the results of the models trained with the aggregated outcomes 

and the models with a single outcome. Every model, even the ones trained with different 

outcomes, presented high predictive performance, always with an AUROC over 0.91 in 

the test set. The individual models were overall better, but the difference between the 

aggregated and individual models were all within the 95% confidence intervals. 

Supplementary Figure 1 shows the AUROC for each model. The sensitivity and 

specificity of the machine learning algorithms were also very high, in most cases over 

0.8, with an average sensitivity of 0.92 and specificity of 0.82. In Supplementary Table 2 

we present the final hyperparameters for each model. 
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Table 2 – Predictive performance comparison in the test set for aggregated and 

individual models. 

Combination 
 Best 

algorithm 
 

AUC [95% C.I.] Sensitivity Specificity PPV NPV F1 

ICU + MV 

       predict ICU 

 

 

Random 
Forest 

0.959 [0.94; 098] 0.906 0.868 0.720 0.961 0.802 

       predict MV  0.912 [0.87; 0.95] 0.935 0.723 0.271 0.990 0.420 

     predict Death  0.925 [0.89; 0.96] 0.969 0.730 0.290 0.995 0.446 

Only Death 

     predict Death 

 

Extra Trees 

 

0.972 [0.95; 1.00] 0.964 0.863 0.409 0.996 0.574 

ICU + Death 

 

 

 

XGBoost 

 

     

    predict ICU  0.965 [0.95; 0.98] 0.847 0.930 0.818 0.942 0.832 

   predict MV  0.925 [0.89;0.96] 0.946 0.808 0.398 0.991 0.560 

predict Death  0.922 [0.89; 0.95] 1.000 0.787 0.307 1.000 0.470 

Only MV 

      predict MV 

 

Extra Trees 

 

0.945 [0.91;0.98] 0.906 0.819 0.362 0.987 0.518 

MV + Death 
 

 

Random 
Forest 

      

    predict ICU  0.921 [0.89; 0.95] 0.765 0.901 0.729 0.917 0.747 

   predict MV  0.940 [0.91; 0.97] 0.933 0.799 0.329 0.991 0.487 

predict Death  0.943 [0.91; 0.98] 0.963 0.794 0.306 0.996 0.464 

Only ICU 

  predict ICU 

  

Random 
Forest 

 

0.959 [0.94; 0.98] 0.906 0.868 0.720 0.961 0.802 
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Interpretability 

Figure 2 presents the prediction density for each individual outcome according to 

the different training strategies.  

 

Fig. 2 - Density Plots.  a-c. Density plots for single outcome models. d-f. Density plots for 

aggregate models predicting unspecific outcome. 

The results point to a low overlap between negative and positive cases, 

indicating a good discriminative ability of the algorithms irrespective of the training 

strategy. 

Figure 3 presents the top 5 variables that most contributed to prediction in the 

aggregated models, according to the Shapley values.  

 

Fig. 3 – Top five feature contributions to the predictive models, according to Shapley 

Values. a. MV+ICU b. Death + ICU c. Death + MV 
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The Braden score played an important role in the aggregated outcome 

algorithms, ranking as the most important predictor in two of three models. Also, the C-

reactive protein and ratio of lymphocytes per C-reactive protein proved to be good 

predictors, appearing in the top 5 in all three models. Urea, age, creatinine, and arterial 

lactate were important for only one of the aggregated models. 

Discussion 

We found that machine learning algorithms were able to predict with high overall 

performance negative prognostic outcomes for COVID-19, even when the specific 

outcome was not included in the training of the algorithms. All models presented an 

AUROC higher than 0.91 (average of 0.92) in the test set, with high sensitivity and 

specificity (average of 0.92 and 0.82, respectively). The results highlight the possibility 

that high-performance machine learning algorithms are able to predict unspecific 

negative COVID-19 outcomes using routinely-collected data. 

Brazil is currently the second country in the world in total number of cases and 

deaths from COVID-1933. There is a growing demand in Brazil, and in many other 

developing countries, for decision support in the allocation of scarce hospital resources, 

especially in relation to the availability of ICU beds and mechanical ventilators34,35. From 

a clinical standard, knowledge about immediate risks of negative prognosis can also 

contribute to the early start of preventive measures and new interventions, and thereby 

increase patient survival10,11. 

The results of this study highlight that it is possible to predict with high 

performance the risk of a negative prognosis in patients with COVID-19. Additionally, we 

found that it is also possible to predict the risk of negative outcomes well even when they 

were not used for training of the model. This result is promising for the prediction of 

specific outcomes that are not possible to be collected for model training, either due to 
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technical difficulties in registering the presence of these outcomes, or in the case of 

predicting a new negative outcome previously unknown. 

The development of multipurpose prognostic algorithms, i.e. algorithms that 

identify nonspecific outcomes and overall future clinical deterioration, can be used in a 

large number of situations, especially in the case of complex and unknown diseases that 

lead to the development of several different negative outcomes. Instead of having to 

develop a different algorithm for each of the specific outcomes, multipurpose models can 

provide more comprehensive and clinically relevant information about the risks of future 

health problems of patients. 

For every outcome, variable importance analysis identified that age, C-reactive 

protein (CRP), creatinine, urea and the Braden Scale were usually among the most 

important. While the age of the patient is widely found to be an important predictor for 

most negative health outcomes, CRP has been increasingly included among the main 

inflammatory biomarkers for the prognosis of cardiovascular36 and respiratory 

diseases37. High levels of CRP have been also previously associated with individual 

severity of SARS-CoV-238,39. Interestingly, previous studies have also identified that 

chronic kidney disease is associated with developing severe conditions in COVID-19 

patients40-42, where it has been observed that patients with higher levels of creatinine 

and urea are more at risk43. The Braden Scale is often used as a predictor for pressure 

ulcers, a common clinical classification scale for predicting pneumonia44 during clinical 

reception, and in this study, it was an important predictor for negative prognosis in 

COVID-19 patients. The scale has a score between 1 (worst score) and 4 (best score) 

where the factors included are sensory perception, skin moisture, activity, mobility, 

nutritional status and friction45. The percentage of lymphocytes in the blood has been 

described as a strong predictor of prognosis for the severity of the new coronavirus. The 

randomized study by Lin Tan et al.46 suggests that, in most confirmed cases, the 
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percentage of lymphocytes was reduced to 5% in two weeks after the onset of COVID-

19, in line with other studies findings47. 

The study has a few limitations that need to be mentioned. First, some of the 

outcomes overlap which may have helped the performance of the aggregated models, 

even though in the majority of cases the outcomes were independent. In the case of ICU 

admission, 55% of the patients did not die or used MV, while in the case of MV and 

death, 63% and 70% of their respective aggregated model was trained on other 

outcomes. Ideally, the outcomes would never overlap, but this is clinically unfeasible 

given the interlaced nature of negative prognostic outcomes. Another limitation is that we 

analyzed data from an urban COVID-19 hotspot in Brazil, in a period where clinical 

protocols for the disease were still being established, so this could affect the incidence of 

prognostic outcomes and may not directly generalize to other periods. 

 

Conclusion 

In conclusion, we found that machine learning algorithms can predict severe 

outcomes in COVID-19 patients with high performance, including previously unobserved 

outcomes, using only routinely-collected laboratory, clinical and demographic data. The 

use of multipurpose algorithms for the prediction of overall negative prognosis is a 

promising new area that can support doctors with clinical and administrative decisions, 

especially regarding priorities for hospital admission and monitoring. 

 

Data availability 

The data comes from medical records from BP - A Beneficência Portuguesa de 

São Paulo Hospital in Brazil and it is not publicly available as it contains sensitive 

information of patients. 
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Code availability 

All the code written to process and analyze the data can be made available upon 

request to the corresponding author. 
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