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Abstract

We propose a novel Timed Intervention exended SEIR model for
predicting the evolution of the Covid 19 Pandemic in the USA. The model
can, by sparameter, assignment, be reduced to the model of Peng et al,
which appeared in February, 2020 (Reference [2]). Novel aspects of the
proposed model include

1. Formulation of a ”Protected” population P , which can be viewed as
a ”Sheltered in Place”, unexposed population which, starting at time
t = τP , builds up and stores a reservoir of unexposed Population;

2. This ”Protection Intervention” provides the basis for a second Timed
Release Intervention: on receiving a ”reopening signal” at time t =
τR, this second intervention initiates a release of this stored popula-
tion back into the general population S.;

3. Selection of model parameters to optimize the approximation of the
model up to the present, and then projecting simulation of the model
based on the value thus obtained 100,200, 365, and 730 days into the
future.

This model shows excellent qualitative results and quantitative results
that are good, considering the chosen nationwide scope. These results
compare favorably to University of Washington IHME [5] projections, as
published Daily on the Worldometers.info website. The qualitative and
quantitative behavior of all 7 state variables S, P,E, I,Q,R,D will be
illustrated and discussed, in this and future further Intervention cycles1

1”How long, I wondered, will this thing, last?
Lyric from ”A Foggy Day” by George and Ira Gershwin
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1 Introduction

The pandemic has led to world wide burst of data science, modeling and predic-
tion research, much of which focuses on extensions of the dynamic SIR model
of Reference [8], developed for modeling the Spanish Flu pandemic of 1917-18,
which was exacerbated by the trench warfare of WW1. Some recent relevant
academic research has been reported in References [2], [6], and [7]. Here we
propose an extension of Reference [2].

1.1 Reported Pandemic Data

When the Pandemic began it was hard to avoid following the data reported
daily by the CDC, Johns Hopkins University (arcGIS world maps) [5] (tn the
USA Covid-19 first took hold in Seattle). Later, the www.Worldometers.info,
and University of Washington IHME (as quoted on Worldometer) became go-to
sources of data. The data in this paper is recorded daily into a cumulative CSV
file with 3 fields: Total Cases CCases, Active cases ACases, and Deceased
cases CDeaths. Recovered Cases RCases are computed from the subtraction
RCases = CCases−ACases− CDeaths.

In Figure 12 is shown the daily record of statistics often emphasized in these
data sources. At the left is shown the daily Confirmed Case Count Per Day, and
Deaths per Day scaled up by a factor of 10. Annotations are never scaled. On
the right is shown the daily Death Counts per Day. Note ”per Day” data must
be computed from the difference between consecutive values, thus introducing
noise. These noisy Counts per Day data have been smoothed by fitting 15-
knot Natural B-Splines3. The data covers the interval March 3 (Day 0) to
today, August 20 (Day 165). The smooth blue curve is an example of Gaussian
Modeling, as discussed below in Section 3.4 below.

Figure 2 demonstrates the primary motivation for developing the Timed In-
tervention Model. At the left, the Confirmed Cases per Day data show the
alarming rise observed between Day 0 and Day 43, as well as the equally alarm-
ing second upsurge, which began around June 15 (Day 105).

The waveforms appear to have 3 separate phases. The first for t < τP ≡ 43
could be called a ”Denial” Phase. Then, in the second phase, for τP < t ≤ τR ≡
105, the Deaths per day declined gradually. Finally the data turned sharply
upward again. To borrow a term from the financial sector, this could be called
a ”Correction Phase”. The third Phase, for t > τR, looks like another ”Denial”
phase. The classical Predator-Prey models of the Lotka-Volterra Equations do
not show such nuanced three-phase behavior. So, the search began for a model
that does. After a few failed attempts, the model of Equation 1 and Equation 4
was settled upon.

To be especially noted is the similarity in the shape of this curve to that of
the spline approximation to the noisy data on the right of Figure 1.

2The path to the figures is /document/png.
3copied from a StackOverflow post by np8
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Note also in Figure 2 that a fourth phase is also indicated for t > τP2. This
phase will be investigated in a subsequent report.

Our dynamical pandemic model is represented by the following state equa-
tions:

Ṡ = −β I(t)S(t)
N − αS(t) + φ(t− τP ) = Susceptible Population

Ṗ = αS(t)− φ(t− τR) = NotSusceptible Population

Ė = β I(t)S(t)
N − γE = Exposed Population

İ = γE − δI − (ρ+ ν)I = Exposed Population

Q̇ = δI − (λQ)− κQ)Q = Quarantined

Ṙ = λQQ+ νI = Recovered

Ḋ = κQD + ρI = Deaths from Pandemic
(1)

This definition is completed by the specification of the first and second in-
tervention parameters α(t) and φ(t), given in Equation ??.

α(t) = alphaG, t < τP
α(t) = alphaP , τP ≥ t < τR
α(t) = alphaR, t ≥ τP

(2)

A similar definition applies to the Second Intervention Parameter φ:

φ(t) = φG, τP ≥ t < τR
φ(t) = φR, τR ≥ t

(3)

In this paper, N is regarded as fixed and γ = beta/RN0 as derived, leaving
just 14 assignable parameters in Equation 4. For any given simulation run,
the model is defined by the values assigned to these 14 free parameters and
the 7 Initial Conditions, so there are 14+7 = 21 free parameters in principle.
However, in this paper, the Initial Conditions of Equation 6 are used exclusively.
The values shown above are the default values. For reproducibility, any set of
results show in this paper are defined by defining multipliers of these default
values which are stored in the data source.

1 α0 = 0.0172 ≡ Initial S to P Transfer Rate
2 αP = 8.6 ∗ 10 ∗ ∗ − 4 ≡ Protected S to P Transfer Rate
3 αR = 0.0172 ≡ Released S to P Transfer Rate
4 β = 0.133 ≡ Infection Rate
5 RN0 = 10 ≡ Basic Reproduction Rate
7 τR = 105 ≡ Timed Release Delay Parameter
8 φG = 0.03 ≡ Protection Rate prior to Second Intervention,
9 φR = φG ∗ 10 ∗ ∗.5 ≡ Protection Rate after Second Intervention,
10 δ = 0.0199 ≡ Rate of Exposure
11 λ = 1.58 ≡ QuarantinedRecovery rate
12 κ = 5e− 7 ≡ QuarantinedMortality rate
13 ρ = 0.001 ≡ Unquarantined Recovery Rate
14 ν = 0.02 ≡ Unquarantined Mortality Rate.

(4)
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(a) Recovered Cases and Deaths,
with horizontal bar lines indicating
unscaled source values

(b) Simulated No Intervention Val-
ues (Blue) and Noisy Deaths per
Day

Figure 1: Views of Input Data

Figure 2: Noisy and Smoothed Cases per day Data showing the 3 Phases induced
by the ”Interventions” at t = τP and t = τR.
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Note in Figure 2 that in the 3rd phase, the Cases per Day has peaked and
is currently falling, resemblmg a repeat of the first phase

1.2 Proposed Timed Intervention Model

This model is conservative in the sense that it assumes the total population is
constant. That is,

Ṡ + Ṗ + Ė + İ + Q̇+ Ṙ+ Ḋ = 0,
S + P + E + I +Q+R+D = N,
S(t), P (t), E(t), I(t), Q(t), R(t), D(t) ≥ 0, ∀ t.

(5)

Differences between this model and that of Reference [2] are apparent in the
definitions of and Ṡ and Ṗ , and in Ṙ, and Ḋ. These changes enabled the model
to obtain excellent qualitative and, in some respects, good quantitative results
for the USA as a whole. It should be noted that each individual term in the
right hand sides of Equation 1has an equal and opposite term in a subsequent or
preceding equality. Consequently, we have Equation 5, and the total population
is fixed by Construction.While fixed total population is not strictly true in the
USA, this is an important aspect of the model.

Of special interest are
The proposed model assumes that re-infection cannot occur.
Also, we note that this model includes novel direct transitions. The (ν,and

ρ) parameters control transitions from the Infected state I to the Recovered
state R and Deceased state D. These transitions and parameters are not found
in Reference [2],

Since Equation 4 defines 14 free parameters, that the parameter space is is
14-dimensional (or 120 if we include the initial conditions for the 7-dimensional
State Space). The essence of modelling is to solve the Parameter Identification
Problem: Find the point in the 14 (or 20) dimensional parameter space for which
the model results best fit real world data. To solve this rigorously, a second
round of research is proposed: find the optimal 13(21) parameter assignments
using the approach of Refreence [1]

Equation 1 specifies a set of 7 ordinary differential equations In which the
Ė and Ṡ equations have a bilinear form which first appeared in Equation 29 of
Reference [8]. More recently, they are also known as Lorenz Equations [3], who
used them to model compartmental layers of the atmosphere. Such equations
are known to exhibit unstable, and even chaotic, behavior. Fortunately, in our
limited exploration of the 11-dimensional parameter space, no exotic behavior
has been observed. Perhaps, the last 4 linear equalities constitute a dissipative
damping effect which inhibits oscillatory behavior.

The odeint function from the python3 SCIPY distribution was used to
solve these 7 ordinary ordinary differential equations over the closed time inter-
val t ∈ [0, T ], where t represents time in days, and T is the Final time in days.
Note that since we extend the model 100 days into the future, the current time,
denoted Today, is near the middle of the interval t ∈ [1, T ], In this simulation
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only unit time steps are considered in displayed data from the model Of course
th odeint function takes arbitrarily smaller steps as required. Fortunately, for
the interesting part of the parameter space, the solutions of these equations
are well-behaved, and have been used frequently as epidemiology models for
over a century, including multiple times this millenium. Computationally, this
simulation is easy, even trivial.

The above model has evolved significantly from the Covid-19 model de-
scribed by Peng et. al in Reference [2] (February, 2020). The chosen scope is
the USA as a whole, in which our form of government inhibits the imposition of
a uniform approach to controlling the pandemic. It is proposed to treat individ-
ual states of interest, e.g. Colorado, California, and New York, etc, in a third
phase of research in which we will apply an instance of the above model for each
hot spot state, as well as the USA as a whole. This will be referred to as the
distributed [7] model. Computational experience leads to the expectation that
even a distributed model including all 50 states and the District of Columbia as
well as the entire USA is still computationally practical.

2 Summary of Prior Published Work on Covid
Modeling

reading the papers cited above, research commenced,and after getting some
initial results, a search of the literature for other work on Covid-19 modeling
was begun. Early discoveries included Reference [4], and Reference [6] The first
of these came out before the Pandemic started in China. It is focussed on
control theoretic and Chaotic analysis in the phase space. As discussed above
such exotic behavior does not arise in our numerical work. After Covid-19
first broke out in December 2019, the work of Reference [2] came too light and
published data from Johns Hopkins University, the CDC, and Worldometers
was followed.

The title of Reference‘[6] is worthy of note : ”The unreasonable effectiveness
of simple models”. Its authors state categorically that modeling the Pandemic
must be some form of SEIR approach. And yet early results contradicted the
direct applicability of this approach, which leads to more or less symmetrical
results well modeled by Gaussian and/or Logistic (integral ofGaussian) func-
ticns. With this approach important populations reach their peak, and then fall
toward extinction, far too rapidly to fit measured data. The ”Dr. Chris Murray
Model” [5] doesn’t have this problem, but despite being used and quoted widely,
its details have not been published.

It was felt that additional numerical work was needed, with timely dissemi-
nation of the modeling approach. In particular new and publushed projections of
Mortality were still needed. Alarmed by the early data, the project felt urgent,
even more urgent due to alarming recent data. In Reference [7], A Distributed,
Difference equation approach Model of Community Spread was used that was
sufficiently general to include re-opening and mask rules. Results were given for
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total deaths nationwide as well as on a state by state basis. This work has been
ahead of the curve in predicting the sharp uptick in National and State Total
cases.

3 Numerical Results

Numerical studies required the choice of the 7 initial Conditions and the 14 free
parameters. In the sequel only the initial conditions

S = N, P = 0, E = 50000, I = 2500, Q = 0, R = 0, D = 0 (6)

were employed.

3.1 Parameter Sensitivity

Initially, the parameter values corresponding to Reference [2] were chosen, and
then modified as discussed below. Ideally the sensitivity of model results to all
13/20 model parameters would be fully characterized. For now, the sensitivity of
model results to results to variations of a just two parameters the Reproductive
Number, defined here to be

R0 ≡ βγ/δ,
And the second Intervention parameter φ, discussed in the sequel. After trying
variations 20,15,10, and 5 for parameter, R0 = 10 gave the best fit to source
data. For this value, Some variations of κ were tried And a value half that of
Reference [2] was chosen. The sequel describes extensive results for 4 different
values of the Reproduction Number RN0. Similar data is given for 100 day
projection results.

3.2 100 day Projeiction Results with No Interventions

For these chosen values, the results are illustrated in Figure 3 .
In order to compare these results to source data, the simulated Recovered

and Deaths per Day populations for and just the first 154 days up to the current
date, and for the chosen parameters is plotted in Figure 3.

3.3 Effect of Timed Protection and Release Interventions
on Susceptible and Protected populations.

Figure 4 shows model results for the waveforms of the Susceptible and Protected
Populations S and P , including both interventions. On the left it can be seen
from Equation (1) that prior to the Protection Intervention, the susceptible
population is drained by both the linear term and the powerful bilinear term
in the equation for Ṡ. However, after the first Intervention, it is drained much
more slowly due the intervention term φ0P (t).

Until the release of the Protected, Population P builds up correspondingly,
and consequently drains S. After the release, S is resupplied from P , so P is
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(a) Exposed. Recovered snd De-
ceased Populations I,R,and D.

(b) Infected, Recovered snd De-
ceased Populations I, Ḋ and ḊSG

Figure 3: E, I, R D, 100 and 200 Day Projections; Ḋ no Projection,with No
Intervention and RN0 = 10.
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(a) Projection of Susceptible Popu-
lation S after Timed Release.

(b) Projection of P after Timed Re-
lease.

Figure 4: Projection of Susceptible and Protected Populations S and P .

drained until t = T On the right is shown the corresponding waveform for the
Protected Population P . Note the interesting twin inflections in P .

Qualitatively it can be seen that S and P are (roughly) complementary, that
is, S ∼ N − P . Consequently in the sequel focus is mainly on P .

Also, note that there is still interesting behavior beyond the end of a 100
Day Projection. Hence 200 Day Projections are adopted in the sequel.

3.4 Gaussian Modeling

Early in the 6-month course of research it was noted that many derived popu-
lation statistics to date can be accurately represented by Gaussian Approxima-
tions, for example, the no intervention simulated waveforms for E and I.

When 100- and 200-day Projections were added, the simulated solution of
the above 7 differential equations became distinctly tri-modal in accordance with
the initial Shelter in Place Orders, which effectively ended the Denial Phase,
followed by apparently premature Re-opening and Easing of mask restrictions.
Apparently, this leads to a second Denial Phase. It is conjectured that the
future of the Pandemic, could be Cyclical, that is, a convergent series of Denial,
Correction phases. On this somber view the Pandemic could be with us for
years. The conditions for which this cyclical behavior can occur are discussed
in Section 4.

For large populations, the law of large numbers declares that for any random
variable representing a property of a single member of the population, no matter
how it is distuributed, the population as a whole for that random variable will
have a normal distribution of that property. As we showed in Figure 3, E and I
appear to be normally distributed, that is, show (almost) Gaussian waveforms
with parameters mu and sigma.. However it is to be noted that after the
maximum, the value of sigma appears to have increased. This is a salient
feature of Figure 3 discussed above, and in Section‘3.2 below.

For source populatioins R and D (not yet shown) a logistic (error) func-
tion (Integral of Gaussian) is to be expected, since these states and their dis-
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(a) Modeling the Projected Infective
(I) and Exposed (E) Populations

(b) Double Gaussian Modeling of
the first and second phases of the
Deaths per Day to data.

Figure 5: Examples of Gaussian Modeling.

tributions, are cumulative. From a probabilistic perspective, the parameters
α, β, γ, δ, λ, κ can be interpreted as conditional probabilities.

When we look at the overall response of the model, including the last 100
or 200 days of Projection, we see that the Timed Release effect adds a second
mode in a bimodal response, as shown at the left of Figure 5, At the left,
projected data for E and I,from late in our mode simulation is shown in solid
lines, whereas the Gaussian model prediction is shown in dashed lines. The
vertical bars show the fitted values for the Gaussian means muE and muI. The
fit is excellent.

At the right of the figure, the Deaths per Day day up to the current date
only (so no simulation is involved) is considered. For this case a double, or
split, Gaussian is employed. This means one Gaussian is fit to the first phase,
or rising part of the curve. For the second phase, a second Gaussian with same
maximum value, but a larger standard deviation sigma was chosen to match the
slow decline of this phase. This gives an excellent fit until the onset of the third
phase, after which the Deaths per Day data turns up again and diverges sharply
after the Timed Release phase is entered. However, since reported Deaths is a
lagging indicator, we expect the difference to increase significantly. We observe
that the Exposed Population is constant or even a decreasing Gaussian tail.

Shown in the blue waveform at the right of Figure 5 Part (b), is an example
of modeling with a split Gaussian. This means that a rising Gaussian is fit to
the smoothed data up to the maximum to date (day 43, or April 19), and also
a separate, falling Gaussian to the falling data This produces an excellent fit,
at least prior to the Timed Release. After that , the falling Gaussian diverges
markedly from the source data which has turned upward, suggesting that a
second Protection intervention might be called for.

Finally, note the similarities and differences between Figure 5 Part (b) and
Figure 3 Part (b) (bottom row).
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3.5 200 day Projection Results with Both Interventions

Figure 6 , gives summary results for the 200 Day Projections with both Protec-
tion and Release Interventions. The top two rows show the behavior projected
200 days into the future for the Populations S and P . On the left is shown
Projections for the case RN0 = 20, and,on the right, for RN0 = 15.
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(a) RN0 = 20.

(b) RN0 = 15.

Figure 6: S,P ,E, I,D,Ḋ With Both Interventions RN0 = 20, 15.

12

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.23.20180174doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.23.20180174


3.6 Long Term effects of Second Intervention Parameter.

As noted above, N is fixed and γ = beta/RN0 as derived, leaving just 13
assignable parameters. Here the default parameters of Equation 4 are chosen,
except for the 9th parameter phi, which is varied. For each experiment, storage
of each used parameter set ensures that results are reproducible, The values
chosen for examining the effect of variations in the 9th parameter φ (in bold)
are used to obtain the data on the left of Figure 8. In the first variation, the
value of φ has been reduced by a factor of 10**.5 from the default value, shown
in Figure 7

1 α0 = 0.0172 ≡ Initial S to P Transfer Rate
2 αP = 8.6 ∗ 104 ≡ Protected S to P Transfer Rate
3 αR = 0.0172 ≡ Released S to P Transfer Rate
4 β = 0.133 ≡ Infection Rate
5 RN0 = 10 ≡ Basic Reproduction Rate
7 τR = 105 ≡ Timed Release Delay Parameter
8 φG = 0.03 ≡ Protection Rate prior to Second Intervention,

9 φR = φG
√
10 ≡ Protection Rate after Second Intervention,

10 δ = 0.0199 ≡ Rate of Exposure
11 λ = 1.58 ≡ QuarantinedRecovery rate
12 κ = 5e− 7 ≡ QuarantinedMortality rate
13 ρ = 0.001 ≡ Unquarantined Recovery Rate
14 ν = 0.02 ≡ Unquarantined Mortality Rate.

(7)
Similarly, to obtain the data on the right of Figure 8, φ has been reset to

the default value φG
Both columns of this figure show some remarkable features–instead of falling

after the Timed Release, P rises on the left and is rendered almost constant on
the right. This results in P being only slightly reduced at the final time tF .
The implication of this shift is evident in the Waveforms for E,I, D, and Ḋ.

The effects of the final two variations are illustrated in Figure 9. The results
are similar overall but have some subtleties which warrant further study.l

3.7 Survivors

It is also interesting to consider the question: ”How many Survived in this
Simulation? Assuming that re-infection is impossible, the R population has
definitely survived. To answer this question it was decided that the S and P
Populations should be considered to have survived, because of the likely, but
eventual, emergence of a successful vaccine. Thus the survivors are defined by
the sum

Ω = R+ S + P +Q. (8)

Note only the Deceased are excluded. Four scenarios are considered here, which
correspond to the Columns of Fig 10 and Figure 11. In each scenario Ω(t) is
compared to R(t). The results are given Figure 10 and Figure 11. Note that in
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H

(a) RN0 = 10.

(b) RN0 = 5.

Figure 7: S,P ,E, I,D,Ḋ With Both Interventions RN0 = 10, 5

14

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.23.20180174doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.23.20180174


(a) S,P ,E,I,D, and Ḋ: φ = .03 ∗
3.162 (b) S,P ,E,I,D, and Ḋ: φ = .03

Figure 8: Effect of Varying the 9th parameter: φ = φG ∗ 1.162, φG.
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(a) S,P ,E,I,D, and Ḋ: φ = .03/10∗
∗0.5 (b) S,P ,E,I,D, and Ḋ: φ = .03/10

Figure 9: Effect of Varying the parameter φ = phiG/1.162, φG/10.
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(a) Survivors and Just Recovered
Populations: φ = .03 ∗ 10 ∗ ∗0.5

(b) Survivors and Just Recovered
Populations: φ = .03 ∗ 1

Figure 10: Survivors Ω(t) and Recovered R(t) for φ = φG ∗ 10 ∗ ∗0.5 (left) and
φ = φG.

(a) Survivors and Just Recovered
Populations: φ = .03/10 ∗ ∗0.5

(b) Survivors and Just Recovered
Populations: φ = .03/10

Figure 11: Survivors Ω(t) and Recovered R(t) for φ = φG/10 ∗ ∗0.5 (left) and
φ = φG/10.

these two scenarios, at the end of simulation there are 2.71e8 (left) and 2.5e8
survivors (right) (and increasing). Figure 10, Part (a), shows that the Survivor
Count is maximum at the final time t = T , but all projected values exceed 220
million. Although in this future projection the plot of R(t) is shown scaled up
by a factor of 10, the actual unscaled final value is shown to be 2.68 million.
Part(b) shows on the order of a factor of 2 decline in the final value of the
Recovered Population R, but only a marginal decrease in the final count of total
survivors. Figure 11 Shows similar results. These last two figures suggests that
the survivors are maximized by maximizing the Second Intervention parameter
φ

4 Conclusions

We have proposed and studied a Timed Intervention model and applied it to the
population of the USA as a whole. It was shown that this model can predicts
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a 3 (or more) phase dynamic response over a wide range of conditions and
parameter sets The dynamic behavior of our SPEIQRD model is explored in
detail and found to be quite rich in producing waveforms of interest.

A salient finding of this study is its relatively conservative projection of
the cumulative current death toll in the USA–about 168000, to date, for a
parameter set which leads to Death per Day data consistent with reported
values to date. However, the data in the left column of Figure 7, second figure
from the bottom, predicts 5.5 million deaths, 200 days out. The USA evidently
needs coordinated intervention to avoid these catastrophic scenarios.

The data suggest that the calamitous rapid rise and fall of Predator-Prey
models cannot be eliminated, but can, with the proper intervention cycle, be
pushed into the future. Unfortunately, the proper intervention might well be a
much more rigorous lockdown than yet attempted.

The sensitivity of the results to variations in the Reproduction number R0

and the Second Intervention parameter φ were analyzed. This study produced
some striking 3-Phase results.

A definition of the Survivors of a given Pandemic was given and analyzed.
It was shown that Survivor Count is maximized if φ is maximized.

Further model development should include:

1. A fully optimized solution to the Parameter Identification problem defined
above is particularly needed–until this is done, results cannot be said to
be characteristic of the model, rather than of the parameter sets chosen;

2. Inclusion of data for an extended projection of 730 days so the implied
long term maxima would be fully revealed;

3. Formulation of model behavior for 2, 3, or more future Intervention cycles,
where the ith cycle consists of a Pair of Interventions at times τ iP , τ

i
R;

4. For longer term future work it is anticipated that the model will be ex-
tended to a distributed model which includes the USA, the hot spot states,
and other states of special interest.

Also, we have given complete simulation and/or projected waveforms for all 7
of the component populations focus more narrowly on Vital statistics. Thus our
model could be fitting more data in the parameter identification phase
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