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Abstract

We present evidence for existence of a universal lower bound for the
initial growth rate of the epidemic curve of the SARS-CoV-2 coronavirus.
This can be used to infer that, on average, an asymptomatic infected
individual is infectious during 5.6±0.3 days. We further present evidence
of an average time scale of 12 days for halving the number of new cases, or
new deaths, during the extinction period of the first phase of the epidemic.
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1 Introduction
The development of strategies to fight future phases of the Covid-19 pandemic,
or similar future epidemics, requires a good understanding of the global fea-
tures of the evolution of the epidemic. In particular it is important to obtain
quantitative information about the epidemic which is independent of the local
conditions such as social habits of the local population or the details of the con-
finement measures. In this work we show existence of a universal lower bound
on the rate of the initial growth of the epidemic, with a characteristic time scale
of about 6 days. We argue that this minimal rate of growth can be explained by
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an infectiousness time of infected individuals of 6 days. Furthermore, we show
that the epidemiological data exhibit an average extinction rate with a charac-
teristic time scale of 12 days. The information should be useful for monitoring
the development of the current epidemic for countries which are still in the first
phase thereof, as well as that of an upcoming second wave, or future coronavirus
epidemics.

Our results are based on fitting to the epidemiological time-series the curves

I(t) = k × 1

1 + e−(α−β)(t−τ)
× 1

1 + e−β(t−σ)
, k > 0 , α > β > 0 , (1.1)

introduced in [1] (see also Appendix C), which describe surprisingly well the
global features of the confirmed-cases time-series and death time-series for the
first phase of the Covid-19 epidemic, whenever a fit to the data is available.
Here one should keep in mind that in many countries the epidemic stabilised
to a new rampant phase, or entered a new growing phase, in which case the
fits of the function I to the data are becoming worse with time. This allows
us to determine, for each time-series, the end of the first phase of the epidemic
defined as the day for which the fit of the curve is optimal.

A shortcoming of the curve (1.1) is that I can only provide a good fit for
data sets for which the extinction rate is smaller than half of the initial growing
rate; this is explained in Appendix A. While this is a fundamental bias of our
analysis, it turns out that many Covid-19 time-series have this property.1

A key feature of the function I is that if both e(α−β)τ and eβσ are sufficiently
large,2 then near t = 0 the function I is well approximated by

I(t) ≈ ceαt , (1.2)

where c = ke−(α−β)τ−βσ. This shows that the parameter α carries information
about the initial rate of growth of the epidemic.

Next, for large positive t the function I behaves as

I(t) ≈ k(1− Ce−βt) , (1.3)

whenever C = eβσ or t (or both) are sufficiently large. This shows that β
describes the extinction rate of the epidemic.

Fitting the curve to the time series of the epidemic for a given city, county,
province, state, or country, provides quantitative information about the dynam-
ics of the epidemic.

We have attempted to determine the parameters (α, β, k, τ, σ) for all time-
series of the epidemic available at the John Hopkins University (JHU) server on
July 1, 2020. As already pointed-out in [1], optically satisfactory fits to the time
series of the curve (1.1) can be found for essentially all time-series that we have
examined; several examples can be found below, in [1], and in the supplementary
materials to this paper. However, it appears that satisfactory fits, in the sense

1This should be compared with the logistic function, where both the initial growth rate
and the extinction rate are the same; the Gauss-error function, where both the growth and
extinction rates vanish; and the Richards curve [2], where the initial and extinction rates are
arbitrary but the growth amplitude is correlated with the extinction amplitude.

2For example, if both e(α−β)τ ≥ 9 and eβσ ≥ 9, then the relative error in (1.2) less than
10%: 1/x− 1/(1+x) = 1/(x(1+x)) ≤ 0.1× 1/x if x ≥ 9. The accuracy of the approximation
grows with growing x.
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of small residuals and decent standard deviations for the fit parameters, can
typically only be found after the (first) peak of the number of new cases of
epidemic. Moreover, wobbly time-series, or time series with jumps, often do not
lead to fits which are satisfactory in this sense either. While our observations
below are based on the time series with satisfactory fits, we checked that they
are consistent with all fits when the large uncertainties of the parameters of the
remaining fits are taken into account.

The values of all fitting parameters depend upon the country considered for
many obvious reasons, such as awareness of the epidemic, quarantine measures
taken, social habits of the local population, etc. The main observation of this
work is the existence of absolute lower bounds for the constants α and β, inde-
pendently of local factors. As reported in more detail in Section 2, we find the
following lower bounds for all time-series examined:

α ≥ αmin = 0.124± 0.006 , β ≥ 0.016± 0.009 , (1.4)

with the minimum for α attained at the time series of the county Cumberland,
New Jersey in the US, and the minimum for β attained for the State of Victoria
in Australia. This is illustrated in Figure 1.1, with the fits for Cumberland and
Victoria shown in Figures 1.2 and 1.3. (Unless explicitly indicated otherwise,
error indicators are standard deviations.)

For the death time-series the lower bounds on the corresponding parameters
are rather similar:

α ≥ αmin ,deaths = 0.125± 0.006 , β ≥ 0.023± 0.002 , (1.5)

attained on the time series of DuPage, Illinois for α and Snohomish, Washington
for β. This is illustrated in Figure 1.4, with the fits for DuPage and Snohomish
in Figure 1.5.

The parameter α is directly related to the initial doubling time of the epi-
demic, which will be denoted by T2. For data sets for which the approximation
(1.2) holds we obtain a common bound on the doubling time:

T2 =
ln 2

α
≤ ln 2

αmin
≈ 5.6± 0.3 days . (1.6)

Now, for some of our fits the approximation (1.2) breaks down, but the value of
the doubling time T2 can be found numerically using the explicit form of I when
the fitting parameters are used. This shifts the threshold (1.6) to the bound

T2 ≤ T2,max ≈ 6.1 days , (1.7)

attained for the time series of Cumberland, New Jersey, already seen in Fig-
ure 1.2.

Next, for all fits (to be found in supplementary materials) we find

0.047 <
β

α
< 0.38 , (1.8)

with the lower bound attained on Mason, Washington, and the upper bound on
Ireland (both seen in Figure 1.6). Note that the upper bound stays well clear
of the 0.5 limit imposed by our fitting function.
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Figure 1.1: The values of the parameters α and β for the confirmed-cases time-
series, ordered by increasing standard deviation. Only those fits where all rela-
tive errors of the fit are less than 10% were used in the analysis and are shown.
The black line is the mean and the grey line is the minimum value.
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Figure 1.2: Plots of the time series and the best fit (left) before June 30, 2020,
as well as the residuals of the fit (right) for the confirmed-cases time-series with
smallest α, namely Cumberland, New Jersey.

The average value of β for all satisfactory fits is

β ≈ 0.057± 0.003 . (1.9)

The corresponding average value for the death time-series is the same within
standard deviation:

βdeaths ≈ 0.056± 0.018 . (1.10)

This translates to an average time scale of twelve days for the halving of the
number of new cases, or deaths, during the extinction period of the first phase
of the epidemic.

The question arises about the origin of the lower bound on α. Assuming
that the number of confirmed cases during the first week or so of the epidemic is
proportional to the number of infectious individuals and that the approximation
(1.2) holds, we show in Appendix A that a precise lower bound α ≥ αmin

determines a lower bound on the number of days, say k0, during which an
infected individual is infectious.

Supposing we had access to all possible curves for the epidemic, the threshold
number αmin would then be determined exactly from these curves. Now, we only
have a set of 469 curves. Given that this is quite a large number, it appears
reasonable to assume that the minimal value of α which we see in our fits is
approximately equal to the threshold value αmin. This, together with (1.4),
leads to

k0 ≈ 6 days , (1.11)

consistently with data obtained by completely different methods in [3, 4].
It should be pointed out that (1.11) applies to asymptomatic infected individ-

uals, since the number of these is much larger than the number of symptomatic
ones.

As further explained in the Appendix, for time series which are well approx-
imated at the beginning by an exponential, the initial propagation number is

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 29, 2020. ; https://doi.org/10.1101/2020.08.24.20181214doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20181214
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 40 60 80 100 120 140
t

500

1000

1500

2000

cases

Victoria, Australia

20 40 60 80 100 120 140
t

-40

-20

20

residuals

Victoria, Australia

Estimate Standard Error
k 2233.44 93.0654
β 0.0156762 0.00895146
τ 57.2024 0.117286
α 0.287919 0.00673093
σ 57.1924 4.30116

20 40 60 80 100 120 140
t

500

1000

1500

2000

cases

Victoria, Australia

20 40 60 80
t

-40

-20

20

40

residuals

Victoria, Australia

Estimate Standard Error
k 1361.45 6.14491
β 0.146308 0.0251943
τ 54.104 1.83523
α 0.383356 0.0235104
σ 54.114 2.82185

Figure 1.3: Plots of the time series and the best fit (left) before June 30, 2020,
as well as the residuals of the fit (right) for the confirmed-cases time-series
with smallest smallest β, namely the State of Victoria in Australia. Note the
different scales for all plots. The data from the first plot for Victoria have been
used for the analysis described in the main body of the paper. The second plot
for Victoria has been fine-tuned by hand for a first phase which stops around
day 82 (May 3), with optically more satisfactory residuals but with a worse
“goodness parameter” (19.3% for the first plot and 24.3% for the second). Note
that τ and σ are very close to each other for both plots, and we have found such
fits unstable and therefore unreliable.
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Figure 1.4: The values of the parameters α and β for the deaths time-series,
ordered by increasing standard deviation. The black line is the mean and the
grey line is the minimum The averages indicated here are weighted with the
standard deviation, while the ones indicated in the text are the straightforward
ones.
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Figure 1.5: Plots of the time series and the best fit (left) before June 30, 2020,
as well as the residuals of the fit (right) for the deaths time-series with smallest
α, namely DuPage, Illinois, and smallest β, i.e. Snohomish, Washington. Note
the different scales for all plots. Both time series end on June 30, and start at
the day at which more than one death has been registered.
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Figure 1.6: Plots of the time series and the best fit (left) before June 30, 2020,
as well as the residuals of the fit (right) for the confirmed-cases time-series with
smallest ratio β/α (for Mason, Washington) and largest ratio β/α (for Ireland).
Note the different scales for all plots.
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Figure 1.7: Histogram of those values of R0 which have a standard deviation less
than 10% truncated at 8; see the Table B.1, Appendix B for the three missing
fits beyond 8.

determined by the equation

R0 = eα ln(2)/αmin − 1 = 2α/αmin − 1 (1.12)

(see Equation (A.3)). This, together with (1.11), allows us to determine R0 for
each time-series with a satisfactory fit.

In what follows we only consider the 145 fits for which the values of R0 have
a standard deviation less than 10%. The histogram of the resulting distribution
of R0 can be found in Figure 1.7. We find

R0 ∈ (1, 13.5± 1.2] , (1.13)

with an average

R0,avg =

{
1.97± 0.01, (weighted);
3.18± 1.8, (direct). (1.14)

The weighted average is calculated by weighing with the standard deviation of
R0 of the individual time-series, while the direct average is the obvious one.

The minimum value R0 = 1 is attained for the county Cumberland in New
Jersey, and the maximum value R0 = 13.5 ± 1.2 in (1.13) is attained for the
county of Stearns in Minnesota, with fits shown in Figure 1.8 The values of
R0 so determined are provided in Table 1.1 for a sample of countries. A table
presenting the values of R0 for all satisfactory fits with relative error of R0 less
than 10% can be found in Appendix B.

2 The analysis
We analysed the time series for confirmed cases, confirmed US cases, deaths and
US deaths as available on the John Hopkins University server on July 1, 2020.
After ignoring all time-series which have less than two cases on June 30, as well
as the US time-series which appear as “Unassigned” and “Out of ...”, we were
left with 3149 confirmed-cases time-series and 1647 deaths time-series.

These time series include whole countries, but also time series for e.g. French
Domaines d’Outre Mer - Territoires d’Outre Mer, or for each Australian State,
or for each Chinese Province, or for US counties.
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Figure 1.8: Plots of the time series and the best fit (left) before June 30, 2020,
as well as the residuals of the fit (right) for the confirmed-cases time-series with
the smallest (Cumberland, New Jersey) and largest (Stearns, Minnesota) value
of R0. Note the different scales for all plots.
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Figure 1.9: Plots of the time series and the best fit (left) before June 30, 2020,
as well as the residuals of the fit (right) for the confirmed-cases time-series for
Austria and for the US. Note the different scales for all plots.
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Table 1.1: A sample of values of the initial rate of propagation R0, as determined
using the double-logistic function. Strictly speaking, the numbers given are
lower bounds for R0, but we expect them to be close to the correct values. The
fits for the extreme members of the table, namely Austria and the US, can be
found in Figure 1.9.

For each such time-series we attempted to determine the day, say Tf , and
the parameters (α, β, k, τ, σ) so that the curve (1.1) fits optimally the data up
to day Tf , using the NonlinearModelFit procedure in Mathematica. Finding
a fit sometimes requires indicating parameters which are used as starting values
for the fitting procedure, with fits depending upon the starting parameters. To
take this into account we generated, for each time-series, a hundred random
values of starting parameters, and from the collection of resulting fits we chose
the “best fit”. This “best fit” was determined by adding the values of the largest
relative residual (defined as the ratio of the largest residual to the number of
cases at the end of the time series) to the relative standard deviations of all
five parameters of the fit, and choosing the fit for which the resulting number
was smallest. We carried-out this analysis for time series truncated to April 16,
then to April 17, etc., until June 30, and the day of the end of the first phase,
say Tf , was determined by choosing the time series with the best fit on day Tf .
All the satisfactory fits found had a date Tf later than April 27 (with April 28
attained by the time series for Sichuan, China, seen in Figure 2.1.)

While the above results in optically satisfactory fits in most cases, some of
the resulting fits have parameters with large standard deviations. To eliminate
those we only kept the fits where the absolute value of the largest relative
residual divided by the last value of the time series was smaller than 10%, and
where the relative standard deviations of each parameter were smaller than 10%.
All this led to 469 satisfactory fits for the confirmed-cases time-series, and 140
satisfactory fits for the deaths time-series.

In Figure 1.1 we show the resulting values of the parameters α and β together
with their standard errors, ordered by increasing length of confidence interval,
for the confirmed-cases time-series. The figure shows clearly the lower bound of
α of (1.4). Figure 2.2 shows the histograms of the values of α and β.

It follows from (1.2) that the larger the value of α, the faster the initial
growth of the epidemic. So the two time-series with smallest value of α, namely
Cumberland, New Jersey (see Figure 1.8) and San Juan, New Mexico (Fig-
ure 2.3) are the ones with the slowest initial growth of the epidemic. Likewise
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Figure 2.1: Plots of the time series and the best fit (left) before June 30, 2020,
as well as the residuals of the fit (right) for the confirmed-cases time-series of
Sichuan, China, which has the earliest date of the end of the first phase of the
pandemic. Note the different scales for all plots.
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Figure 2.2: Histograms of the values of α (left) and β (right) for the confirmed-
cases time-series.

the two time-series with largest values of α, namely South Korea and Stearns,
Minnesota, are the ones with fastest initial growth of the epidemic. The fits
for these time series are shown in Figures 1.8 and 2.4.

The last data point on all plots is June 30, 2020.
We note that we only show in this paper the fits for the outliers of our

analysis, which are not necessarily very good fits, and we hope that the reader
will not draw the conclusion that no good fits can be obtained to the curve (1.1).
In the supplementary material the reader will find the complete set of our fits,
which hopefully should dispel such an impression. It should also be clear, by
inspection of the fits presented here or in the supplementary materials, that the
fits can be fine-tuned for individual time-series by removing outliers and other
data manipulation, but we have not attempted to do this.

We have repeated the above analysis for the deaths time-series from the JHU
server. Figure 1.4 illustrates the lower bound α ≥ 0.125 for these time series.
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Figure 2.3: Plots of the time series and the best fit (left) before June 30, 2020,
as well as the residuals of the fit (right) for the confirmed-cases time-series of
San Juan, New Mexico, with the second smallest value of α. Note the different
scales for the plots.

The relevant histograms can be found in Figure 2.6. The lower bound for α is
attained on the time series of DuPage, Illinois (α = 0.125±0.006) with the next
smallest value for Riverside, California (α = 0.135 ± 0.006). The two deaths
time-series recording the fastest initial growth rate are Westchester, New York
(α = 0.57±0.03), and Nassau, New York (α = 0.72±0.05). The four associated
fits can be seen in Figures 1.5, 2.7 and 2.8.

In Figure 2.5 we show the values of α and β for all fits for which the parameter
errors are less than 100%; the values of the parameters for such fits, when not
in our previous list filtered to 10%, should be interpreted with care. The plot
shows that our lower bounds (1.4) are satisfied by an overwhelming majority of
fits, including the poor ones.

3 Conclusions
We used the double-logistic curve of [1] to obtain quantitative information on
the dynamics of the Covid-19 epidemics up to June 30, 2020. This curve approx-
imates surprisingly well most of the time series until a date which we interpret
as the end of the first phase of the epidemic, even when the fits are unsatisfac-
tory from a mathematical point of view. In many cases the fact that the errors
of the fitting parameters are large can be explained by a short time-series, or
changes in the reporting procedures during the epidemic, or appearances of new
clusters related to changes in confinement measures.

We have shown existence of a lower rate of the initial growth of the epidemics.
We suggest that this lower bound can be used to determine the time during
which an infected asymptomatic individual is infectious. This then allows one
to determine the initial propagation number R0 for time series with satisfactory
fits to our curve. We have observed that the average extinction rate of the
epidemics is about 12 days.
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Figure 2.4: Data points, the best fit before June 30, 2020, and its residuals for
South Korea. The first fit, automatically chosen by our algorithm and used for
the analysis in the body of the paper, indicates existence of two phases, with
the second one starting on May 26. The second fit has been fine-tuned by hand
to find a second phase starting around day 50 of the epidemics; in this case the
fit ends on April 1. The third fit ends on April 11 and has been found by the
computer as one with the best goodness parameter for fits ending around the
beginning of April. These two fits illustrate again that fits with very similar τ
and σ are unstable. One can wonder in any case whether any systematic studies
based on our curve (1.1) apply to the time series of South Korea.
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Figure 2.5: The values of the parameters α and β for the confirmed-cases time-
series, ordered by increasing standard deviation, after rejecting fits with stan-
dard deviations larger than 100% on some parameter. The black line is the
mean weighted by standard deviation and the grey lines are the value of αmin

and βmin obtained from the analysis based on the fits with standard deviations
for all parameters less than 10%. The cut-off at 2 of α in the first plot is an
artifact of our fitting method.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
α0

5

10

15

20

25

N

0.02 0.04 0.06 0.08
β0

5

10

15

20

25

N

Figure 2.6: Histograms of the values of α and β for the deaths time-series.
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Figure 2.7: Plots of the time series for the best fits before June 30, 2020, and
the fit (left), as well as the residuals (right) of the fit for the deaths time-series
with the second smallest value of α, namely Riverside, California.

It should be admitted that our analysis gives unambiguous results only for
these time series where a mathematically satisfactory fit to the time series has
been found, and might be biased by the requirement that the extinction rate
is smaller than half of the initial growth rate. It is therefore justified to ques-
tion the universal validity of our findings, even more so because of the ad-hoc
character of the curve (1.1).

A The growth rate
Consider an interval of data {xi1 , · · · , xi1+k} describing the number of infec-
tious individuals in k + 1 consecutive days. (We expect that the numbers xi
are proportional to the number of confirmed cases at the beginning of the epi-
demic. This is relevant for our interpretation in the main body of this paper,
but it is irrelevant for the considerations in this section where xi denotes, by
definition, the number of infectious individuals.) Suppose that the data are well
approximated by the exponential curve

xi = xi1e
α(i−i1) , i = i1, i1 + 1, . . . , i1 + k . (A.1)

Let k0 denote the number of days during which an individual is infectious. We
suppose that the probability of infecting someone is constant during this period.
At day i1 + k with k ≤ k0, thus after k days, each individual which is infections
at day i1 will lead to eαk infected individuals, hence will have infected

eαk − 1 (A.2)

individuals.
After k0 days the individual is removed from the set of infectious individuals,

hence the remaining number of infectious individuals equals

R0 := eαk0 − 1 (A.3)
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Figure 2.8: Plots of the time series for the best fits before June 30, 2020, and the
fit (left), as well as the residuals (right) of the fit for the deaths time-series with
largest values of α (Westchester and Nassau Counties, both New York State).
One could fine-tune both fits by smoothing out the jumps, which drive the fit
down and therefore the residuals up.
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It follows that the law (A.1) persists when eαk0 is much larger than one. On
the other hand, (A.1) will break down when eαk0 is of order one.

Within this model, an epidemic dies out if the number of infectious individ-
uals after k0 days is smaller than 1:

eαk0 − 1 < 1 ⇐⇒ eαk0 < 2 ⇐⇒ αk0 < ln 2 ≈ 0.69 . (A.4)

Thus, an epidemic time-series for which

k0 ≤
ln 2

α
(A.5)

never follows the exponential law (A.1) for more than k0 days.
Equivalently, no epidemic with the exponential law (A.1) will be observed

with a parameter α such that

α ≤ αmin :=
ln 2

k0
. (A.6)

We conclude that the time k0 during which an individual is infectious can be
determined by measuring the threshold number αmin .

Note that the equality case in (A.4) corresponds to the doubling time of the
epidemic. Hence, in this simple model, the time during which an individual is
infectious is smaller than or equal the smallest observed doubling time of the
epidemic.

B R0 for selected time-series
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Table B.1: The initial rate of propagation R0 for time series with a relative
standard deviation smaller than 10%, ordered according to the value of R0.
Strictly speaking, the numbers given are lower bounds for R0, but we expect
them to be close to the correct values.
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C Remarks on the “double-logistic” function
Consider the function

I(t) = k × 1

1 + c1e−b1t
× 1

1 + c2e−b2t
, (C.1)

with
k , c1 , c2 , b1 , b2 > 0 . (C.2)

Before trying to fit I to some time series, one needs to resolve the degeneracy
related to the symmetry (b1, c1) ↔ (b2, c2), This can be removed by requiring
that

b1 ≤ b2 .

The case b1 = b2 would have required special attention, but in all the fits
considered this case has never occurred, so we will from now on assume

b1 < b2 . (C.3)

One can write c1 as e−b1σ and c2 as e−b2τ , which brings (C.1) to the form

I(t) = k × 1

1 + e−b1(t−σ)
× 1

1 + e−b2(t−τ)
. (C.4)

The initial growth rate of I is α := b1 + b2, while the final extinction rate is

β := b1 . (C.5)

Renaming thus b1 to β we can write

0 < b2 = α− b1 ≡ α− β , (C.6)

which leads to the following form of (C.4):

I(t) = k × 1

1 + e−β(t−σ)
× 1

1 + e−(α−β)(t−τ)
. (C.7)

The first inequality in (C.6) shows that α > β: equivalently, a necessary condi-
tion for I to provide a good description of the epidemic the initial growth rate
must be larger than the final extinction rate. We will see shortly that in fact
we must have the inequality (C.8).

We emphasise that the above renaming of the exponents b1 and b2 requires
that the exponent which has been renamed to β should be smaller than the
exponent that has been renamed to α − β. Hence, if a fit of the data to the
function (C.7) has been made, and if the parameters so determined are such that
the parameter which was thought to be α − β is smaller than the parameter
which was thought to be β, then the parameter which has been renamed to α−β
should actually be β, and the parameter that has been renamed to β should be
α− β.

This somewhat confusing discussion leads to a more stringent restriction for
I to provide a good fit to the data: Since β ≤ α− β we must have

β ≤ α

2
. (C.8)
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This shows that no good fit to the data can be found if (C.8) fails.
The above is closely related to the question of uniqueness of the parameters

in (C.7). Here the question is, for what sets of parameters (α, β, σ, τ) and
(α′, β′, σ′, τ ′) it holds for all t

1

1 + e−β(t−σ)
× 1

1 + e−(α−β)(t−τ)
=

1

1 + e−β′(t−σ′)
× 1

1 + e−(α′−β′)(t−τ ′)
. (C.9)

Equivalently,

(1+ e−β(t−σ))(1+ e−(α−β)(t−τ)) = (1+ e−β
′(t−σ′))(1+ e−(α

′−β′)(t−τ ′)) , (C.10)

which is the same as

e−β(t−σ) + e−(α−β)(t−τ) + e−αt+βσ+(α−β)τ

= e−β
′(t−σ′) + e−(α

′−β′)(t−τ ′) + e−α
′t+β′σ′+(α′−β′)τ ′

. (C.11)

By comparing the fastest growing terms on both sides for t→ −∞ one finds

α = α′ .

From the subleading exponential terms one obtains

either β = β′ or β = α′ − β′ (or both).

The first case leads to the obvious solution (α, β, σ, τ) = (α′, β′, σ′, τ ′), while
the second leads to

τ = σ′ , σ = τ ′ .

We have thus shown that the sets of parameters

(α, β, σ, τ) and (α, α− β, τ, σ)

give the same function I, and that this is the only nontrivial possibility
In order to remove this degeneracy, within our fitting procedure we enforce

the inequality
τ ≥ σ . (C.12)

If a fit is found saturating the equality we repeat the procedure with the reverse
inequality in place.
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