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Abstract

More than 1 billion people live in informal settlements worldwide, where precarious living conditions pose
unique challenges to managing a COVID-19 outbreak. Taking Northwest Syria as a case-study, we simulated
an outbreak in high-density informal Internally Displaced Persons (IDP) camps using a stochastic Susceptible-
Exposed-Infectious-Recovered model. Expanding on previous studies, taking social conditions and population
health/structure into account, we modeled several interventions feasible in these settings: moderate self-
distancing, self-isolation of symptomatic cases, and protection of the most vulnerable in “safety zones”. We
considered complementary measures to these interventions that can be implemented autonomously by these
communities, such as buffer zones, health-checks, and carers for isolated individuals, quantifying their impact
on the micro-dynamics of disease transmission. All interventions significantly reduce outbreak probability and
some of them reduce mortality when an outbreak does occur. Self-distancing reduces mortality by up to 35%
if contacts are reduced by 50%. A reduction in mortality by up to 18% can be achieved by providing 1 self-
isolation tent per 8 people. Protecting the most vulnerable in a safety zone reduces the outbreak probability
in the vulnerable population and has synergistic effects with the other interventions. Our model predicts that
a combination of all simulated interventions may reduce mortality by more than 90% and delay an outbreak’s
peak by almost two months. Our results highlight the potential for non-medical interventions to mitigate
the effects of the pandemic. Similar measures may be applicable to controlling COVID-19 in other informal
settlements, particularly IDP camps in conflict regions, around the world.
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Key questions
What is already known?

e Since the onset of the COVID-19 pandemic, many studies have provided evidence for the effectiveness
of strategies such as social distancing, testing, contact tracing, case isolation, use of personal protective
equipment /facemasks and improved hygiene to reduce the spread of the disease. These studies underlie
the recommendations of the World Health Organisation, but their implementation is contingent on local
conditions and resources.

e Mathematical modelling is the basis of many epidemiological studies and has helped inform policymakers
considering COVID-19 responses around the world. Nevertheless, only a limited number of studies have
applied these models to informal settlements.

What are the new findings?

e We developed a mathematical model to study the dynamics of COVID-19 in Syrian IDP camps, elaborating
on previous efforts done in similar settings by explicitly parameterizing the camps’ demographics, living
conditions and micro-dynamics of interpersonal contacts in our modelization.

e We designed interventions such as self-distancing, self-isolation and the creation of safety zones to protect
the most vulnerable members of the population, among others, through conversations with camp managers
with on-the-ground knowledge of what interventions would be feasible and have community buy-in.

e Our results show how low-cost, feasible, community-led non-medical interventions can significantly mitigate
the impact of COVID-19 in Northwest Syrian IDP camps.

What do the new findings imply?

e Our model represents a step forward in the much-needed search for epidemiological models that are suffi-
ciently flexible to consider specific social questions. The model can also help inform similar interventions
in refugee camps in conflict-torn regions, and potentially be adapted to other informal settlements and
vulnerable communities around the world.
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Introduction

The spread of airborne infectious diseases with pandemic potential in regions immersed in protracted armed
conflicts, where large portions of their populations have become displaced, is an important challenge [1]. When
the displaced population exceeds official resettlement and refugee camp capacity, Internally Displaced Persons
(IDPs) must live in informal settlements (hereafter named “camps”). These regions must contend with the public
health challenges resulting from violence [2], the deterioration of health-systems [3], especially of critical care [4],
and the breakdown of essential public infrastructure such as water and sanitation systems [5]. Urgent action is
needed to contain the spread of disease in these settings, a task which necessarily involves the engagement of the
communities living in them [6].

This study focuses on the spread of COVID-19 in Northwest region of Syria (NWS): a relatively small geo-
graphical area with 4.2 million people, of which 1.15 million (27.4%) are IDPs living in camps [7], and where the
number of cases increased twenty-fold between September 8th and October 20th, 2020 [8]. The health status of
households in camps in NWS is poor; 24% have a member with a chronic disease, of whom 41% have no access
to medicines [9]. As in other conflict regions, the political instability in NWS hinders coordinated public health
actions, and the ongoing movements of IDPs create ample opportunity for infectious disease transmission, while
making contact tracing interventions infeasible.

To investigate feasible COVID-19 prevention interventions in the camps, we considered a Susceptible-Exposed-
Infectious-Recovered model similar to the one presented by Gatto et al. [10], in which the camps’ populations are
divided into classes reflecting their estimated age-structures and comorbidity prevalence. We use this model to
propose various interventions aimed at reducing the number of contacts within and between population classes in
general, and with symptomatic individuals in particular. We paid special attention to how the living conditions in
informal camps inform the assumptions underlying our proposed interventions, a question often neglected [11]. We
modeled interventions previously proposed for African cities [12], such as self-distancing, isolation of symptomatic
individuals and the creation of a “safety zone” in which more vulnerable members of the population are protected
from exposure to the virus.

Building upon the approach used to model the impact of these interventions in African cities, our model
includes a parameterization of the contacts each individual has per day [12]. We further elaborate upon this
approach by making a more explicit representation of contacts and other parameters in the model. We consider
the micro-dynamics of contacts, the time that individuals take to recognize their symptoms before self-isolating,
the effect of having carers to attend to isolated individuals, and the existence of a buffer zone in which exposed and
protected population classes can interact under certain rules. We examine a potential worst-case scenario in which
there is no access to any healthcare facility. Since empowering local communities in conflict regions to understand
how to control diseases like COVID-19 is possibly the most (and perhaps only) effective way to minimize its
spread, our models are of utmost importance for informing the implementation of realistic interventions in these
regions.

Methods
The model

We consider a model simulating a viral outbreak in a single camp over a 12-month period inspired by those
proposed by Gatto et al. and Bertuzzo et al. [10, 13] (see Fig. 1). The model is adapted to the context of
NWS IDP camps and is divided into compartments containing individuals at different possible stages along the
disease’s progression, governed by the following set of differential equations:
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The susceptible population (S;) becomes exposed at rate A;, while exposed individuals (E;) progress through
the latent period at rate dg to a preclinical infectious stage (P;), which then progresses to (at rate dp) either a a
clinical (symptomatic, I;, with probablity f) or subclinical (asymptomatic, A;, with probability 1 — f) infectious
stage. Asymptomatic cases recover (R;) at rate yo. Symptomatic cases have 3 potential outcomes: mild cases
will recover at rate 7, severe cases will progress to an extended infectious period during which they require
hospitalization (H;) at rate n, while critical cases requiring intensive care unit (ICU) care will die (D;) at rate a.
Finally, since the fate of individuals in the hospitalized compartment is uncertain if healthcare is not available,
we run simulations considering two possibilities: either all recover (o = 0), or all die (¢ = 1) (see section
Epidemiological severity assumptions). The specific values for the parameters are presented in Table 1.
While we introduced the model as a classical system of ordinary differential equations (Eqs. 1-8) we considered
a stochastic implementation [14], with an integer description of the population in which a state is encoded
in a vector X = (S,FE,P,1,A, H,R,D)!, with the total population size conserved throughout the simulation
N=S+E+P+I1+ A+ H+ R+ D. The possible transitions between states of the system are shown in Fig.
1, where an arrow indicates transitions in which the source compartment transfers one individual to the target
compartment. The mean transition rates corresponding to each transition are displayed. The system then evolves
following a continuous-time Markov process which is simulated following the Gillespie algorithm implemented in
the adaptivetau package [15].

Figure 1: Diagram of the model. The model considers the following compartments: susceptible (S), exposed
(E), infectious-presymptomatic (P), infectious-asymptomatic (A), infectious-symptomatic (I), infectious-requiring
hospitalization (H), recovered (R) and dead (D).
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Demographic— and behaviour-classes

The model splits the population into classes (indexed i) to account for heterogeneity with respect to clinical
risk and behaviour. Working with population classes allows us to encode behavioural assumptions in the model
and strike an appropriate balance between generality, computational tractability, and the requisite specificity to
realistically evaluate our proposed interventions [16]. Moreover, the explicit representation of contacts between and
within population classes allows us to design interventions considering cultural and context-specific assumptions
[11] (see section Interventions and Supplementary Material for details). Under a null model where no interventions
are implemented, the distinctions between classes are only dependent on age and comorbidity status (hereafter
“demographic-classes”). h;, ¢; and [; are demographic-class specific parameters, adjusted to ensure that the
proportions of symptomatic cases progressing through each of the 3 potential clinical outcomes (mild, severe, and
critical) are consistent with the literature (see section Epidemiological severity assumptions).

Under some interventions, the demographic-classes may be subdivided further into subclasses according to
behaviour (“behaviour-classes”). Consequently, different interventions may require models with different numbers
of classes. We refer to both demographic- and behaviour-classes generically as “classes” (see section Interventions
for the modelization of behaviour-classes).

] Parameter \ Description \ Value \ Distribution\ Reference ‘
se + s Incubation period (days) 5.2 (95% CI: 4.1-7.0) Lognormal [17]

1sp Presymptomatic infectious 2.3 (95% CT: 0.8-3.8) Gaussian 18, 19]
period (days)
(/o +1/op) — Vsop

sy Latent period (days) (Minimum = .5 days) Derived
Symptomatic infectious period

1

/’YI (days) 7 - [187 20]

Asymptomatic infectious

1

/ia period (days) 7 ”’ [18, 20]
Time from symptom onset to

1/ requiring hospitalization 7 (IQR: 4-8) Gamma [21]

(days)
Ve Time from symptom onset to 10 (IQR: 6-12) Gamma. 21]

death (critical cases, days)
Time from requiring
Lye hospitalization to 10 (IQR: 7-14) Gamma [21]
recovery/death (days)
Probability an infectious
individual is symptomatic
Indicator of whether
hospitalized recover or die

0.84 (95% CI: 0.8-0.88) Binomial 22]

o€ {0,1} — Assumed

Table 1: Fixed parameters. See Supplementary Materials for details.

Population structure of demographic-classes

We parameterized the model with data from IDPs in NWS [23]. The population sizes of informal camps are
right-skewed, with a mean of 1212. We simulated camps with populations of 500, 1000 and 2000 individuals.
Since interventions tend to be less effective in larger camps, the results presented refer to simulations with 2000
individuals, unless otherwise specified. For our demographic-classes, we considered 3 age groups: children (age
1, 0-12 years old), younger adults (age 2, 13-50 yrs) and older adults (age 3, >50 yrs). For ages 2 and 3, we
considered two subclasses comprising healthy individuals and individuals with comorbidities (see Table 2).

Transmissibility assumptions

Although individuals in IDP camps share tents with other co-occupants, whom they may be more likely to infect
than occupants of different tents, we ignore spatial structure in our model and assume a well-mixed population.
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Demographic-class
o Age 1 Age 2 (13-50) Age 2 (13-50) Age 3 (>50) Age 3 (>50)
Parameter) Description (0-12) no comorbidities | comorbidities | no comorbidities | comorbidities References
Fraction , 0.407 0471 0.0626 0.022 0.0373 23, 24]
in class
Mean From
Ci contacts 25 15 15 10 10 camp
per day managers

Table 2: Demographic class-specific parameters. Estimated proportions of individuals in the population
and mean number of contacts per individual per day for each demographic class. See Supplementary Materials
for derivations.

This is justified because individuals from different tents share common spaces (e.g. latrines) and have frequent in-
teractions with each other, especially among children. Consequently, our following derivation of the transmissivity
parameter itself, 7, is not spatially explicit.

The rate at which susceptible individuals become exposed is

BePj + BaA; + il + PuH;
N; ’

)\i = i:TCij

Jj=1

(9)

where Cj; is the average number of contacts that individuals of class 7 have with individuals of class j per day
and Nj; is the total population size of class j. We parameterized C;; by multiplying the mean number of total
contacts that individuals from a population class ¢ have per day, ¢;, by the probability of random interaction with
individuals of class j. Considering a well-mixed population, this probability is proportional to class j’s fraction of
the total population, i.e. C;; = ¢;N;/N. If interventions are absent, we consider demographic-classes only and,
hence, different values of ¢; reflect heterogeneity in the number of contacts by demographic-class. We assume
specific values of ¢; for each class based on conversations with camp managers in NWS (see Table 2).

The probability of infection if there is a contact between a susceptible and an infected person is 70p, 784, 701
or 78 depending upon whether the infected individual is in the presymptomatic (P;), symptomatic (I;), asymp-
tomatic (A;), or hospitalized compartment (H;), respectively. The 7 parameter is the maximum transmissivity,
which is observed at the presymptomatic stage for individuals who go on to become symptomatic [18]. Thus, we
selected the transmissivity of these individuals as a reference (8p_; = 1) with the remaining S parameters set
relative to Bp_1 (B; < Bpo1, 4 € {P, A, H,1}), where the mean transmissibility of all presymptomatic individuals
(Bp) is estimated as a weighted average of the transmissibility of individuals that will become symptomatic and
asymptomatic (see Table 3, Supplementary Materials for derivation).

The 7 parameter was estimated by randomly generating a value for the basic reproduction number, Ry, fol-
lowing a Gaussian distribution with a mean of 4 (99% CI: 3-5) and dividing this value by the the dominant
eigenvalue of the Next Generation Matrix (see section Computational implementation for details and Supplemen-
tary Material for the analytical results). The distribution of Ry was a compromise between values reported in
the literature from regions with high-density informal settlements: Ry=2.77 in Abuja and 3.44 in Lagos, Nigeria
[25], 3.3 in Buenos Aires [26], and 5 in Rohingya refugee camps in Bangladesh [27].

Epidemiological severity assumptions

In NWS; there are 4 active and 2 planed COVID-19 referral hospitals, with a current capacity of 66 ventilators,
74 ICU beds and 355 ward beds for 4.2 million people [29, 30]. Estimations based on an exponential growth
model from Hariri et al. predicted a collapse of health facilities 8 weeks into an outbreak [31]. Although we do
not have access to official data on healthcare occupancy, the currently reported number of cases suggests that
this scenario could have been reached [8]. Hence, we considered a worst-case scenario in which individuals will
not have access to healthcare and assumed that all critical cases (those requiring ICU care) would die. However,
there is greater uncertainty about the fate of severe cases, those requiring hospitalization but not ICU care. We
therefore considered a compartment for severe cases to account for a longer infectious period if they stay in the
camp (see compartment H;, Fig. 1). This compartment also helped us model some interventions more realistically,
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\ Parameter \ Description \ Value \ Distribution\ Reference \
T Maximum transmissibility 0.14 (95% CI: 0.05-0.40) Lognormal Derived
Presymptomatic
Bp_s1 trargf?;jii?gﬂi;gi?;g:als Reference stage (=1) - [28, 19]
relative to 7
Mean presymptomatic
Bp transmissibility 0.93 (95% CI: 0.88-0.99) Empirical Derived
relative to 7
Ba Asymptomatic transmissibility 0.14 (95% CI: 0.05-0.40) Lognormal | Derived
relative to 7
Clinical symptomatic
Br transmissibility 0.24 (95% CIL: 0.11-0.60) Lognormal Derived
relative to 7
Bu Hospitalized .transmlss1b1hty 0.11 (95% CI: 0.05-0.29) Lognormal Derived
relative to 7
Table 3: Transmissibility parameters. See Supplementary Materials for details.
Demographic class
Parameter Description Age 1 (0-12) | Age 2 (13-50) | Age 2 (13-50) | Age 3 (>50) | Age 3 (>50),
no comorbidities no comorbidities
comorbidities comorbidities
1 (hy) Fraction of 0.064 (0.064) | 0.067 (0.066) | 0.199 (0.191) | 0.183 (0.178) | 0.445 (0.406)
symptomatic
cases severe
7P (g;) Fraction of 0.0065 (0.009) | 0.020 (0.028) | 0.094 (0.129) | 0.063 (0.088) | 0.222 (0.289)
symptomatic
cases critical

Table 4: Proportion of symptomatic cases that become severe and critical. Since the rates at which these
cases become severe, critical, or recover are different, we introduced three paramaters (h;, g; and l;) to distribute
individuals according to the desired proportions (values between parenthesis). The proportion of individuals
recovering is computed as 1 — ¢! — ¢P (see Supplementary Materials for details).

for example by noting that the symptoms of severe cases are incompatible with self-isolation. To estimate upper
and lower bounds for the outcome variables of our model, we simulated two possible scenarios for the fate of this
compartment: one in which all cases recover, and another in which all die. In the simulations presented in the
Main Text, we consider the worst-case scenario in which all of these cases die.

The fractions of symptomatic cases that are severe (ql!), critical (¢°) and recover (¢f, where ¢f = 1 —
¢! — ¢P) are demographic-class-specific (see Table 4). We estimated the fractions of symptomatic cases in each
demographic-class that would become severe (gi') and critical (¢°) using data from developed countries with
superior population health [32, 33]. Following previous work [12], we mapped the age-specific case severity
distributions of the NW Syrian adult population to those of 10 years older age groups in developed countries.

Since the rates at which clinical symptomatic individuals (I;) resolve into these three epidemiological outcomes
are different (7 for H, « for D and ~1 for R) we introduced three parameters, h;, g; and l;, to distribute individuals
according to the desired proportions. The analytic solution is provided in Suppl. Material and the specific values
in Table 4.

Interventions

The interventions we consider are modelled by modifying the rate at which individuals become exposed (the term
Ai, Eq. 9), and/or adding new population classes that govern behavioural changes (behaviour-classes). Since \;
can be factorized in four terms, the interventions may influence one or several of these terms. The factors present
in A\; and the terms modulating them in the interventions are (see Eq. 10): i) the maximum transmissibility, 7,
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o ORANGE ZONE
° ®

Intervention/Description Levels/Effect

1. Self-distancing: reduction of mean number of
contacts per day per individual

10%, 20%, 30%, 40%, 50%

2. Self-isolation
Isolation of symptomatic people in individual tents
2a. Number of carers: number of healthy people
that will take care of self-isolated people

2b. Self-isolation delay: time from symptom onset
to self-isolation

Number of available tents: 10, 20, 50, 100,
250, 500, 1000, 2000

1 per tent

12h, 24h, 48h

3. Safety zone
Designated area for vulnerable population

3a. Number of contacts people in the safety zone
can have with people from the exposed zone
(contacts always happen in the buffer zone)

3b. Health checks

Older adults only,

Older adults + adults with comorbidities,
Older adults + adults with comorbidities +
healthy adults and kids, up to 20%, 25%, or
30% of the population

2 or 10 contacts per week per individual
residing in the safety zone

Exclude symptomatic people from meeting
with people from the safety zone

3c. Lockdown of safety zone if one case is detected

X Reduces value of 3a by 50%, or 90%
in the exposed zone

Evacuated individuals cannot infect other
people from the camp, but they do not
receive healthcare

4. Evacuation of severely symptomatic

Buffer zones

Reduces probability of infection by 80%
Open space, 2m distancing, use of face cover m P v Y 897%

GREEN ZONE

Figure 2: Diagram of interventions.

which is reduced in some interventions by a factor &;;, when interactions are restricted to buffer zones (see below
for details); ii) the average number of contacts that individuals in class i have per day, ¢;. This quantity can
either be uniformly reduced across all classes, or the contact rate of class ¢ with class j can be modified. We
model this modification of contact rates using the matrix ¢;;; iii) the probability of encounter between members
of class ¢ and j in a well-mixed population, N;/N. This probability can vary by modifying the visibility of a
member of class j to a member of class ¢ , which we express with the matrix w;;; and iv) the probablility of
becoming infected by individuals at specific stages of the disease (e.g. for hospitalized individuals this is encoded
in the term fuH;/N;) can also be modified by specific factors. Only the terms for individuals at the clinical
symptomatic (I) and hospitalized (H) stages are modified in our interventions, through the parameters ¢ and
Cu, respectively. Following these considerations, the generic form of A; under the interventions becomes:

- N; (BpP; + BaA; + Gpil; + (ufuH;
/\i = Z Tgij CiGijwijo ( J J Nj J J . (10)
MM

iii D

All interventions, self-distancing (see Fig. 2-1), self-isolation (see Fig. 2-2), safety zone (see Fig. 2-3), and
evacuation (see Fig. 2-4) can be parameterized following this expression. The specific values of the parameters
are presented in Table 5 and their derivations in Supplementary Materials.

Self-distancing

The first non-medical intervention that we modeled is a reduction in the mean number of contacts per individual
per day for the whole camp population (see Fig. 2-1). The average number of contacts of each class ¢; (see
Table 2) is reduced by a class-independent factor, hence the matrix ¢;; is uniform for all classes, ie. ¢€; =
e, €€{0.9,0.8,0.7,0.6,0.5}. No further adjustments are required for this intervention. Since the mean number
of inhabitants per tent in a camp is 5.5 and sanitation facilities are shared [23], we inferred that the number
of contacts per day cannot be reduced by more than 50% (e = 0.5). For a younger adult, this would mean 7.5
contacts per day.
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] Intervention\ €ij \ Wij \ (1 \ Cu \ &ij \ Details
Self- €€
distancing | {0.9,0.8,0.7,0.6,0.5}

1 1 1 1 constant Vi, j

i € young healthy

(ccare/ci)(Ij /Ni) N/N; 1 0.2 adults

j € isolated individuals
in class j

i 1 1 € young healthy

1 1 1 adults

O(Ny — j € individuals not

isolation

~ isolated in class j
) 1 ¢ young healthy
0 0 0 adults
j € isolated individuals
in class j
1 ¢ young healthy
1 1 1 adults
j € indiv in class j

(0.1} i € zone X, j € zone Y
’ 0.2 (X, Y e{green,
orange})

1,7 € zone X
(X €{green, orange})

Evacuation 1 1 1 0 1 -

e, {0.1}
Safety Vevisit/Ci N/Ny see (%) see (¥)
zone

1-— ﬂcvgsit/ci N/NX 1 1 1

Table 5: Parameterization of the interventions. Values of €;;, w;;, (1, (u and &;; considered in the in-
terventions (see Supplementary Materials for their derivations). ceare = number of contacts per day of each
isolated individual with carers. fj = Number of isolated cases of class j. N; = number of symptomatic individ-
uals. N = maximum number of tents available for self-isolation. O(x) = Heaviside function. c¢yisiy = maximum
number of contacts that individuals in the green zone can have with individuals from the orange zone per day
(Cyisit = {%, 1—70 ). Under a “lockdown” of the green zone where visits are reduced by 50% cyisit = {%, %}, and
where visits are reduced by 90% cyisi¢ = {5—15, %} ¥ = fraction of the population in the orange (green) zone capable
of coming in contact with individuals from the green (orange) zone. ¥ = 1 if class ¢ is in the green zone, and is
proportional to c¢yisitNg/No if in the orange zone. Nx and Ny generically refer to the total population in either
the green (Ng) or the orange (IN,) zones. Note (*): The parameters ¢; and (y are set to 0 if health checks to

access to the buffer zone are implemented in the intervention, and set to 1 otherwise.
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Self-isolation

Self-isolation is a challenge in informal settlements, where households consist of a single (often small) space, water
is collected at designated locations, sanitation facilities are communal and food supplies are scarce. We considered
the possibility of those showing symptoms (i.e. in compartment I) self-isolating in individual tents in dedicated
parts of the camps. We excluded individuals with severe symptoms (H compartment) from the intervention
since they require additional care not compatible with self-isolation. Instead, we considered the possibility of
evacuating these individuals from the camp as an additional intervention (see below). We simulated self-isolation
with various numbers of isolation tents per camp, ranging from 10 to 2000 for a camp of 2000 people (see Fig.
2-2). In addition, we modeled the role of carers dedicated to providing for isolated individuals (see Fig. 2-2a).
Carers are drawn from the younger adults class with no comorbidities who are not at a stage of the disease
during which they display symptoms (i.e. not in compartments I or H), while isolated individuals may belong to
any class. Since this intervention only modifies the infectiousness of individuals in the I compartment and the
exposure of carers, the consideration of additional behavioural-classes is not required. Instead, the intervention
can be encoded in \; by simply splitting the contribution of symptomatic individuals to the rate of exposure into
two terms, one for the isolated individuals and another for the remaining population. Hence, its implementation
requires deriving the parameters ¢;; and w;; for interaction between healthy younger adults (from which carers
are drawn), the remaining classes, and isolated and non-isolated individuals separately. In Table 5 we present
these terms and their derivation in Supplementary Materials.

In addition, interactions between carers and isolated individuals were restricted to buffer zones, which we
envisioned as open spaces, with guidelines in place to limit occupancy to 4 individuals wearing masks with at
least 2 meters of distance between them, where we assume transmissivity is reduced by 80% (&; = 0.2). In
considering one carer per isolated individual with one contact per day, we do not neglect their probability of
infecting the rest of the camp.

Safety zone

In this intervention, the camp is divided in two areas: a safety zone, in which more vulnerable people live (hereby
referred to as a “green” zone following previous studies [12]), and an exposed (“orange”) zone with the remaining
population. In our simulations, the first exposed individual always belongs to the orange zone. The living
conditions within both zones remain the same, so the overall contact rate does not change unless self-distancing is
also implemented. A consequence of maintaining the overall contact rate is that, reducing contacts with individuals
living in a different zone, implies an increase in contacts with individuals in the same zone (see Supplementary
Material). Although we do not expect this assumption to be true in general, it allows us to investigate undesired
side-effects of this intervention, such as older adults having increased contacts amongst themselves if isolated
together. Since proposals for partitioning the population may be received differently across camps, we considered
several scenarios for allocating a camp population to the two zones (see Fig. 2-3). Implementing this intervention
thus requires the split of some demographic-classes into two behaviour-classes, depending upon the scenario. For
example, if some healthy younger adults are allocated into the green zone, we split the demographic-class “healthy
younger adults” into “orange” and “green” behaviour-classes, to model the different contact rates that these two
subclasses of healthy younger adults will have amongst themselves and with other classes. In Supplementary
Table 2 we present the classes considered in each scenario.

Interactions between the two zones are limited to a buffer zone, reducing transmissivity (i.e. &; = 0.2, see
previous section). Individuals in the green zone cannot leave and thus need to be provided with supplies by
individuals in the orange zone, which will take place in the buffer zone. In our simulations, we considered limiting
individuals in the green zone to 10 or 2 contacts with individuals from the orange zone per week (see Fig. 2-3a).
Other variations of this intervention we explored include preventing symptomatic individuals from entering the
buffer zone (incorporating health-checks, see Fig. 2-3b) and a “lockdown” of the green zone, where the number
of weekly contacts in the buffer zone is reduced by 50% or 90% (see Fig. 2-3c). Although overall contact rates
are conserved in this intervention, we modify the contact rates between ¢ and j with €;; and the probability of
interaction between ¢ and j with w;;, where both parameters are determined by whether ¢ and j are in the same
or different zones (see Table 5 for specific values and Supplementary Materials for derivation).
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Evacuation

The last intervention we simulated is the evacuation of severe cases (individuals in the hospitalization compart-
ment). Since they require more intensive care that cannot be delivered while adhering to the guidelines of a
buffer zone, severe cases were assumed to be fully infectious and not able to self-isolate. Once severe cases are
evacuated, their infectivity is reduced to zero ((g = 0, see Fig. 2-4). The fate of severe cases is not altered by this
intervention since we assumed that hospitals are saturated and that evacuees are transferred to isolation centers
instead.

Computational implementation and statistical analysis

The specific values of the parameters shown in Egs. 1-8 and of Ry are independently drawn at each integration
step from the probability distributions shown in Tables 1, 3 and 4. We note that by generating transition rates
from the empirically-determined residence times, we are not reproducing these residence times for the simulated
individuals. In our simulations, individuals will experience exponentially-distributed residence times with a mean
equal to the mean of the correspondent distribution (to 1/ in the case of the symptomatic compartment). The
generation of random values around the mean following the empirical distribution at each time-step is aimed at
adding noise to the mean, to partially account for the empirical uncertainty.

The Next Generation Matrix is also computed at each integration step from the parameters drawn, and 7
estimated. In the code provided it is possible to fix the seed to exactly reproduce the results presented. Our
simulations start with a completely susceptible population where one person in the younger adult population is
exposed to the virus (who is also in the orange zone if the safety zone intervention is in place). We verified that
a steady state was always reached before the end of each simulation. We did not consider migration, births, nor
deaths due to other causes, since they are small enough in magnitude to not significantly impact the course of an
outbreak, provided additional conflict does not erupt.

For each implementation of the interventions, we ran 2500 simulations and compared results between them.
The main variables considered are the fraction of simulations in which at least one death is observed, a proxy
for the probability of an outbreak, the fraction of the population that dies and the time until the symptomatic
population peaks, as well as the infection fatality rate (IFR), the fractions of the population that are recovered
and remain susceptible at steady-state. For consistency, we only considered simulations in which there was
an outbreak when comparing the outcome of a variable between interventions. We used the Shapiro-Wilk test
[34] to verify that our results do not exhibit normally distributed residuals, and Conover-Iman test for multiple
comparisons [35]. We used the R package PMCMRplus [36]. Confidence intervals for the probability of outbreak
were computed with Wilson’s method [37] implemented in the R package binom [38]. The model and all statistical
analyses were implemented in R [39].

Results

In the absence of interventions, the mean IFR is ~2.5% in simulations where all severe cases requiring hospital-
ization recover (see Supplementary Fig. 1), and ~11% in simulations where all severe cases die. We consider the
latter scenario to evaluate the effect of non-medical preventive interventions. In this scenario, the probability of
observing an outbreak is close to 0.84, in which >10% of the camp dies, the number of symptomatic cases peaks
after 40 days, ~84% of the population recovers, and ~5% escape from infection (i.e. remain susceptible).

Self-distancing

Our results show that self-distancing has a notable effect on reducing the probability of an outbreak which
decreases roughly linearly as the percentage of contacts reduced increases. (see Fig. 3A). A near-quadratic trend
is observed for the fraction of population dying, with a greater decrease for larger reduction in daily contacts,
achieving a 34% reduction in mortality when the number of contacts is reduced by 50% (see Fig. 3B). Self-
distancing also significantly extends the time until the peak of the outbreak, from ~40 days when there is no
intervention to 72 days when contacts are reduced by 50% (see Fig. 3C). The proportion of the population
escaping from infection after 12 months also increases up to near 33% when a 50% reduction is considered, and
the proportion of the population recovered after 12 months (which informs on the potential population level
protection against future outbreaks) is reduced from 84% to 60% (see Supplementary Fig. 2).
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Figure 3: Effect of interventions on outbreak probability, fatalities and time until symptomatic cases
peak. A: Self-distancing, probability of an outbreak. B: Self-distancing, fraction of the population dying. C:
Self-distancing, time until peak symptomatic cases. D: Self-isolation, probability of an outbreak. E: Self-isolation,
fraction of the population dying. F: Self-isolation, time until peak symptomatic cases. G: Safety zone, probability
of an outbreak. H: Safety zone, fraction of the population dying. I: Safety zone, time until peak symptomatic
cases. Triangles indicate the means and boxes interquartile ranges. Note that in figures of the safety zone
intervention (panels G-I), the mean of an outcome for the whole population is not the weighted mean of the
exposed and safety zones, since outcomes are computed considering simulations in which at least one death was
observed in the population class inhabiting the zone, i.e. the number of simulations considered to compute each
mean is different. In the safety zone figures (panels G-I) health-checks are in place, in Supplementary Fig. 5 we
show the effect of removing health-checks.
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Self-isolation

With only 10 tents for a camp of 2000 people (i.e. 1 tent for every 200 people), self-isolation yields a marked
decrease in the probability of outbreak (~26%) (see Fig. 3D) but there is no significant reduction in the mortality
(see Fig. 3E), suggesting that with a low number of tents the intervention is only effective in isolating index cases
preventing the epidemic to start. It is needed to further increase the number of tents past this level up to at
least 1 tent for every 8 people to observe a reduction of ~18% in the mortality and an increase of ~16% in the
time to peak of symptomatic individuals. Increasing the number of tents does not further reduce the probability
of outbreak. There is also an increase in the number of susceptible individuals at the end of the simulation with
increasing number of tents. We finally observed an artificial increase in the IFR explained by an increasingly large
number of simulations in which very few individuals are infected since, if at least one of them dies, we retrieve a
high IFR value (see Suppl. Fig. 3).

Safety zone

In this section, we consider the scenario in which all older adults, younger adults with comorbidities and their
family members up to 20% of the camp population live in the green zone, unless otherwise specified. Creating
a green zone improves the effect of the previous interventions overall, but with sometimes opposite outcomes in
the exposed and protected populations. For example, the probability of an outbreak decreases for the protected
population, by around 11%, if only two contacts are allowed per week in the buffer zone (see Fig. 3G). Notably,
most of this reduction is only achieved when health-checks excluding symptomatic individuals from the buffer
zone are in place (see Supplementary Fig. 5 for the effect of removing health-checks). On the other hand, the
probability of an outbreak may slightly increase for the exposed population, a consequence of the relative increase
in intra-zone contacts. By shifting the burden of an outbreak towards the less vulnerable population in the orange
zone, another important outcome of this intervention is the notable increase in time (62%) until the number of
symptomatic cases peaks for the vulnerable population, and a 40% increase in time for the whole population (see
Fig. 3I). Nevertheless, this intervention only has a modest reduction on overall mortality (see Fig. 3H), possibly
due to the high infectiousness of presymptomatic individuals.

Considering different scenarios for allocating people to the green zone, the lowest probability of an outbreak
is achieved when only older adults or at most older adults and younger adults with comorbidities move there,
with probabilities below 0.4 and 0.65, respectively (see Supplementary Fig. 8). Positive effects of the safety zone
intervention are even more marked in camps with smaller populations, especially for probability of an outbreak
in the green zone (which decreases by 55%) and overall mortality (which decreases by 20%) when the population
is reduced from 2000 to 500. However, we also observe the adverse effect of a decrease in time until symptomatic
cases peak (see Supplementary Fig. 9). The incorporation of a lockdown has the greatest effect on reducing the
probability of an outbreak in the green zone, to under 0.25 when contacts in the buffer zone are reduced by 90%.
While lockdowns show no positive effect on green zone fatalities in the few instances where an outbreak does
reach there, they decrease overall IFR and fatalities by further concentrating outbreaks in the less vulnerable
population (see Supplementary Fig. 10).

Evacuation

We observe no significant effects when severe cases requiring hospitalization are evacuated (see Supplementary
Fig. 4). Since we considered that these individuals will not receive health care (they are evacuated to isolation
centers), their fate remains the same than if staying in the camp and, hence, we expect evacuation to have an effect
only in reducing the infectivity. Although these individuals spend a longer period being infectious with respect
to an individual having mild symptoms (~10 days longer), the number of individuals under these conditions is
only a small fraction of the total infectious population at any given time, which explains why we do not observe
significant effects for this intervention.

Combined interventions

The effects of the interventions observed when we examine them individually build upon each other when multiple
interventions are implemented in tandem (see Fig. 4 and Supplementary Fig. 11). The protective effects of the
safety zone intervention especially are most fully realized not when implemented on its own, but when paired
with other interventions. They become so effective that outbreaks in the green zone become exceptionally rare,
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but so well controlled when they do happen, that the majority of outbreaks are small enough for us to observe an
anomalous increase in IFR in some of the most effective interventions, driven by the discretization of the values it
can take (e.g. if there is only one case and this person dies, see Supplementary Table. 11). When all interventions
are implemented together: strict self-distancing (50% reduction in contacts), self-isolation of symptomatic cases
(1 tent for every 40 people), a safety zone with 2 contacts per week in the buffer zone, health checks, a strict
lockdown (90%), and evacuation of severe cases, mortality is reduced by ~94% and the probability of outbreak in
the green zone is very small ( ~0.005). In other combinations with higher probability of outbreak (e.g. considering
in the previous combination a 20% reduction in contacts instead of 50%) thetime to peak of symptomatic cases
in the green zone is delayed by 48 days

Discussion

In this study, we propose a number of interventions of immediate applicability to informal settlements. We
focused on IDP settlements in NW Syria, taking into account the interventions’ feasibility, cultural acceptance
and their need for low-cost. When confronted with different possible scenarios, we generally considered the worst-
cases, highlighting the interventions that are most effective in the direst conditions, but possibly resulting in an
overestimate of mortality. This potential overestimation does not change the qualitative picture of the results,
which is built upon comparison of relative values between the presence and absence of interventions.

Our results align with previous simulation studies of potential COVID-19 interventions in similarly densely
populated, low-resource settings where informal settlements are present, such as urban areas of sub-Saharan
Africa. In these settings, social-distancing is demonstrated to be an effective intervention, and even small changes
are estimated to have large effects on outbreaks [40], in some cases determining whether or not already inadequate
healthcare systems become overwhelmed [41]. Zandvoort et al. show that similar measures to the ones we consider:
self-isolation, physical distancing and “shielding” the vulnerable, may reduce mortality by 60%-75% in African
cities [12].

Self-distancing proves to be an effective measure in our models as well; reducing contacts by 50% has the
greatest effect across most outcomes of interest in any of the interventions we examined. However, the difficulty
of achieving a reduction of this magnitude cannot be overlooked, especially considering the large proportion of the
population composed of children, a group with an already high contact rate that may prove difficult to control
[23]. To illustrate the micro-dynamics of this intervention, in Supplementary Fig. 12 we plot the maximum
proportion of the population exposed at any given point in time in each simulation, against the time it takes for
symptomatic cases to peak. We observe that until reaching approximately 60%, successive reductions in contacts
reduce the maximum proportion of the population exposed while increasing the time until symptomatic cases
peak. Additional reductions in contacts beyond 60% however abruptly decrease both the time until cases peak
and overall mortality, suggesting that outbreaks die out before the virus spreads widely throughout the camp’s
population. This suggests the existence of a critical threshold for the number of individuals exposed over which
large outbreaks become established in the population, significantly increasing mortality.

We also propose self-isolation using individual tents which can be located in a dedicated zone or next to the
tents of relatives, where contact with non-isolated individuals is mediated by a buffer zone. This intervention is
effective with even a small number of isolation tents, as low as 5-10 tents per 1000 camp residents in preventing
an outbreak in the camp, but it requires at least 125 tents per 1000 camp residents to substantially reduce
mortality After conversations with camp managers, we found that this intervention is more likely to be accepted
in NW Syria than evacuation to community-based isolation centers. Community-based isolation not only poses
cultural challenges; the capacity required to implement it has hardly been met [30], and it is still one of the
main challenges in the region [8]. We note that in our simulated intervention individuals become isolated as soon
as they have symptoms. Recognizing symptoms, however, may require some time and we should expect a less
effective intervention unless systematic checks for symptomatic individuals are put in place.

Setting up a safety zone has two positive effects that most stand out: a reduction in the probability of an
outbreak in the vulnerable population, and an increase in the time until the number of symptomatic cases peaks.
Much of the success or failure of the safety zone intervention hinges on the functioning of the buffer zone. The
number of inter-zone contacts per week, the implementation of health checks, and potential lockdowns all have
notable effects. Also important is the portion of the population that is protected; protecting only the vulnerable
may have the most beneficial effects, but it is precisely these vulnerable individuals, older adults and people with
comorbidities, who may most need family members to care for them. While safety zone scenarios that allow
greater numbers of family members to accompany their vulnerable relatives to the green zone may confer greater
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Figure 4: Combinations of interventions. Probability of an outbreak (top), fraction of the population dying
(middle) and time until peak symptomatic cases (bottom) for different combination of interventions. Evac =
evacuation of severely symptomatic, self = self-distancing, tents = number of available self-isolation tents, safety
= safety zone, lock = lockdown of the buffer zone. For combinations of interventions including a safety zone, we
distinguish between the population living in the green zone, in the orange zone and the whole population.

15


https://doi.org/10.1101/2020.08.26.20181990
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.08.26.20181990; this version posted July 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

epidemiological risk, they may also engender greater well-being and social cohesion.

Despite these benefits, we do not observe a clear decrease in IFR with this intervention, although it is possible
that our model may overestimate mortality from an outbreak in the green zone in the few instances when there
is one. Since it is unlikely that the camps have the economic means to increase the number of tents when
implementing this intervention, we assumed that individuals do not reduce their contacts when moved to the
green zone since household sizes will not decrease, which implies an increase in the number of contacts between
vulnerable individuals. Despite this increase in contacts, we do not observe an increase in mortality in the
vulnerable population when the safety zone is implemented. These results address concerns raised around this
type of intervention from previous experiences with large numbers of fatalities registered in nursing-homes in
developed countries [42]. While nursing-homes in developed countries may be seen as analogous to the safety
zone intervention, the alternative to nursing homes in developed countries for the elderly population typically
involves remaining at home with few contacts with younger individuals (in a scenario of lockdown), while in
the camps the alternative is living in tents shared with younger individuals with high contacts rates (especially
children). This may explain why we observe a positive effect from this intervention despite a relative increase in
contacts among the more vulnerable subpopulation.

An instrumental consideration for our models is the fraction of the population recovered from COVID-19 after
a steady state is reached. Although the duration for which SARS-CoV-2 infection confers immunity is uncertain,
the proportion of the population recovered after an outbreak should play a role in its protection against future
ones. For all intervention except self-distancing >30%, we observed that the fraction of the population recovered
meets or exceeds 50%.

Another important consideration for interpreting our results are the modelling assumptions we made. From
the point of view of our parameterization, perhaps the most relevant relates to the relative transmissivity of
the different infectious stages, whose specific values still have large margins of variability [43, 44, 28]. This is
particularly relevant for our purposes, because the higher the relative infectivity of the presymptomatic and
asymptomatic stages, the less effective our non-medical interventions which rely on identification of symptomatic
individuals will be. For instance, Bullock et al. [45] assumed a higher infectiousness of the presymptomatic stage
and hence self-isolation of symptomatic individuals had little effect. Self-isolation also becomes ineffective under
the assumptions made by Hernandez-Suarez et al. [46] when they considered isolating only severe symptomatic
cases (whose fraction is small), hence mildly symptomatic individuals were effectively considered asymptomatic.
On the other hand, Gilman et al. [47] showed that self-isolation was effective when considering individuals at
different stages to be equally infectious. We assumed that presymptomatic individuals have the highest relative
infectivity, consistent with the most recent estimations [44], and the interventions we proposed are still effective.
Considering a different scenario in which all compartments are assumed to be equally infectious, our interventions
become even more effective (see previous version of our manuscript [48]v1).

It is also important to acknowledge the benefits and limitations of different possible computational implemen-
tations. For instance, there are interventions that do not have a natural implementation within our framework,
such as those requiring interventions targeting very specific interactions between individuals (as opposed to large
groups of individuals), or reproducing empirically-observed residence times. An example might be the isolation
of an individual and his/her family, as proposed by Gilman et al. [47] which, since we do not explicitly model
interactions at the family-level, would require the creation of as many classes as families. When this level of
detail is required, individual based models (IBMs) may be more appropriate [47, 45]. However, IBMs require a
rich amount of data for their parameterization which, although increasingly available, is scarce for informal IDPs
camps. Our framework is powerful enough to simulate a large number of scenarios with little computational cost,
which would be an optimal strategy as a first approximation in the design of interventions to narrow down the
most relevant scenarios (as a reference, in <24h we model with just 12 cores 75 scenarios requiring quarter million
simulations). The scenarios selected could then be further investigated with more detailed interventions using
IBMs, if data is available.

A key limitation of our approach is that it simulates an outbreak started by one infectious individual in a single
camp with a closed population. We acknowledge that this approach does not fully capture the complexities of the
NWS region, where IDPs live interspersed throughout the region in several hundred camps. The dynamics of an
outbreak in the region are undoubtedly influenced by inter-community contacts, and the dynamics of an outbreak
in a single camp by these region-wide dynamics, as it has been demonstrated in other countries [10, 49]. We expect
our results to be robust to changes in population, as long as these changes are relatively small compared to the
total population size in the camp, implying sporadic inputs of infected individuals. This is the expected behaviour
in IDPs, which are often small and located in rural areas, and in which important population movements, as those
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observed in large camps, are infrequent. This fact, together with the relatively young population in IDPs, may
help in limiting the impact of the disease, as observed in African rural areas [50].

Other unaccounted for social and cultural dynamics will undeniably complicate the feasibility of our pro-
posed interventions. Only one example we have not addressed here is the unlikeliness of children under 13
self-isolating. Although the number of challenges to implementing our proposed interventions are potentially
endless, the community-based nature of our approach may help circumvent these challenges much faster than
healthcare-based interventions, which often depend on complex political decisions and may take years to build
the requisite capacity for an effective response. If the dynamics of the virus are well understood by local com-
munities and at least some of the interventions we propose are implemented, the impacts of COVID-19 can be
mitigated even in an environment as challenging as NW Syria.

Conclusion

Given a rapidly changing environment and slow responses of local and international authorities in conflict regions
where control of policy is disputed, the latter often leaving these communities aside in their priorities [51],
empowering local communities themselves is perhaps the best, if not the only way, to help them avoid the worst
consequences of the pandemic. Such an approach may achieve greater compliance with non-pharmaceutical
interventions, especially where there is a mistrust of external authority. This not only applies to IDP camps in
NW Syria, but more generally to refugee camps in conflict-torn regions, and potentially other informal settlements
and vulnerable communities around the world: the low-cost, effective interventions we present are feasible, needed
and urgent.
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