
Noname manuscript No.
(will be inserted by the editor)

Automated COVID-19 Detection from Chest X-Ray
Images : A High Resolution Network (HRNet)
Approach

Sifat Ahmed1 · Tonmoy Hossain2 · Oishee
Bintey Hoque3 · Sujan Sarker4 · Sejuti
Rahman5 · Faisal Muhammad Shah6

Received: date / Accepted: date

1. Artificial Intelligence Engineer
Hiperdyne Corporation. Tokyo, Japan.
E-mail: sifat.austech@outlook.com

2. Lecturer
Department of Computer Science and Engineering
Ahsanullah University of Science and Technology. Dhaka, Bangladesh. 
E-mail: tonmoyhossain.cse@ieee.org

3. Department of Computer Science and Engineering
Ahsanullah University of Science and Technology. Dhaka, Bangladesh. 
E-mail: oisheebinteyhoque@gmail.com ·

4. Lecturer
Department of Robotics and Mechatronics Engineering
University of Dhaka. Dhaka, Bangladesh.
E-mail: sujan@du.ac.bd

5. Assistant Professor
Department of Robotics and Mechatronics Engineering
University of Dhaka. Dhaka, Bangladesh.
E-mail: sejuti@du.ac.bd

6. Associate Professor
Department of Computer Science and Engineering
Ahsanullah University of Science and Technology. Dhaka, Bangladesh. 
E-mail: faisal.cse@aust.edu

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.26.20182311doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.08.26.20182311
http://creativecommons.org/licenses/by-nd/4.0/


2 Sifat Ahmed1 et al.

Abstract The pandemic, originated by novel coronavirus 2019 (COVID-19), con-

tinuing its devastating effect on the health, well-being, and economy of the global

population. A critical step to restrain this pandemic is the early detection of

COVID-19 in the human body, to constraint the exposure and control the spread

of the virus. Chest X-Rays are one of the non-invasive tools to detect this dis-

ease as the manual PCR diagnosis process is quite tedious and time-consuming.

In this work, we propose an automated COVID-19 classifier, utilizing available

COVID and non-COVID X-Ray datasets, along with High Resolution Network

(HRNet) for feature extraction embedding with the UNet for segmentation pur-

poses. To evaluate the proposed dataset, several baseline experiments have been

performed employing numerous deep learning architectures. With extensive ex-

periment, we got 99.26% accuracy, 98.53% sensitivity, and 98.82% specificity with

HRNet which surpasses the performances of the existing models. Our proposed

methodology ensures unbiased high accuracy, which increases the probability of

incorporating X-Ray images into the diagnosis of the disease.

Keywords COVID-19 · X-Ray · HRNet · UNet · Pandemic · Healthcare

1 Introduction

Previously specified as 2019 novel coronavirus (2019-nCOV), the Severe Acute

Respiratory Syndrome Coronavirus (SARS-CoV-2) disease (COVID-19) has pre-

cipitated global outbreak as it is termed as a pandemic by World Health Organi-

zation (WHO) [1]. It is rapidly disseminating all over the world since the devel-

opment of the virus in Wuhan, China, at the end of 2019 [2] [3]. Though it was

reportedly covered about the linkage of the Wuhan animal market, pointing out

about the animal to human transmission, further studies have suggested human to

human transmission [4] through droplets and inappropriate social distancing. Nev-

ertheless, the virus is transmitting expeditiously, the costliest Polymerase Chain

Reaction (PCR) testing and inept isolating process still behind the foundation of

proper treatment. For that purpose, we’ve to think of an economical and straight-
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forward testing approach by which the examining process can escalate with the

speed of transmitting to promptly identify and detach the infected person. So,

it is the most decisive task to defend the proliferation as this malignant virus is

continuously ravaging the world.

The convoluted PCR testing method is the only approved process of detecting

the novel COVID-19 disease by WHO. For most of the country, people cannot

afford this verification cost. As a result, people are dying without getting proper

treatment because of the fatal virus. Moreover, the effect of this virus reflects in

the major body parts including lung, heart, brain, etc. In a study published by

nature, directly induced lung injury and deteriorate the respiratory system [5].

Also, there is a considerable amount of feature and observation to distinguish the

infected part from a lung image. So, it will be beneficial for the society and a

milestone development if we consider and establish a detection model based on

the Chest X-Ray (CXR) or CT Scan images to classify the COVID-19 disease.

Researchers around the world are continuously trying to build a time-efficient

and cost-effective model to identify COVID-19 disease. Investigators are adopt-

ing CXR and CT Scan images for the classification of the infected lung. There is

a disparate type of AI-based architectures developed to efficiently recognize the

infected lung images [6] [7] [8] [9]. In the AI-based methods, machine learning

and deep learning architectures stands out in most of the COVID-19 classification

tasks [10] [11] [12]. But one of the biggest hindrances the researchers are facing is

a deficiency in the dataset. To efficiently train a model, a reasonable amount of

the subject images is required. But there is an insufficient amount of COVID-19

affected lung available for the research. So, image processing or machine learn-

ing model hardly can segregate the COVID and non-COVID images. To support

this dataset complication, researchers are lying towards deep learning architecture

because of the augmentation and transfer learning approaches [13] [14]. Various
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versions of CNN models such as — Inception Net, XceptionNet, ResNet, VGGNet,

etc. are the prominent architectures that are employed in this research.

Studying the existing classification models, we have adopted High-Resolution

Network (HRNet) for feature extraction. In HRNet, different types of convolutional

resolutions are linked in a parallel manner. Besides, HRNet consists of plentiful

interaction across low and high resolution that bolsters its internal representation

ability. The feature representation of this network is kept up during the training

process that can prevent the small target information loss in the feature map.

For vision-based problems, like small target segmentation and classification, HR-

Net gives more accurate and definite results because of the parallel procedure. In

summary, our contributions in this research are as follows:

– Firstly, we propose a COVID-19 classification method based on a high-resolution

network for feature extraction, provides competing results compared with the

existing architectures.

– Secondly, we integrate UNet for lung segmentation along with the HRNet to

precisely and accurately classify the COVID region. This addition improves

the result significantly and validates the infected lung region rather than the

redundant non-relevant areas.

– Finally, we conduct a performance comparison with the existing advanced mod-

els by implementing those models and evaluating their performance with our

proposed work. From the experimental results, we can affirm that the pro-

posed model accomplishes surpassed the existing models by accuracy, sensitiv-

ity, specificity, and other evaluation metrics.

The rest of this paper is organized as follows. In Section II, we provided a

study on the related works in this area of research. Subsequently, in Section III

we discussed our proposed model which consists of the detailed description of

our dataset and classification network. In Section IV, the experimental analysis is
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presented in detail, followed by the performance evaluation. Finally, in Section V,

we concluded this paper with significant future works.

2 Related Works

Over the years, numerous types of works have been established to detect COVID-

19 disease from a distinct perspective. Researchers around the world tried to come

up with a model that can efficiently classify this disease considering a short amount

of time. In this section, a study on the existing works on COVID-19 classification

will thoroughly describe with appropriate characterization and depiction.

Apostolopoulos et al. [14] proposed an architecture based on transfer learning

for the feature extraction. Firstly, the authors tried to employed a CNN model

to extract the feature of a different nature that is called pre-trained (only used

for feature extractor) the CNN model. This was done by operating the transfer

learning for feature extraction. After that, the extracted features were fed into

a particular network for classification purposes. Though the author accomplished

exceptional result but the author did not focus on handling the negative transfer.

Borghesi et al. [15] introduced a chest X-Ray (CXR) scoring system named as

Brixia score to determine the outcome (recovery or death). Dividing the lungs into

six zones with the aid of frontal chest projection, the authors assigned four scores

(Score 0: no abnormalities to Score 3: alveolar predominance or critical condition).

Then the six scores for the six divided zones were aggregated to obtain the final

score ranging from 0 to 18. For validation, weight kappa (kw), confidence interval

(CI) and P-values were calculated. Although the scoring system is a unique way

to identify the disease, the experiment should apply to a considerable amount of

CXR images.
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Leveraging the multi-resolution capabilities of the inception module, Das et

al. [16] built a truncated inception net architecture associating with the adaptive

learning rate protocol. In this model, kernels of disparate receptive fields were ex-

ecuted in a parallel manner for feature extraction. Then, the extracted features

were deformed depth-wise to obtain the final output. Because of the diminutive

dataset, used in the architecture, the inception net is truncated at some particular

point of the model. An accuracy of 99.92% was achieved classifying COVID-19

cases combining with the pneumonia cases. A COVID-19 detection model consid-

ering multi-class and hierarchical classification was developed by Pereira et al. [17].

Working on the natural data imbalance, a resampling algorithm for rebalancing the

class distribution was operated. For feature extraction, Inception V3, Local Binary

Pattern (LBP), local phase quantisation (LPQ), Local directional number pattern

descriptor (LDN), Locally Encoded Transform Feature Histogram (LETRIST),

Binarized Statistical Image Features (BSIF), etc. model was employed. Early and

late fusion techniques were leveraged to the feature descriptor algorithms. Then,

the author introduced the resampling operation to rebalance the distribution of the

multi-class: flat and hierarchical. A macro-average F1 score of 0.65 and 0.89 was

achieved using the multi-class approach and the hierarchical classification respec-

tively. In an unbalanced environment, this architecture stands out in the relative

existing works.

A 19-layer CNN architecture was proposed by Ozturk et al. [18] for the bi-

nary COVID-19 classification. The authors also covered the multiclass problem

by assimilating the Pneumonia with the COVID and No Finding class. DarkNet-

19, adopted by the author, is based on the prominent real-time object detection

model YOLO. In the proposed model, a total of 17 layers were built by a 2D

Convolutional layer of different dimensions and trainable parameters, one Flatten

and one Linear layer. Each of the Conv. Layer was developed followed by batch

normalization and LeakyReLU operation. An accuracy of 87.02% for multi-class
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cases and 98.08% for binary classes was attained by the authors. A highly diverse

and long-rang selective connective method was proposed by Wang et al. [19]. The

machine-driven design strategy is leveraged by generative synthesis [20]. A PEPX

module (conv1×1 + conv1×1 + DWconv3×3 + conv1×1 + conv1×1) was assem-

bled with general convolutional, flatten and fully connected layers. Finally, softmax

was used for classification purposes. Though an accuracy of 93.3% was achieved

operating this network, the long-range connections in the densely-connected DNN

produce memory overhead. Also, the architecture is computationally expensive for

the long-range connections in the network. Moreover, heterogeneous incorporation

of convolutional layers with different kernels and grouping configurations, heavily

affect the interconnection and operation of the architecture.

Narin et al. [21] worked with the pre-trained models such as — ResNet50, In-

ceptionV3 and Inception-ResNetV2. Because of the diminutive amount of data,

transfer learning was incorporated to overcome the training time and deficiency

in the dataset. Firstly, the input images were fed into the pre-trained models inte-

grated with the transfer learning. Secondly, in the training phase, Global Average

Pooling, Fully Connected Layer with ReLU was employed. Finally, the authors

concluded with a fully connected layer with softmax for the final classification.

The model achieved 97%, 98% and 87% accuracy respectively by operating In-

ceptionV3, ResNet50 and Inception-ResNetV2 architecture. Nevertheless, transfer

learning was incorporated with the model for the deficiency in the dataset, the

model overfits with the data.

From the studied research works, we have summarized the methods, datasets

and performance in Table 1. Though these deep learning methods worked well

on this classification, there is a high chance of biasness and oversampling in the

learning process for an insufficient number of images. Also, the feature information

needs to incorporate in each and every layer on high-to-low and low-to-high upsam-
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Table 1: Analysis of the existing COVID-19 classification works

Method Image and Dataset Performance

Transfer Learning [14]
1. 1427 (COVID-19: 224, Pneumonia: 700, Normal: 504)
2. 1442 (COVID-19: 224, Pneumonia: 714, Normal: 504)
[22], (RSNA), Radiopaedia, and (SIRM)

1. Accuracy: 96.78%
2. Sensitivity: 98.66%
3. Specificity: 96.46%

Brixia Scoring System [15] COVID-19: 100 (Departmental Archieve) kw: 0.82; CI: 95%

Truncated Inception Net [16]

1. COVID-19: 162
2. Pneumonia 4280 + 1583
3. TB (China) 342 + 340
and TB (USA) 58 80 [22] [23] [24]

Accuracy of 99.96% (AUC of 1.0)

Flat and Hierarchical classification [17] 1144 CXR images [22] [25] F1-Score of 0.89

DarkNet + YOLO [18] COVID-19: 127, Pneumonia: 500, Normal: 500 [22] [25] Accuracy: 98.08% and 87.02%

COVID-Net [19] 13,975 CXR images [22] [26] [27] Accuracy: 93.3%

ResNet and InceptionNet [21] COVID-19: 50, Normal: 50 [22] Accuracy: 97%, 87%

VGG19, DenseNet [28] 50 CXR images with 25 COVID-19 cases [22] Accuracy: 90%, 90.01%

Anomaly Detection [29] 1431 images (COVID-19: 100) [30]
Accuracy: 96.00% COVID-19 and
70.65% non-COVID-19

DeTraC CNN [31]
80 Normal, 105 and 11 samples of COVID-19

and SARS [22], JSRT
Accuracy: 95.12%

Modified AlexNet [32] 85 X-ray and 203 CT (BSTI) Accuracy: 98% and 94.1% (pre-trained)

Capsule Network [33] ImageNet dataset for pre-training Accuracy: 98.3% and 95.7% (pre-trained)

pling processes which is not integrated with the existing model. To overcome these

difficulties, High-Resolution Network (HRNet) is employed for feature extraction

of this classification. Moreover, in the existing models, researchers didn’t focus on

the segmentation as it plays a critical role to train an architecture. We should

exclude the redundant area of a lung image to efficiently work on the infected lung

portion only. For that purpose, we have integrated UNet architecture for segmenta-

tion purposes. In summary, we have built a unique and unprecedented COVID-19

detection architecture based on UNet (segmentation purpose) and HRNet (feature

extraction purpose).

3 Proposed Model

In this section, we briefly discussed our approaches to data preprocessing, pro-

posed research methodologies with proper illustration and characterization. To

build this model, we have explored several preprocessing and classification tech-

niques including supervised machine learning, deep learning, and transfer learn-

ing. In the extant research on COVID-19 detection, supervised learning focuses

on the binary classification (COVID vs Non-COVID) or a multiclass classification
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(COVID vs Pneumonia vs Normal lung conditions) [34]. Studying these existing

works and considering the drawbacks described in the literature review, we have

introduced HRNet [35] for feature extraction embedded with UNet [36] for segmen-

tation purposes. Firstly, this segmentation process has been introduced because

COVID chest X-ray images that are publicly available contain several redundant

marks, lung regions cropped, shifted to different directions, etc. After that, for

feature selection, HRNet has been introduced in the field of COVID-19 detection

from CXR images. HRNet has the capability of avoiding small features from the

images. After feature selection, a classification head, created of a fully connected

neural network has been used to classify COVID vs Non-COVID images. Fur-

thermore, a standard dataset is developed for COVID detection from chest X-ray

images from several public data sources. These data sources are updated every

day and giving researchers opportunities to focus more on COVID detection from

chest X-ray images. A depiction of the proposed architecture is illustrated in Fig.

1. Following, we thoroughly described the related steps of the proposed method.
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Fig. 1: Proposed model to classify COVID-19 disease using HRNet
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3.1 Dataset Collection and Preperation

The dataset for the classification purpose is built by assembling images from sev-

eral acknowledgeable sources. Firstly, the COVID-19 Chest X-Ray (CXR) dataset

that has been used in our experiment is collected from the public repository of

GitHub [22]. As of July 03, 2020, this repository contains 759 images. In Fig. 2,

the class distribution of the public repository is depicted. In this public repository,

521 images are labeled as COVID-19 and 12 images are labeled as Acute Res-

piratory Distress Syndrome (ARDS) COVID-19. A total number of 533 images

from the repository were collected from this source for our primary COVID-19

dataset. Though this is the most prominent repository since the beginning of the

research in COVID-19 classification, there are some shortcomings in the images.

One of the particular drawbacks can be exemplified as — this collection contains

images from several publicly available resources such as websites and pdf formats.

As a result, these images are in variable size and quality. Also, there are few side

view images where the majority of the images belong to frontal views. Moreover,

some images have color issues, contain markers, etc. In Fig. 3, four examples of

COVID-19 images are depicted acknowledging the issues — side view (Fig. 3a),

washed out (Fig. 3b), color issue (Fig. 3c) and markers (Fig. 3d).

For non-COVID/normal images, we have collected images from the National

Institute of Health (NIH) Chest X-Ray [25] which contains 108,948 frontal view X-

ray images with 14 condition labels including normal condition and pneumonia of

32,717 unique patients. Unlike the COVID dataset, these images are not of variable

dimensions. All of the images are resized to 1024 × 1024 in portrait orientation.

As most of the images from the COVID dataset belongs to adult patients, we

have applied an age threshold of 18 years or older on normal condition images

to keep the X-Ray image condition as similar as possible. We also explored the

ChexPert [37] which contains 224,316 chest radiographs. This dataset contains 14
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Fig. 2: A class distribution representation of the public repository.

labeled observations of 65,240 patients where the number of Normal (non-COVID)

images are 16,627.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3: Variations observed in COVID dataset [(a) side view, (b) washed out, (c)
color issue, (d) and (e) markers, (f) and (g) medical equipment]

As described earlier, COVID images contain lateral X-ray images, taken from

PDF files, marked images (fig. 3d and 3e), etc. Firstly, we removed these images
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from the COVID dataset as there is a possibility that these images can make the

classifier biased. Secondly, in NIH and ChexPert datasets, some images contain

medical equipment (fig. 3f and 3g) which creates redundancies and abnormalities

in times of training the model. Hence, these types of images are excluded from

the main data repository. But still, most of the images contain several marks

around the lungs area. To avoid these marks, we segmented the lung area from

the images. In the next section, we described the process of lung segmentation and

preprocessing the images and finally creating a practical COVID dataset for our

experiment. In fig. 4, a comparison between a single random image collected from

COVID, NIH, and ChexPert dataset is illustrated. Furthermore, we aggregated

Normal images from NIH and ChexPert dataset as it looks similar. In Table 2, we

have summarized the properties of the final dataset created.

(a) (b) (c)

Fig. 4: Image comparison of COVID and non-COVID dataset [(a) COVID dataset
(b) NIH dataset, and (c) ChexPert dataset]

3.2 Lung Segmentation

For our primary purpose, all the datasets mentioned above do not contain any

annotation for the lung area. Thus to segment the lung data, we collect dataset

that has lung area annotated and train the UNet [36] from scratch. Belongs to the

semantic segmentation category, UNet was solely created for medical image seg-
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Table 2: Primary data selection

Dataset Name
Number of
Images

Image
Characteristics

Selection
Criteria

Covid Public
Repository

472
Variable size,
brightness, contrast

All COVID images.

NIH Chest
X-Ray

1000
Constant size of
1024 × 1024, Uniform

No findings, age threshold,
random selection,
without any medical equipment

ChexPert 1000
Variable size,
resized to 256 × 256

No findings, age threshold > 18,
random selection, without
any medical equipment

mentation and also proven its worth in recent segmentation tasks. Another great

feature of UNet is it can make a strong usage of augmented data, contracting and

symmetric path based architecture enables precise localization.

Assembled upon the Fully Connected Network (FCN), UNet is symmetric and

consists of a skip connection which provides information from local to global net-

work while upsampling. As a consequence of the symmetricity, this network has an

extended number of feature maps in the intermediate connection that allows trans-

ferring the information. There are three distinct parts of the UNet — Downsam-

pling path (The Contraction), Bottleneck, and Upsampling path (The Expansion).

While the Contracting path is established by the basic convolutional process, the

Extracting path is constituted with transposed 2D convolutional layers.

For this segmentation task, we collected a dataset from Jaeger et al. [38].

This dataset contains a total number of 800 frontal X-ray images from the Mont-

gomery County chest X-ray dataset of the Department of Health and Human

Services, Montgomery County, Maryland, USA (138 images) and Shenzen chest

X-ray dataset of Guangdong Medical College, Shenzen, China (662 images). Chest

X-ray datasets from these sources are visually similar to the dataset of 2472 images

which we have selected for our COVID detection task. A side by side comparison

with our COVID dataset images and segmentation dataset images is depicted in
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Fig. 5.

(a) (b) (c)

Fig. 5: Image comparison used in lung segmentation [(a) COVID dataset, (b)
Montgomery dataset, and (c) Shenzen dataset]

Every image of the Montgomery dataset is either 4020 × 4892 pixels or 4892

× 4020 pixels. Images from the Shenzen dataset are variable but approximately

3000 × 3000 pixels. We resized these images and their corresponding lung masks

to 512 × 512 pixels to train our model. Moreover, augmentation is done on the

images and their corresponding masks to take the advantages of the UNet model.

The augmentation procedure and parameters are described in the dataset aug-

mentation section and the training process with the parameters is explained in

the Experimental Analysis section. After training the UNet model with this seg-

mentation dataset, we used the operating weights to get segmented lung images

from the COVID dataset. Furthermore, the UNet model provides a prediction

mask for every image. Hence, we applied dilation operation for 8 iterations and 2

iterations of closing operation on the predicted masks to gain more information

from the edges of the lungs. To ensure the quality of the segmentation, we then

applied a region-based threshold to distinguish the pixels. For every image, we

got several segmented regions then calculate the total area of these segmented re-

gions for image and apply a threshold of 50,000 pixels to ensure the quality. This

threshold value was chosen by trial and error and observing the output from the
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segmentation model. After applying an area threshold to these segmentations, we

finally got our COVID dataset. Our final COVID dataset consists of 410 COVID

images and 500 non-COVID images from NIH and the ChexPert dataset. The

working procedure of this segmentation method is summarized in Algorithm 1.

(a) (b)

(c) (d)

Fig. 6: Segmented region after dilation and closing apply UNet architecture

3.3 Data Augmentation

For a better generalization of the classification model, we augmented both the

segmentation dataset for the UNet model and the preprocessed segmented COVID
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Algorithm 1: Lung Segmentation

Input: CXR, (maskL, maskR)
Output: Your output

1 mask ← maskL ∪ maskR
2 dataset ← CXR, Dataset
3 for train data, test data ← split(dataset, kfold = 10) do
4 model ← UNet()
5 train, val ← split (train data, split size = 0.1)
6 for i = 0 to epoch do
7 for img, mask ← train do
8 aug img, aug mask ← augment(img, mask)
9 train(model, (aug img, aug mask))

10 for img, mask ← val do
11 aug img, aug mask ← augment(img, mask)
12 val(model, (aug img, aug mask))

13 save(model.best weights())

dataset. In both cases, we applied the same set of augmentation such as scaling,

padding, crop, rotation, gamma correction, slight Gaussian blur, random noise,

salt and pepper noise, etc. based on a probabilistic value. Fig. 7 demonstrates the

output of image augmentation. In Table 3, we have discussed the parameters of

augmentation. These parameters were used for both the segmentation dataset and

the COVID dataset. All of these parameters were selected empirically.

Fig. 7: Sample images after augmentation.
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Table 3: Image augmentation parameters

Process Values Probability

Scale
X-axis – (0.8 to 1.1)
Y-axis – None

1

Rotate Angle – (-45, 45) 1

Shear
X-axis – (-0.2, 0.2)
Y-axis – None

0.7

Padding 512 1

Center Crop 512 1

Gamma Correction 0.5 to 3 1

Salt and Pepper Noise 0.01 0.3

Blur
0.5
Kernel size = (11, 11)

0.5

Random Noise 0.5 0.3

3.4 Classification with HRNet

For feature extraction, High Resolution Net (HRNet) [35] is a state-of-the-art neu-

ral network architecture. In most of the recent HRNet adopted architecture, it is

used as the backbone of the proposed models. Considering two approaches—Top-

Down and Bottom-Up, HRNet followed the top-down approach because it detects

the subject first, establishes a bounding box around the subject, and then esti-

mate the significant feature. Moreover, HRNet relies on continuous multi-scale

fusions instead of a single high-to-low upsampling process. In the following, a brief

description of the HRNet architecture is characterized.

The fundamental working procedure is it calculates lower resolution and higher

resolution sub-network parallelly. Then, these two networks coalesced together by

a fuse layer for the purpose to assemble and interchange information from each of

the sub-network with each other. Consisting of four parts, each of the parts is built

with repeating modularized multi-resolution sections [35]. Each section consists of

a group convolution supporting the multi-resolution properties. A multi-resolution

convolution can be constructed with the aid of regular convolution wherein a reg-

ular convolution, the input, and output layers are connected in a fully-connected

approach [39]. The subnetworks follow these properties to aggregate their multi-

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.26.20182311doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.26.20182311
http://creativecommons.org/licenses/by-nd/4.0/


18 Sifat Ahmed1 et al.

Fig. 8: A general architecture of HRNet for feature extraction

resolution attributes. In this way, the subnetwork gains global high-resolution rep-

resentations. A representation of the employed HRNet architecture is depicted in

Fig. 8. The working procedure of feature extraction using HRNet and classification

is compiled in Algorithm 2.

Algorithm 2: COVID-19 Classification

Input: CXR, label
Output: Classification
Data: Testing set

1 segmented img ← segment model(predict, (CXR))
2 dataset ← segmented img, label
3 for train data, test data ← split(dataset, kfold = 10) do
4 feature extractor ← HRNet()
5 classification ← fully connected()
6 model ← (feature extractor, classification)
7 for i = 0 to epoch do
8 for img, label ← train do
9 aug img ← augment(img)

10 model(train, (aug img, aug mask))

11 for img, mask ← val do
12 aug img ← augment(img)
13 val(train, (aug img, aug mask))

14 result ← (test, (test data))

15 result = average(result)
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4 Experimental Analysis

4.1 Computing Infrastructure

This whole experiment was conducted in a device with Ryzen 7 3700X processor, 

NVIDIA GeForce RTX 2070 Super GPU, 16 GB 3600 MHz RAM, and Samsung 

Evo 970 m.2 SSD.

4.2 Dataset Segmentation

To make an accurate detection, the classifiers need to focus on the lung regions 

properly. Our previous experiments without segmentation. Fig. 9 shows that despite 

having high accuracy on training and validation set, the focus region of the 

classifiers often deviate to outside of lungs which may lead to a false prediction. 

To address this issue we segmented our dataset and kept only the lung portion 

from the X-ray images.

Fig. 9: This figure visualizes some sample heatmaps (blue shade represents the
focus region) of corona positive detection by the classifier. But as we can see in
the figure, most of the focused regions redundant, not significant, erroneous and
somewhat can produce a biased result in times of classification.

Only lung areas are collected to create a clean dataset without any redundant

markers and flaws in the image. To collect these lung areas from the primary

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.26.20182311doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.26.20182311
http://creativecommons.org/licenses/by-nd/4.0/


20 Sifat Ahmed1 et al.

dataset of 2472 images, the UNet model was trained on Montgomery and Shenzen

dataset. This dataset has 800 images and to train UNet KFold (10 Fold) cross-

validation is used. In this dataset, two corresponding masks, one for the right lung

and one for the left lung contains for one CXR image. At first, two lung images were

combined to make one corresponding mask for each CXR image. These images are

then employed to train the UNet model. For the loss function, a Dice coefficient loss

is used to get crisp borders. This loss function has been introduced by Milletari et

al. [40] in their research of 3D volumetric image segmentation. Dice loss originates

from Sørensen–Dice coefficient. It is a statistical method developed in 1940. Given

dice coefficient D, it can be written as,

D =
2
∑N

i pigi∑N
i p2i +

∑N
i g2i

(1)

Here Pi and Gi represents the pixels of prediction and ground truth respec-

tively. In edge detection, the values of Pi or Gi is either 0 or 1. That means if two

sets of pixels overlap perfectly the D reaches its maximum value to 1, otherwise

it decreases. By using dice loss, two sets of predicted edge and ground truth edge

are trained to overlap gradually. After that, traditional cross-entropy loss calcu-

lates the average of per-pixel loss where the per-pixel loss is calculated discretely

here without knowing if the adjacent pixels are edges or not. As a result, it is not

enough for image-level prediction. Dice loss provided better results in our lung

segmentation using UNet. The model was trained for 25 epochs for each fold with

a learning rate of 0.005, and a custom dice coefficient loss function with a grayscale

input image of size 512 × 512 pixels. Table 4 shows the input, output, and layer

configuration used for UNet.

As mentioned above, UNet is trained for 10 Folds, 25 epochs for each fold, and

the dice coefficient loss function is used. The learning rate is selected by train and

error process and images are augmented according to the configuration described

in the augmentation section. Fig. 10 shows the average training accuracy, training
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Table 4: UNet Configuration

Layer Parameters Activation Output Shape

Input — — 512 × 512 × 1
Conv2d 1a 512 × 512 × 1 ReLU 512 × 512 × 32
Conv2d 1b 512 × 512 × 32 ReLU 512 × 512 × 32
MaxPooling2d 1 512 × 512 × 32 - 256 × 256 × 32
Conv2d 2a 256 × 256 × 32 ReLU 256 × 256 × 64
Conv2d 2b 256 × 256 × 64 ReLU 256 × 256 × 64
MaxPooling2d 2 256 × 256 × 64 - 128 × 128 × 64
Conv2d 3a 128 × 128 × 64 ReLU 128 × 128 × 128
Conv2d 3b 128 × 128 × 128 ReLU 128 × 128 × 128
MaxPooling2d 3 128 × 128 × 128 - 64 × 64 × 128
Conv2d 4a 64 × 64 × 128 ReLU 64 × 64 × 256
Conv2d 4b 64 × 64 × 256 ReLU 64 × 64 × 256
MaxPooling2d 4 64 × 64 × 256 - 32 × 32 × 256
Conv2d 5a 32 × 32 × 256 ReLU 32 × 32 × 512
Conv2d 5b 32 × 32 × 512 ReLU 32 × 32 × 512
Conv2D trans 1 32 × 32 × 512 - 64 × 64 × 256
Concatenate Conv2D trans 1, Conv2d 4b
Conv2d 6a 64 × 64 × 512 ReLU 64 × 64 × 256
Conv2d 6b 64 × 64 × 256 ReLU 64 × 64 × 256
Conv2D trans 2 64 × 64 × 256 - 128 × 128 × 128
Concatenate Conv2D trans 2, Conv2d 3b
Conv2d 7a 128 × 128 × 256 ReLU 128 × 128 × 128
Conv2d 7b 128 × 128 × 128 ReLU 128 × 128 × 128
Conv2D trans 3 128 × 128 × 128 - 256 × 256 × 64
Concatenate Conv2D trans 3, Conv2d 2b
Conv2d 8a 256 × 256 × 128 ReLU 256 × 256 × 64
Conv2d 8b 256 × 256 × 64 ReLU 256 × 256 × 64
Conv2D trans 4 256 × 256 × 64 - 512 × 512 × 32
Concatenate Conv2D trans 4, Conv2d 1b
Conv2d 9a 512 × 512 × 64 ReLU 512 × 512 × 32
Conv2d 9b 512 × 512 × 32 ReLU 512 × 512 × 32
Conv2d 10 512 × 512 × 32 ReLU 512 × 512 × 1

loss, average validation accuracy, and average validation loss for 10 folds.

After training the model, the weights are applied on the COVID dataset to

remove redundant areas from chest X-ray images and to get lung areas. This

segmented dataset is used for training the HRNet and get classification results

from the classifier.
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Fig. 10: Training and Validation curves after training the UNet architecture

4.3 Feature Extraction and Training Procedure

In this section, the training procedure of feature extraction using HRNet and clas-

sification been discussed briefly. HRNet has the capability of avoiding the loss of

small target information in the feature map due to its convolutions being con-

nected in parallel and high-resolution feature representation. To train the model,

the segmented COVID dataset of 910 images is used. This dataset contains 410

lungs segmented COVID images and 500 lung segmented non-COVID images. For

training purposes, 10 fold cross-validation is used. The model showed better ac-

curacy for learning rate 0.01, weight decay 0.0001, momentum 0.8, learning rate

factor 0.1, learning rate step 30, 60, 90. Stochastic gradient descent and binary

cross-entropy loss functions are used. These parameters were chosen by observing

the performance and evaluating the model progressively (Table 5). The perfor-

mance analysis of the model is shown in Table 6 for each fold. Using the KFold

algorithm, first, the dataset is divided into 10 folds where 1 fold is kept for testing.

The other 9 folds are used for training purposes.

In summary, HRNet has been used as the backbone of our classification model

to extract features from images. These features are then passed through several

fully connected layers which are defined as a classification head. The parameters of

this classification head such as the number of layers, dropout, activation function,

regularization, etc. were selected by trial and error method. The configuration
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Table 5: Hyper-parameter Setup

Hyper-parameter Trained Range Selected Value

Learning Rate 0.1-0.05 0.01
Learning Rate Factor 0.01-0.2 0.1
Learning Rate Step — 30, 60, 90
Weight Decay 0.001-0.0001 0.0001
Optimizer Adam, SGD SGD
Batch Size — 8
Epoch — 25

of the classification head is given in the fig. 11. Furthermore, for performance

evaluation, if the number of True Positive, True Negative, False Positive and False

Negative denoted by TP, TN, FP and FN respectively, then the three adopted

evaluation matrices which are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Fig. 11: Classification Head

In Table 6, the average of the testing accuracy, sensitivity and specificity for

the 10 folds is characterized. We accomplished 99.26% testing accuracy, 98.53% of

testing sensitivity and 98.52% of testing specificity. Furthermore, we depicted the

confusion matrices of worst and best cases in fig. 13. In the worst confusion matrix
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(fig. 13a), 39 and 50 testing images correctly classified as COVID and non-COVID

respectively whereas only two images are falsely classified. But, in fig. 13b, all the

testing images are accurately classified as COVID and non-COVID which repre-

sents the best confusion matrix. We have also successfully eradicated the issue of

false focused region detection through segmentation. Fig. 12 shows the heatmaps

of correctly classified regions.

(a) (b)

Fig. 12: Heatmaps in (a) visualize some sample for positive detection and in (b)
represent corona negative detection. As we can see, the lung regions are accurately
focused (blue shade represents the focus region) by the classifier after training with
segmented data.

Moreover, we have compared the performance of the proposed model with the

existing adopted models. Three existing prominent architecture — ResNet152,

DenseNet121, and EfficientNetB4 are implemented for the comparison purpose.

We achieved the superlative result in each of the terms of the evaluation metric

by comparing our proposed model with these trained architectures. In Table 7, we

have summarized the existing model’s performance comparison with our proposed

model. In fig. 14, a depiction of the optimal confusion matrix of the existing trained

model is illustrated.
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(a) Worst case confusion matrix (b) Best case confusion matrix

Fig. 13: Confusion Matrix after training the proposed model

(a) ResNet152 (b) DenseNet121

(c) EfficientNetB4

Fig. 14: Confusion Matrix after training the existing models
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Table 6: Performance analysis of the proposed architecture

Fold
Number

Testing
Accuracy (%)

Testing
Sensitivity (%)

Testing
Specificity (%)

1 98.78 97.56 98.03
2 100.0 100.0 100.0
3 98.78 97.56 98.03
4 98.78 97.56 98.03
5 100.0 100.0 100.0
6 100.0 100.0 100.0
7 100.0 100.0 100.0
8 98.78 97.56 98.03
9 100.0 100.0 100.0
10 97.80 95.12 96.15

Average 99.29 98.53 98.82

Table 7: Performance comparison with the existing models

Model
Testing
Accuracy (%)

Testing
Sensitivity (%)

Testing
Specificity (%)

ResNet152 94.50 95.12 94.00
DenseNet121 93.40 90.24 96.00
EfficientNetB4 97.56 95.12 96.15
Proposed Model 99.26 98.53 98.82

5 Conclusion

In this study, we use a segmented X-ray dataset, as extensive experiments show

that, with a non-segmented dataset, classifiers may focus outside of the lung re-

gion which can lead to false classification results. Meanwhile, we also evaluate some

state-of-the-art recognition methods on our dataset. The result demonstrates that

HRnet performs the best among the others with 99.26% accuracy, 98.53% sen-

sitivity, 98.82% specificity. The proposed model is fully automated without any

need for manual feature extraction. Moreover, to ensure a production-ready so-

lution, we broadly investigate the results and focus regions of the classifiers and

our experimental results show the robustness of our proposed model to focus on

the right region and classify. To conclude, this model can be used to help the

radiologist to make clinical decisions, due to its unbiased high-accuracy and cor-

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.26.20182311doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.26.20182311
http://creativecommons.org/licenses/by-nd/4.0/


Title Suppressed Due to Excessive Length 27

rectly identified focus region. We hope that our proposed methodology is a step

towards the possibility of lessening the false positive detection from X-Ray images.

However, in terms of data, we are still in the primary level of the experiment.

As the number of patients increasing around the world and the symptoms and

formation of the virus are changing day by day, with the continuous collection of

data, we intend to extend the experiment further and enhance the usability of the

model.
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