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Abstract

A mathematical model for the transmission dynamics of Coronavirus diseases (COVID-19)
is proposed by incorporating self-protection behavior changes in the population. The disease-
free equilibrium point is computed and its stability analysis is studied. The basic reproduction
number(R0) of the model is computed and the disease-free equilibrium point is locally and
globally stable for R0 < 1 and unstable for R0 > 1. Based on the available data the unknown
model parameters are estimated using a combination of least square and Bayesian estimation
methods for different countries. Using forward sensitivity index the model parameters is car-
ried out to determine and identify the key factors for the spread of disease dynamics. From
country to country the sensitive parameters for the spread of the virus varies. It is found out
that the reproduction number depends mostly on the infection rates, the threshold value of
the force of infection for a population, the recovery rates, and the virus decay rate in the envi-
ronment. It is also demonstrated that control of the effective transmission rate (recommended
human behavioral change towards self-protective measures) is essential to stop the spreading
of the virus. Numerical simulations also show that the virus’s transmission dynamics depend
mostly on those sensitive parameters.

Keywords and phrases: COVID-19, Behavior change, Equilibrium Points, Stability
Analysis, Sensitivity Analysis, Parameter Estimation.

1 Introduction:

The outbreak of coronavirus was first informed to the World Health Organization (WHO) as
pneumonia of unknown cause on December 31, 2019 in Wuhan City, Hubei Province, China. As of
10 January 2020, the virus causing the outbreak was further determined by gene sequencing to be
the new novel coronavirus, the same category as the Middle Eastern Respiratory Syndrome virus
(MERS-CoV) and the Severe Acute Respiratory Syndrome virus (SARSCoV) [16]. On 30 January
2020, the epidemic of coronavirus disease 2019 (COVID-19) was declared as a public health
emergency of international concern, the highest level in the emergency response for infectious
diseases [9]. The rapid spread of this virus with consequences on an international scale, COVID-
19 was declared a pandemic by the WHO on March 11, 2020 [1]. The global report of COVID-19
by WHO indicated that on August 16, 2020, above 21.2 million people were infected with the
virus and over 761,779 were died [22]. The outbreak of the disease is still rapidly increasing in
South American, North American, Asian and African Countries at an alarming rate.

The novel coronavirus is a respiratory virus that spreads primarily through droplets of saliva
or discharge from the nose generated when an infected person coughs or sneezes [1]. Individuals
can also be infected from contacting surfaces contaminated with the virus and touching their eyes,
nose and mouth. The COVID-19 virus may survive on surfaces for long periods with the right
environmental conditions [23]. Understanding the transmission characteristics of the diseases in
communities, regions, and countries leads to better approaches to decrease the transmission of
these diseases [12].

There is no known curing medicine nor vaccine to combat the COVID-19 pandemic. However,
most symptoms can be treated and getting early care from a healthcare provider can make the
disease less dangerous. There are several clinical trials that are being conducted to evaluate
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potential therapeutics for COVID-19 [23]. Standard recommendations by WHO to prevent the
spread of COVID-19 include frequent cleaning of hands using soap or alcohol-based sanitizer,
covering the nose and mouth with a flexed elbow or disposable tissue when coughing and sneezing,
and avoiding close contact with anyone that has a fever and cough [23]. The awareness of
individuals for applying these preventive mechanisms vary from region to region and from country
to country. In some places, protective measures are employed by volunteer individuals while in
some other places, governments impose some kind of rules on the population to use strict physical
distancing and wearing face masks at public places [14].

Mathematical models have become important tools in understanding and analyzing the
spread and control of infectious diseases, which clarifies variables and parameters to obtain con-
ceptual results such as basic reproduction numbers [24]. Mathematical models and computer
simulations are useful for determining sensitivities to change in parameter values, and estimating
key parameters from data which can contribute to identifying trends, make general forecasts, and
estimate the uncertainty in forecasts [12]. Understanding the virus dynamics and host response is
essential in formulating strategies for antiviral treatment, vaccination, and epidemiological con-
trol of COVID-19 [7]. The analysis from mathematical models may assist decision makers to
estimate the risk and the potential future growth of the disease in the population [14].

Since epidemiological and mathematical models play a fundamental role in the study of
the dynamics of such COVID-19, various models have been used to investigate the transmission
dynamics of the pandemic [4, 18, 13, 8, 27, 25, 11, 32]. In [25] a generalized SEIR model was
developed to analyze this epidemic. Based on the public data of the National Health Commission
of China from Jan. 20th to Feb. 9th, 2020, they estimate epidemic parameters and make
predictions on the possible ending time for 5 different regions.

Behavior change towards using preventive mechanisms by the population to protect them-
selves from an infectious disease are assumed to be dependent on the way that the disease is
transmitted and its fatality [15]. Individuals who have awareness about the disease and decided
to use preventive mechanisms have less susceptibility than those without awareness and demon-
strating the usual risky behavior [14, 30]. In this paper, we propose SEIRDM mathematical
model for the transmission dynamics of COVID-19 by introducing a behavior change function.

In order to get better predictions and to design and analyse various intervention strategies,
one needs to estimate the model parameters from existing epidemiological data. It is most
unusual to estimate parameter values from observed data in dynamical systems. But some authors
estimate parameters based on the available data to determine the effects of various epidemiological
factors on disease transmission and possible control strategy. Least Squares Support Vector
Machines for parameter estimation of time invariant and time varying dynamical systems are
used in [20]. Biegler and Grossmann [2] employed optimization techniques based on the seasonal
data with the SIRS epidemic model in order to estimate the parameters of a generalized incidence
rate function. The SIR model parameters were numerically estimated in [5] using the least
squares method. In our case, the model parameters are inferred or estimated from observed data
for different countries use a modified Bayesian approach combined with least square techniques.
Sensitivity analysis of the model parameters is carried out to determine and identify the key
factors for the spread of disease dynamics. We use forward sensitivity analysis to identify the
most sensitive parameters.

The paper is organized as follows: The mathematical model is formulated and described in
Section 2. The qualitative analysis of the model by examining the equilibrium points and its
stability analysis is studied in Section 3. Numerical simulations of the model by estimating the
parameters are given in Section 4. The sensitivity analysis of the basic reproduction number
for the model with respect to the parameters is also discussed in this section. Conclusions and
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recommendations of the study are given in Section 5.

2 Model Formulation

The model subdivides the human population into five disjoint compartments; Susceptible, Ex-
posed, Infected, Recovered, death; and one compartment which is the contaminated material or
surface. We consider the following basic assumptions to formulate the model.

1. The transmission dynamics of COVID-19 is similar to the SEIR model. We add the death
compartment for which individuals die via the virus, in account with they may also die via
the natural death.

2. We consider the contribution of the asymptomatic infectious individuals in the transmission
dynamics of disease in the population.

3. The effect of indirect transmission of the disease through virus concentration in the envi-
ronment due to shedding by infectious is considered.

4. We apply behavior change towards self-protective measures by the population to protect
themselves from the virus.

We will then propose a mathematical model and analyze the effect of these factors to investigate
in terms of their contribution to prevent the spread of disease.

The model state variables and parameters with their meanings are given in Table 1 and Table
2 respectively.

Symbol Biological Description of the State Variables

S Susceptible individuals

E Latently infected individuals, who have no
symptoms of COVID-19 virus disease and are infectious

I Infected individuals, who have active disease and are infectious

R Recovered individuals

D Individuals who died only with COVID-19,
but not with other disease and natural deaths

M COVID-19 contaminated materials or surfaces in the environmnet

Table 1: The Subdivided Compartments in our Model

The total population at time t, denoted by N(t), is given by

N(t) = S(t) + E(t) + I(t) +R(t) +D(t).

The flow diagram of the model is illustrated in Figure 1.
Based on our assumptions and the flow diagram, it results in systems of the following non-linear

differential equations: 

dS
dt = Λ− (λ+ αe+ µ)S,
dE
dt = αeS − (θ + µ+ (1− η)λ)E,
dI
dt = λS + (1− η)λE − (µ+ δ + γ)I,
dR
dt = θE + γI − µR,
dD
dt = δI − µD,
dM
dt = εE + ξI − ψM.

(1)
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Figure 1: The flow Diagram for the Model of COVID-19 Pandemic

Table 2: Description of the model parameters

Parameter Biological Description of the parameter

Λ Rate of recruitment to the susceptible individuals
α Rate of dissemination of information about the disease in the population
β1 Rate of disease transmission directly from humans
β2 Rate of disease transmission from the environment
λ Force of infection ( It is the probability of acquiring infection from

an infected individual)
λ0 Threshold value of the force of infection for a population

to start reacting swiftly
K the pathogen concentration in the environment that yields 50% of chance

for a susceptible individual to catch the viral infection from the environment
ν Modification Parameter
e Behavior change function
θ Rate of recovery of the individuals from Exposed class
η The average effectiveness of existing self-preventive measures
γ Rate of recovery of the individuals from virus in the Infected class
δ Death rate due to the virus
µ Natural death rate of the individuals
ψ Decay rate of the virus from the environment
ε Shedding rate of the virus from the exposed class to the environment
ξ Shedding rate of the virus from the infected class to the environment

with non negative initial conditions S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0 and
M(0) ≥ 0.

2.1 Model Description

The susceptible population is increased by the recruitment of individuals into the population,
at a rate Λ. All human individuals suffer from natural death, at a constant rate µ. Susceptible
individuals acquire COVID-19 infection from individuals with exposed classes at a rate αe and
the infected class at a rate λ. The behavior change function e and the force of infection λ are
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given by

λ =
β1(E + νI)

N
+

β2M

M +K
and e =

λn

λn0 + λn
,

where β1 is the rate of virus transmission directly from humans, β2 is the rate of virus transmission
from the environment, K is the pathogen concentration in the environment that yields 50% of
chance for a susceptible individual to catch the viral infection from the environment, λ0 is the
value of the force of infection corresponding to the threshold infectivity in which individuals
start reacting swiftly (that means, the point at which the behavior change function changes its
concavity) and n is a hill coefficient that portrays the rate of reaction by the population. The
modification parameter ν ≥ 1 accounts for the relative infectiousness of individuals with COVID-
19 symptoms, in comparison to those infected with the virus and with no symptoms. Individuals
with virus symptoms are more infectious than that of without symptom because they have a
higher viral load and there is a positive correlation between viral load and infectiousness [29].

At the beginning of an outbreak, individuals understand very little about the virus; there
could be no reaction and this can be related to the situation at the disease-free equilibrium such
that e(λ) = e(0) = 0. However, as the risk of the disease increases, individuals start to think
of the type of measures to take in order to avoid all means of contracting the disease. These
protection measures, if perfect, account for an increase in the values of e to unity. The order n
of the function e(λ) is a Hill coefficient that portrays the rate of reaction by the population [15].

The rate of dissemination of information α describes the awareness of individuals from the
disease. Individuals acquire information through multiple ways, such as TV news, reports on
a network, mouth-to-mouth communication, or even education. The information individuals
gathered is an essential factor which impacts how individuals react to the disease transmission
and individuals make behavior changes to keep themselves from infection based on the information
available to them during the pandemic [35].

Individuals leave the exposed class E by becoming symptomatic, at a rate (1− η)λ with the
average effectiveness of existing self-preventive measures η ≤ 1 , or recovered at rate θ. Individuals
with the symptoms of COVID-19 disease dies due to the virus-induced death at a rate δ. The
infected individuals also become recovered at a rate γ. We assume that the recovered individuals
R acquire partial immunity. The released COVID-19 from the exposed and infected individuals
through coughing or sneezing landed on materials or surfaces around them and become infected
at a rate ε and ξ, respectively [14, 30]. The virus decays from the infected surfaces with the decay
rate of ψ.

3 Analysis of the Model.

In this section, we will see the qualitative analysis of the model Equation (1) by examining the
equilibrium points and its stability analysis.

3.1 Well-Posedness

Let us begin understanding the dynamics of a model by examining the behavior about its steady
states. We first show that the model is well posed in a biologically feasible domain, and then
proceed with a stability analysis of the steady states of the model.

Theorem 3.1. 1. There exists a unique solution to the system of equations (1) in the region
D = (S,E, I,R,D,M) ∈ R6

+.
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2. If S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0 and M(0) ≥ 0, then S(t) > 0, E(t) ≥
0, I(t) ≥ 0, R(t) ≥ 0, D(t) ≥ 0 and M(t) ≥ 0 for all t ≥ 0.

3. The solution trajectories of the model equations (1) evolve in abounded and positive invariant
region

Ω = {(S,E, I,R,D) ∈ R5
+ : 0 ≤ S + E + I +R+D ≤ Λ

µ
, 0 ≤M ≤ (ε+ ξ)Λ

µψ
}.

Proof. The Well-Posedness of the Model is proved as follow:

1. All the functions on the right hand side of Equation (1) are C1 on R6 . Thus, by the
Picard–Lindelöf theorem [28], equations (1) has a unique solution.

2. The positivity of model state variables are proved based on proposition A.1 in [31]. Let the
model equations (1) be written in the form x′ = F (x, t), where x = (S,E, I,R,D,M), and

F =
(
dS
dt ,

dE
dt ,

dI
dt ,

dR
dt ,

dD
dt ,

dM
dt

)′
. The functions F (x, t) on the right hand side of equations

(1) have the property of F (S,E, I,R,D,M, t) ≥ 0 whenever x ∈ [0,∞)n, xj = 0, t ≥ 0.
Here our xj ’s are x1 = S, x2 = E, x3 = I, x4 = R, x5 = D and x6 = M . By Theorem 3.1
(1), there exists a unique solution for the model Equations (1). Thus, it follows from the
Proposition that x(t) ∈ [0,∞)n for all t ≥ t0 ≥ 0 whenever x(t0) ≥ 0.

3. The change of total population N(t) = S(t)+E(t)+I(t)+R(t)+D(t) at time t is governed
by N ′(t) = S′(t) + E′(t) + I ′(t) +R′(t) +D′(t). That is:

dN

dt
= Λ− µN.

The solution for this linear first order ode is N(t) = N(0)e−µt + Λ
µ (1− e−µt). Thus, for the

initial data 0 ≤ N(0) ≤ Λ
µ , we obtain

0 ≤ N(t) ≤ Λ

µ
.

Moreover, for the environmental variable M , we have

dM

dt
= εE + ξI − ψM ≤ (ε+ ξ)

Λ

µ
− ψM.

As E(t) and I(t) are less than Λ
µ . Using the same procedure or by applying the Gronwall

inequality, for 0 ≤M(0) ≤ (ε+ξ)Λ
µψ , we obtain:

0 ≤M(t) ≤ (ε+ ξ)Λ

µψ
.

If x0 is a point in D, then the solution of the initial value problem (1), exists for all times
t ≥ 0 by 3.1 (1). By the result of Theorem 3.1 (2), the solution lies in D, for all t ≥ 0.
Hence the region Ω is positive invariant.

Then we will analyze the model quantitative behaviors in the domain Ω.

6

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.24.20180695doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20180695
http://creativecommons.org/licenses/by/4.0/


3.2 Local Stability of Disease-free Equilibrium (DFE).

The equilibrium solutions of the model are obtained by setting the right-hand side of equation
(1) equal to zero: 

Λ− (λ+ αe+ µ)S = 0,

αeS − (θ + µ+ (1− η)λ)E = 0,

λS + (1− η)λE − (µ+ δ + γ)I = 0,

θE + γI − µR = 0,

γI − µD = 0,

εE + ξI − ψM = 0.

(2)

The disease-free equilibrium point of our model is obtained by setting the disease state variables
E = 0 and I = 0. If E = 0 and I = 0, then R = 0 and D = 0. It is then denoted and given by:

ε0 =

(
Λ

µ
, 0, 0, 0, 0, 0

)
.

Now let us calculate basic reproduction number denoted by R0, and defined as the average
number of secondary infections produced by a single infected individual in a totally susceptible
population. Using the next generation matrix method [33], the basic reproduction number is
calculated as follows. From the model equation (1), using the notation X = (E, I,M), we have
the vector functions:

F(x) =

 αeS
λS
o

 and V(x) =

 (θ + µ+ (1− η)λ)E
(µ+ δ + γ)I − (1− η)λE

ψM − (εE + ξI)

 ,
representing the appearance of new infections, and the transfer of individuals in to and out of the
infected compartments, respectively. The Jacobian matrices of F(x) and V(x) are, respectively

F = DF(ε0) =


αβ1
λ0

αβ1ν
λ0

αΛβ2
λ0Kµ

β1 β1ν
β2Λ
µK

0 0 0

 and V = DV(ε0) =

 p1 0 0
0 p2 0
−ε −ξ ψ

 ,
where p1 = µ + θ, p2 = µ + δ + γ and the entries of F and V are obtained by

[
∂Fi(ε0)
∂xj

]
and[

∂Vi(ε0)
∂xj

]
respectively. It is easy to calculate the inverse of V and given by

V −1 =


1
p1

0 0

0 1
p2

0
ε
ψp1

ξ
p2ψ

1
ψ

 .
The next-generation matrix FV −1 is

FV −1 =


αβ1
λ0p1

+ αβ2Λε
Kλ0µψp1

αβ1ν
λ0p2

+ αβ2Λξ
Kλ0µψp2

αβ2Λ
λ0µψK

β1
p1

+ β2εΛ
Kµψp1

β1ν
p2

+ β2Λξ
µKψp2

β2Λ
µψK

0 0 0


and its eigen values are λ1 = 0, λ2 = 0 and λ3 = Λβ2(αεp2+λ0ξp1)+β1Kµψ(αp2+λ0νp1)

λ0Kµψp1p2
. The spectral

radius (the largest eigen value) of the next generation matrix is the basic reproduction number
of the model. Hence we have the following result.
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Theorem 3.2. The basic reproduction number of the model equation (1) is given by

R0 =
Λβ2(αεp2 + λ0ξp1) + β1Kµψ(αp2 + λ0νp1)

λ0Kµψp1p2
.

Remark 3.3. In general, if R0 > 1, then, on average, the number of new infections resulting
from one infected individual is greater than one. Thus, COVID-19 infections will persist in the
populations. If R0 < 1, then, on average, the number of new infections generated by one infected
individual is less than one. This implies that the infections will eventually disappear from the
populations. This threshold can as well be used to depict parameters which are most important
during the infection.

The local stability analysis of the equilibrium points are analyzed using linearization. For
n = 1, the expression αe is simplified as αe = αB1

B2
, where,

B1 = β1(E + νI)(K +M) + β2MN, and

B2 = λ0N(K +M) + β1(E + νI)(K +M) + β2MN.

The Jacobean matrix of the model equation (1) is

J(S,E, I,R,D,M) =



A1 A2 A3 0 0 A4

A5 A6 A7 0 0 A8

A9 A10 A11 0 0 A12

0 0 γ −µ 0 0
0 0 δ 0 −µ 0
0 ε ξ 0 0 −ψ

 (3)

where,

A1 = −
[(

β1(E + νI)(E + I +R+D)

N2
+

β2M

K +M

)
+ α

C1

B2
2

+ µ

]
,

A2 = −
[
β1S(S + I +R+D)

N2
+ α

C4

B2
2

]
,

A3 = −
[
β1νS(S + E +R+D)

N2
+ α

C2

B2
2

]
,

A4 = −
[

β2SK

(K +M)2
+ α

C3

B2
2

]
,

A5 =

[
α
C1

B2
2

+ (1− η)

(
β1E(E + νI)

N2

)]
,

A6 = α
C4

B2
2

− (1− η)

(
(β1(E + νI) + β1E)N − β1E(E + νI)

N2
+

β2M

K +M

)
− (θ + µ),

A7 =

[
α
C2

B2
2

− (1− η)
β1νEN − β1E(E + νI)

N2

]
,

A8 =

[
α
C3

B2
2

− (1− η)β2EK

(K +M)2

]
,

A9 =
β1(E + νI)(E + I +R+D)

N2
+

β2M

K +M
− (1− η)

(
β1(E + νI)

N2

)
,

A10 =
β1S(S + I +R+D)

N2
+ (1− η)

(
(β1(E + νI) + β1E)N − β1E(E + νI)

N2
+

β2M

K +M

)
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A11 =

[
β1νS(S + E +R+D)

N2
+ (1− η)

β1νEN − β1E(E + νI)

N2
− (µ+ δ + γ)

]
, and

A12 =

[
β2SK

(K +M)2
+ (1− η)

β2EK

(K +M)2

]
.

Here

C1 = (β1(E + νI)(K +M) + β2MN + β2MS)B2 − (λ0(K +M) + β2M)B1,

C2 = S ((β1ν(K +M) + β2M)B2 − ((λ0 + β1ν)(K +M) + β2M)B1) ,

C3 = S ((β1(E + νI) + β2N)B2 − (β1(E + νI) + β2N + λ0N)B1) ,

C4 = S ((β1(K +M) + β2M)B2 − ((λ0 + β1)(K +M) + β2M)B1) .

Theorem 3.4. The disease-free equilibrium point ε0 is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

Proof. The locally asymptotical stablility of ε0 is obtained use the sign of the eigenvalues of
Jacobian matrix at the disease-free equilibrium point ε0. Substituting the equilibrium point
ε0 with N0 = Λ

µ (at the disease-free equilibrium, the total population N is equal to the total
susceptible S population) in the matrix equation (3), we have:

J(ε0) =



−µ −β1

(
1 + α

λ0

)
−β1

(
1 + αν

λ0

)
0 0 −β2Λ

µK

(
1 + α

λ0

)
0 αβ1

λ0
− p1

αβ1ν
λ0

0 0 αβ2Λ
µKλ0

0 β1 β1ν − p2 0 0 β2Λ
Kµ

0 θ γ −µ 0 0
0 0 δ 0 −µ 0
0 ε ξ 0 0 −ψ


By expanding the characteristic equation |λI−J(ε0)| = 0 with the first, fourth and fifth columns,
we obtain three eigenvalues λ1,2,3 = −µ. The remaining three eigenvalues are obtained from the
reduced matrix

J3 =


αβ1
λ0
− p1

αβ1ν
λ0

αβ2Λ
µKλ0

β1 β1ν − p2
β2Λ
Kµ

ε ξ −ψ


The characteristic equation of J3 is a third degree polynomial which is given by:

Q(λ) = λ3 +D1λ
2 +D2λ+D3,

where

D1 = p1 + ψ + p2 − β1(ν +
α

λ0
) = p1 + ψ +

β2Λ(αεp2 + λ0ξp1)

λ0Kµψp1
+ p2(1−R0),

D2 = ψ(p1 + p2) + p1p2 −
(
β1

(
ν(ψ + p1) +

α

λ0
(ψ + p2)

)
+
β2Λ

µK
(ξ +

αε

λ0
)

)
, and

D3 = ψp1p2 −
[
p1ψβ1ν +

p1ξβ2Λ

µK
+
αβ1ψp2

λ0
+
αβ2Λεp2

µKλ0

]
= ψp1p2 (1−R0) .

The sign of D1, D2 and D3 are positive if R0 < 1. It is also true that D1D2 > D3. Using Routh-
Hurwitz stability criterion the disease-free equilibrium point ε0 is stable if R0 < 1 and unstable
if R0 > 1.

9

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 26, 2020. ; https://doi.org/10.1101/2020.08.24.20180695doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.24.20180695
http://creativecommons.org/licenses/by/4.0/


3.3 Global Stability of Disease-free Equilibrium.

Let us rewrite our model system (1) as{
dX
dt = F (X,Z)
dZ
dt = G(X,Z), G(X, 0) = 0.

(4)

where X = (S,R,D) and Z = (E, I,M), with the components of X ∈ R3
+ denoting the number

of uninfected individuals and Z ∈ R3
+ denoting the number of infected ones [6]. The disease-free

equilibrium is denoted now as

U0 = (X0, 0), where, X0 = (
Λ

µ
, 0, 0).

The conditions (H1) and (H2) below must be met to guarantee global asymptotically stability:
(H1) For dX

dt = F (X, 0), U0 is globally asymptotically stable;

(H2) G(X,Z) = AZ− Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Ω, where A = DZG(U0, 0) is a Metzler
matrix (the off diagonal elements of A are non-negative) and Ω is the region where the model
makes biological sense.

Theorem 3.5. The disease-free equilibrium point U0 = (X0, 0) is a globally asymptotically stable
equilibrium of (1) if R0 < 1 and the assumptions (H1) and (H2) are satisfied.

Proof. We have

dX

dt
= F (X,Z) =

 Λ− (λ+ αe+ µ)S
θE + γI − µR
δI − µD

 F (X, 0) =

 Λ− µS
0
0


dZ

dt
= G(X,Z) =

 αeS − (θ + µ+ (1− η)λ)E,
λS + (1− η)λE − (µ+ δ + γ)I

εE + ξI − ψM

 .
Therefore,

A = DZG(U0, 0) =


αβ1
λ0
− p1

αβ1ν
λ0

αβ2Λ
µKλ0

β1 β1ν − p2
β2Λ
Kµ

ε ξ −ψ

 which is a Metzler Matrix.

Here Ĝ(X,Z) = AZ −G(X,Z), and so,

Ĝ(X,Z) =

 Ĝ1(X,Z)

Ĝ2(X,Z)

Ĝ3(X,Z)

 =

 α
λ0

(
β1(E + νI) + β2ΛM

µK

)
+ αeS + (1− η)λE

β1(E + νI) + β2Λ
KµM − λ(S + (1− η)E)

0

 .
Since N ≤ Λ

µ and (1− η) ≤ 1,

Ĝ2 = β1(E + νI) +
β2Λ

Kµ
M − λ(S + (1− η)E) ≥ β1(E + νI) +N

β2

K
M − λ(S + E + I +R+D).

Taking N as a common factor, implying

Ĝ2 ≥ N
(
β1(E + νI)

N
+
β2

K
M − λ

)
≥ 0.

It follows that Ĝ1(X,Z) ≥ 0, Ĝ2(X,Z) ≥ 0 and Ĝ3(X,Z) = 0. Thus, Ĝ ≥ 0. Conditions (H1)
and (H2) are satisfied, and we conclude that U0 is globally asymptotically stable for R0 < 1.
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4 Parameter Estimation and Numerical Simulations.

In this section, we discuss and estimate the parameter choices and the numerical solutions of the
model equations (1). We outline the initial conditions and fit the existing WHO data with the
model for that choice of parameters.

4.1 Parameter Estimation

The systems of model equations (1) can be expressed as a dynamical system of the form:

dX

dt
= F (t,X,Φ), X(0) = X0,

where t is the independent variable (time), X is the state vector of the system, dXdt = [dx1dt , ...,
dxN′
dt ]T

, X = [x1, . . . , xN ′ ], F = [f1, ..., fN ′ ] and N ′ is the number of compartments in the population.
Φ = [φ1, . . . , φp] are p unknown parameters of the system and X0 are the initial values [20].

In order to estimate the unknown parameters Φ, the state variable X(t) is observed at L
time instants t1, . . . , tT , so that we have

Y (ti) = X(ti) + Ei, i = 1, . . . , T,

where Y (ti) is the observed values of the state variables at time instant ti and {Ei}Ti=1 are the
difference between the observed value yi and the corresponding fitted value xi i.e., Ei = yi − xi.
The objective is to determine appropriate parameter values so that the sum of squared errors
between the outputs of the estimated model (X(t)) and the measured data (Y (t)) should be
minimized.

We wish to find the vector of least-square estimators, Φ, that minimizes

l∑
i=1

E2
i =

l∑
i=1

(yi − xi)2. (5)

To find the values of parameters Φ that minimizes Equation (5), various methods have been used
for handling this problem. The first technique is to differentiate

∑l
i=1E

2
i with respect to each Φ

and set the results equal to zero to obtain a system of equations that can be solved simultaneously
for the Φ’s [21].

To estimate the model parameters we use two step approach

a. The first approach requires solving the ordinary differential equation (1). As using analytic
methods are difficult, we the numerical techniques to solve ode’s like runge-kutta methods.

b. The second approach is finding the optimization algorithm to update the parameters based
on equation (5)

The process of updating the parameters continues until no significant improvement(convergence)
in the objective function is observed. We use a type of Bayesian technique to estimate the
unknown parameters and to solve the optimization algorithm.

In this parameter estimation procedure, we modified and combined the Bayesian estimation
technique with methods of least square technique. The acceptance and rejection procedure in
Metropolis Hasting (MH) algorithm is replaced by comparing the minimum of the sum squared
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errors between the proposed parameter and the previously assigned parameter. Φ = [φ1, ..., φp]
is a vector of parameters, where, p is the number of parameters to be estimated. In our case
the number of parameters is p = 15. We take one parameter at a time and consider the other
parameters held constant in the objective function,

i.e
l∑

i=1

E2
i (φj | φ1, . . . , φj−1, φj+1, . . . , φp) =

l∑
i=1

(yi − xi)2 (6)

This is a kind of Gibbs Sampling technique for parameter estimation [10]. By combining
these parameter estimation techniques we estimate all vector of parameters until convergence.

First, we have to initialize the parameters in their parameter space and propose the next
parameter value by sampling from the proposal density. The proposal density we assign φpropi =
φi + U [φi − c1, φi + c1], where c1 is tuning value which is a small number and help us to move
the parameter φi up and down through the parameter estimation process. A rough outline of the
algorithm is given in Algorithm (1).

Algorithm 1 MH algorithm with Least square
Input: B (number of iteration), φ0 (initial value for parameters) , Y (Observed data)

Step 1. For b = 0, 1, . . . , B.

Step 2. Solve ode’s for Equation (1) at φli and compute the sum of squared errors for Equation (6)

Step 3. Select new parameter φpropi ∼ q(φpropi |φli).

Step 4. Solve Ode’s at φpropi and Compute Equation (6)

Step 5. If the sum of squared errors in Step 4 is less than in Step 2

φl+1
i = φpropi .

else,

φl+1
i = φli.

Step 6. l = l + 1.

Convergence analysis of the parameter estimation is assessed by line plots of separate pa-
rameters.

4.2 Numerical Results and Discussion

The parameters must be estimated and assigned a value in order to make the model operable.
In this paper, we use total active cases, totally recovered and total death data extracted from
WHO situation reports 1−192, and worldometer [34], with the daily data from January 21, 2020
to August 16, 2020. We use this data in parameter estimation for countries such as China, Italy,
Brazil, South Africa, and Ethiopia. We denote the observed data Y = [I,R,D] with having
different length of time T for those countries. The goal is to find the value of the parameters
which minimize the squared errors between the model predictions and the observed data. We
also use different initial states of the dynamics for each of the countries. We take initial values
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for Infected(I0), Recovered(R0) and Death(D0) cases reasonably the same as the observed data
Y0, and we make the assumption that about 80% of the disease is asymptomatic which helps us
to outline the initial value for Exposed(E0). By an initial guess of the parameters φ0 we use
B = 10, 000 number of iterations for estimation in the MH algorithm.

Based on the available data and the prediction of the proposed model the error terms are
computed at the three state compartments. The parameter update is based on the minimization
of sum squared differences between measurements and the model predictions.

The convergence analysis of some estimated parameters is given in Figure (2) and our pa-
rameter estimation algorithm seems to converge at 2,000 iterations. We take the values at the
final iteration as the estimated parameter value for the proposed model. The estimated values of
parameters for the countries China, Italy, Ethiopia, South Africa, and Brazil are given in Table
(3).

Table 3: Estimated Parameter Values at the End of 10,000 Iterations

Parameter
Estimated Value

China Italy Ethiopia Brazil South Africa

α 0.9865 0.8642 0.4224 0.6594 0.2459
µ 0.0078 0.0122 0.0430 0.0022 0.0233
η 0.9998 0.9999 0.0986 0.0962 0.0725
δ 0.0039 0.0105 0.0041 0.0043 0.0018
γ 0.0326 0.0200 0.0652 0.0461 0.0069
ε 0.0075 0.0755 0.0021 0.0155 0.2355
ξ 0.0323 0.0151 0.0027 0.0081 0.0002
ψ 0.7862 0.7224 0.6968 0.8808 0.5788
β1 0.0801 0.0328 0.1527 0.0116 0.0407
β2 0.0089 0.0023 0.0083 0.0003 0.0020
λ0 0.1062 0.071756 0.2125 0.0541 0.0437
K 437.9314 674.8087 576.9424 842.5115 874.1602
Λ 105.9383 1195.8673 1907.7356 712.7638 1128.3940
θ 0.0064 0.0105 0.0011 0.1892 0.1939
ν 1.0023 1.0015 1.0096 4.3520 1.8138

From the estimated parameter values in Table (3) the natural death rate µ is relatively higher
in Ethiopia and South Africa while the induced death rate due to COVID-19 δ is relatively higher
in Italy.

Figures (3) shows the fitted model with the observed data for South Africa. The estimated
parameters for the infected compartment is well fitted and approximated compared with the
observed data. It is also shown that the recovered and death compartment has relatively small
under predictions.
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(a) Ethiopia (b) South Africa (c) Italy

Figure 2: Convergence analysis of a sample of parameters for the COVID-19 induced death rate
δ, recovery rate γ and the contact rates β1, β2.

(a) Infected (b) Recovered (c) Death

Figure 3: Numerical results of the fitted and observed values of Infected, Recovered and Death
cases for South Africa.

The Figures in (4) shows the fitted model with the observed data for Brazil. We observe
that the estimated parameters for the infected and recovered compartments are well fitted and
approximated compared with the observed data. The death compartment has relatively small
over predictions.

(a) Infected (b) Recovered (c) Death

Figure 4: Numerical results of the fitted and observed values of Infected, Recovered and Death
cases for Brazil.

The Figures (5) shows the fitted model with the observed values for Ethiopian data. We see
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that the estimated parameters for the infected and recovered compartments are well fitted and
approximated compared with the observed data. It is also shown that the death compartment
have relatively small over predictions in Ethiopia.

(a) Infected (b) Recovered (c) Death

Figure 5: The numerical results of the fitted and observed values of Infected, Recovered and
Death cases for Ethiopia.

4.3 Sensitivity of the Basic Reproduction Number.

Sensitivity analysis is used to determine how sensitive a model is to changes in the value of the
parameters and to changes in the structure of the model [3, 26]. In this paper, we focus on
parameter sensitivity. Sensitivity analysis is a useful tool in model building as well as in model
evaluation by showing how the model behavior responds to changes in parameter values [19].

Definition 4.1. The Sensitivity and elasticity indices of the basic reproduction ratio, R0 , with
respect to model parameter p are respectively given by Sp = ∂R0

∂p and ep = ∂R0
∂p

p
R0

. That is, the

elasticity indices is given by ep = Sp
p
R0

[19, 17].

(a) China (b) Ethiopia (c) Brazil

Figure 6: The visual representation of the elasticity indices of R0 with respect to the estimated
parameters of countries China, Ethiopia and Brazil cases.

The graph in fig. 6 shows that in all countries the infection rates β1, β2, the recruitment
rate Λ, the modification parameter ν and shedding rate of the virus from the infected class to the
environment ξ has the highest elasticity indices with COVID-19 being positively correlated to R0.
An increase in these parameters will increase the spread of COVID-19 pandemic. The recovery
rates θ, γ, the natural and virus-induced death rates µ, δ, the threshold value of the force of
infection λ0, the pathogen concentration in the environment K and the virus decay rate in the
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environment ψ have a negative correlation of R0 implying the virus decreases with an increase of
these parameters.

(a) All state variables (b) Susceptible with different initials

Figure 7: The trajectories of state variables for R0 = 0.2552, which is less than one.

In Figure (7a), we observe that for the basic reproduction number R0 < 1, all solutions
curve goes to the disease-free equilibrium point. These indicate that the disease-free equilibrium
point is locally and globally asymptotically stable for the values of R0 < 1. In Figure (7b) with
R0 < 1 and different initial conditions for the susceptible population, all trajectory goes to the
equilibrium point Λ

µ which indicates its stability.

Figure 8: Trajectories of state variables for R0 = 8.3636, which is greater than one.

In Figure (8), we observe that for the basic reproduction number R0 > 1, all solutions
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curves goes away from the disease-free equilibrium point. These indicate that the disease-free
equilibrium point is unstable for the values of R0 > 1, and the solutions will go to the endemic
equilibrium point.

4.4 Predictions

One of the most important applications of the dynamical system is to predict the future spread
of the disease in the population. Here we predicted the number of active infections, recoveries
and deaths for the countries Ethiopia, Brazil and South Africa for the next 45 days. In Figure 9,
the fitted areas are similar to the Figures (3-5) while the predicted areas show the possible values
of cases (active, recovered and death) up to September 30, 2020.

(a) Ethiopia (b) Brazil (c) South Africa

Figure 9: Predictions of active cases, recovered cases and Death Ethiopia, Brazil and South Africa
on September 15, 2020.

5 Conclusion

In this paper, we have proposed and described a Susceptible-Exposed-Infected-Recovered-Death
model with the addition of environmental infection with the virus for the transmission dynam-
ics of the COVID-19 pandemic. We show the validity of the model by proving the existence,
positivity and boundedness of the solutions. We then calibrated our mathematical model with
a data-driven analysis, with the data coming from epidemiological results of WHO situation re-
ports from 1 − 192. We programmed, simulated, and fitted the model with the observed data
using Matlab. The estimation technique we use and the simulated results show a promising result.

For the disease-free equilibrium point, both the local and global stability analysis are proved
and the result shows that the DFE is locally as well as globally asymptotically stable if R0 < 1
and unstable if R0 > 1.

The parameters are estimated using the combination of least square and Bayesian estimation
techniques. According to our estimation, the model parameters vary from country to country as
the case of the spread of virus varies accordingly. The sensitivity analysis on the countries show
the infection rates β1 (human to human) and β2 (from the infected surfaces or environment) have
high positive impacts for the spread of COVID-19. The threshold value of the force of infection
for a population λ0, the recovery rates θ, γ and the virus decay rate in the environment ψ have a
negative impact on the spread of the virus. We have also observed that high numbers of people
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with knowledge about the virus, that are practicing the prescribed self-protective measures can
slow down the outbreak.

It is recommended for individuals to increase their behaviors about the pandemic by following
WHO recommendations such as using a face mask, practicing social distancing to decrease human
to human transmission of the virus and washing their hands and infected surfaces with soap and
alcohol-based sanitizer; which can decrease the transmission of the virus from the environment
to humans and from infected individuals to the environment. It is also important to create
awareness, disseminate information and change behavior of individuals to keep themselves which
can reduce the pandemic threshold of the infections.
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