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Abstract 85 

Introduction 86 

 Emerging infectious diseases, especially the coronavirus disease identified in 2019 87 

(COVID-19), can be complicated by a severe exacerbation in the Th17 cell-mediated IL-17 88 

proinflammatory immune storm. This enhanced immune response plays a major role in 89 

mortality and morbidity, including neurological symptoms. We hypothesized that countering 90 

the cytokine storm with thiamine may have therapeutic efficacy in lowering the Th17 cell 91 

proinflammatory response. We used an in vitro study and corroborated those results in disease 92 

controls (DC). We developed an effective dose range and model for key pharmacokinetic 93 

measures with the potential of targeting the cytokine storm and neurological symptoms of 94 

COVID-19.   95 

Study Participants and Methods 96 

 We investigated the effect of a three-week 200 mg dose of thiamine in lowering the 97 

Th17 response in sixteen DC (proinflammatory origin due to heavy alcohol drinking) patients; 98 

and eight healthy control/volunteers (HV) as a pilot clinical-translational investigation. To 99 

further investigate, we performed an in vitro study evaluating the effectiveness of thiamine 100 

treatment in lowering the Th17 proinflammatory response in a mouse macrophage cell line 101 

(RAW264.7) treated with ethanol. In this in vitro study, 100 mg/day equivalent (0.01 µg/ml) 102 

thiamine was used. Based on recent publications, we compared the results of the IL-17 103 

response from our clinical and in vitro study to those found in other proinflammatory disease 104 

conditions (metabolic conditions, septic shock, viral infections and COVID-19), including 105 

symptoms, and dose ranges of effective and safe administration of thiamine. We developed a 106 
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dose range and pharmacokinetic profile for thiamine as a novel intervention strategy in COVID-107 

19 to alleviate the effects of the cytokine storm and neurological symptoms.   108 

Results 109 

 The DC group showed significantly elevated proinflammatory cytokines compared to 110 

HV. Three-week of 200 mg daily thiamine treatment significantly lowered the baseline IL-17 111 

levels while increased IL-22 levels (anti-inflammatory response). This was validated by an in 112 

vitro macrophage response using a lower thiamine dose equivalent (100 mg), which resulted in 113 

attenuation of IL-17 and elevation of IL-22 at the mRNA level compared to the ethanol-only 114 

treated group. In humans, a range of 79-474 mg daily of thiamine was estimated to be effective 115 

and safe as an intervention for the COVID-19 cytokine storm. A literature review showed that 116 

several neurological symptoms of COVID-19 (which exist in 45.5% of the severe cases) occur in 117 

other viral infections and neuroinflammatory states that may also respond to thiamine 118 

treatment.  119 

Discussion 120 

The Th17 mediated IL-17 proinflammatory response can potentially be attenuated by 121 

thiamine. Thiamine, a very safe drug even at very high doses, could be repurposed for treating 122 

the cytokine/immune storm of COVID-19 and the subsequent neurological symptoms observed 123 

in COVID-19 patients. Further studies using thiamine as an interventional/prevention strategy in 124 

severe COVID-19 patients could identify its precise anti-inflammatory role.   125 

 126 

Key words: COVID-19, IL-17, IL-22, Cytokine storm, Pandemic 127 
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Introduction 129 

 Viral diseases and wide-spread outbreaks have adverse health-related consequences 130 

worldwide.  Emerging infectious diseases (EID) include viral pathogens that have shown higher 131 

incidence of human infection in the past several decades and raise concerns regarding 132 

increased ongoing/future prevalence 1. Coronavirus is recognized as an EID that has become a 133 

challenging and aggressive infection with high morbidity and mortality in humans 2. SARS-CoV-2 134 

(severe acute respiratory syndrome coronavirus 2; causes coronavirus disease [COVID-19]) was 135 

identified in 2019, has become a pandemic, and is a priority healthcare concern in the year 136 

2020 3.  137 

 In viral infections, tissue inflammation is driven by multiple proinflammatory and 138 

immunoregulatory signals 4,5. The pathological progression of COVID-19 has multiple clinical 139 

stages and may present with the cytokine storm syndrome 6 and immunosuppression 7. 140 

Interleukin-17 (IL-17) is a cytokine 8 that is often involved in a proinflammatory response in the 141 

cytokine storm of viral infections 9-11. It can also promote respiratory viral infections 12, tissue 142 

pathology 13-15, and neurological manifestations 16. Th17 cells also produce Interleukin-22 (IL-143 

22), which plays a protective/anti-inflammatory role, and it is dysregulated in several 144 

proinflammatory conditions 17. Thus, a therapy that could alleviate the Th17 mediated pro-145 

inflammatory response 18 might be effective in attenuating the cytokine storm observed in 146 

COVID-19 patients.   147 

 Thiamine, a vitamin and dietary supplement, 19 has anti-oxidant properties 19,20. High 148 

levels of cytokines (for example, IL-1β and IL-6) may occur in thiamine deficient subjects and 149 

can be associated with oxidative stress and inflammation 21,22. Importantly, thiamine 150 
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administration could inhibit production of these cytokines, increase anti-inflammatory activity 151 

23,24, and potentially alleviate neuroinflammatory symptoms of viral origin 25,26. 152 

We tested the efficacy of a three-week thiamine treatment in modulating the Th17 153 

proinflammatory response in a human disease control model of conditions associated with 154 

inflammation. To validate the effectiveness of thiamine in treating the proinflammatory 155 

response from the human study, we conducted an in vitro experiment to test the effects of 156 

thiamine treatment in alleviating ethanol mediated immune dysregulation in a mouse 157 

macrophage cell line, RAW264.7. We investigated the Th17 cells proinflammatory cytokine 158 

response (namely IL-17) in both healthy controls and individuals with high inflammatory 159 

response. This was done to estimate the effects of various doses of thiamine that have shown 160 

efficacy in alleviating the Th17 associated cytokine response. We assessed the 161 

pharmacokinetics of the oral thiamine dosing. Lastly, we also examined the neurological 162 

symptoms of COVID-19 that could possibly be treated with thiamine. 163 

 164 

Study Participants and Methods 165 

Study Participants 166 

This investigation was approved under two large clinical investigations that were 167 

conducted at the University of Louisville (NCT#01809132, HV cohort), and the National Institute 168 

on Alcohol Abuse and Alcoholism (NIAAA) (NCT#00106106, DC cohort) at the National Institutes 169 

of Health (NIH), Bethesda MD. The studies were approved by the NIH Institutional Review 170 

Board (IRB) committee and the UofL IRB (IRB # 12.0427). All DC (disease controls as termed in 171 

this study, who were alcohol use disorder [AUD]) patients received acamprosate (or placebo) as 172 
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part of a larger addiction intervention investigation. All of these patients also received thiamine 173 

as part of the medical management, which is the primary aim of this study. Sixteen age- and 174 

sex- matched male and female alcohol use disorder (AUD) patients (Termed as disease controls 175 

[DC] in this investigation) between 21-65 yrs. of age with both present and past heavy drinking 176 

profile participated as the DC, who were  diagnosed with AUD based on DSM‐IV TR criteria. 177 

They received daily doses of open label thiamine (100 mg twice daily = 200 mg per day) 27 for 3-178 

weeks after completion of the consenting process. DC patients also received standard of care 179 

inpatient medical management, including counseling. Detailed information on subject 180 

recruitment and management can be obtained from several of our previous publications 28-31. 181 

We also included eight healthy controls in this study for comparison with DC. Demographic data 182 

were collected from all the participants. Baseline (HV and DC) and post-treatment (DC only) 183 

blood samples (after the completion of 3-weeks of thiamine dosing) were collected, processed 184 

(for plasma extraction) and frozen at -80°C. They  were subsequently thawed and assayed. 185 

Laboratory Assays and Therapeutic Model on Th17 Inflammation Axis 186 

(1) Cytokine assays 187 

Plasma levels of proinflammatory cytokines, IL-1β, IL-6, and IL-10 were obtained by 188 

multianalyte chemiluminescent detection using Multiplex kits (Millipore, Billerica, MA) on the 189 

Luminex platform (Luminex, Austin, TX), according to manufacturers’ instructions.  190 

(2) Analysis of IL-17 and IL-22 in a set of AUD patients for designing proof-of-concept 191 

experimental model 192 

We performed analyses for IL-17 and IL-22 on human plasma samples to estimate the 193 

Th17 inflammatory response, with the goal of developing an in vitro mechanistic experimental 194 
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model to test the efficacy of thiamine. The plasma levels of IL-17 and IL-22 in eight healthy 195 

volunteers were also included in this study for comparison.  IL-17 and IL-22 were detected in 196 

plasma using Human IL-17A (now called IL-17) High Sensitivity ELISA Kits (BMS2017HS, 197 

Invitrogen) and Human IL-22 ELISA Kits (BMS2047, Invitrogen) per the manufacturer’s 198 

instructions. Results were read on a Spectra Max Plus 384 plate reader and modeled using their 199 

SoftMax Pro software (Molecular Devices, San Jose, CA).  200 

(3) Cell culture 201 

RAW 264.7 cells (mouse macrophage cell line) were cultured in Dulbecco's modified 202 

Eagle's medium (DMEM, Invitrogen), supplemented with 10% fetal bovine serum (FBS) and 1% 203 

penicillin/streptomycin. Cells were seeded in a 24-well culture plate and maintained at 37 °C in 204 

a 5% CO2 incubator for 3 days. The 0.02 µg/mL treatment dose was equivalent to the 200 205 

mg/day thiamine dose (approximate blood AUC = 204 nmol/L 32) given to the patients. Cells 206 

were then treated with thiamine (Vit B1 [VB1] as shown in the Figure 2) at a concentration of 207 

(0.01 µg/mL) for 2 hours (in a preventive paradigm), followed by 80 mM ethanol treatment for 208 

22 hours, for a total of 24 hours of treatment to determine the minimum effective level of 209 

thiamine to reduce the Th17 response. Cells were then washed with PBS and collected with 210 

Trizol reagent for the isolation of RNA. RNA samples were reverse transcribed to cDNA and 211 

used for qRT PCR analysis of cytokine expression (IL-17, IL-22). Cell viability was not affected by 212 

thiamine or EtOH treatment at the doses used in the experiments. 213 

(4) RNA isolation and real-time RT-PCR 214 

Total RNA was extracted from the cells using Trizol reagent (500 µl/well) according to 215 

manufacturer’s instruction (Life Technologies, Carlsbad, CA) and reverse-transcribed using 216 
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cDNA Supermix (QuantaBio, Beverly, MA). Quantitative real-time PCR was performed on an ABI 217 

7500 real-time PCR thermocycler and SYBR green PCR Master Mix (Applied Biosystems, Foster 218 

City, CA) was used for quantitative real-time PCR analysis. The relative quantities of target 219 

transcripts were calculated from duplicate samples after normalization of the data against the 220 

housekeeping gene, mouse 18S. Relative mRNA expression was calculated using comparative Ct 221 

method. The following primer pairs were used:  222 

Gene name Forward sequence 5’->3’ Reverse sequence 5’->3’ 

ms IL-17 ATCCCTCAAAGCTCAGCGTGTC GGGTCTTCATTGCGGTGGAGAG 

ms IL-22 GTCAACCGCACCTTTATGCT CATGTAGGGCTGGAACCTGT 

ms 18S GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 

 223 

Development of the Pharmacokinetic Model for Dose Titration of Thiamine 224 

 We used dosing guidelines for thiamine as mentioned at the Medline Plus 225 

(https://medlineplus.gov/druginfo/natural/965.html#Safety, last reviewed as of August 5, 226 

2020), and from peer reviewed publications from PubMed (https://pubmed.ncbi.nlm.nih.gov/; 227 

[searched and collected until August 5, 2020]). We used available dosing guidelines from 228 

Medline Plus for healthy individuals both for dietary supplementation and vitamin deficiency 229 

status. We also reviewed and incorporated thiamine dose levels (lower and higher range) from 230 

other disease conditions; namely metabolic conditions 33,34, septic shock 35,36,  viral diseases 37-39 231 

and Leigh’s disease40 (Medline Plus: Thiamine). We also included the recorded thiamine dose 232 

levels from the DC group (AUD with Wernicke Korsakoff Syndrome, WKS 41 ; from our clinical 233 

study) as one of the pro-inflammatory conditions.  234 
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We compared the reference range of levels of the Th17 cytokine (IL-17) response in 235 

disease/health conditions in humans as published in the recent findings concerning COVID-19’s 236 

cytokine storm data 42-44. A Th17 proinflammatory response for the potential range of IL-17 237 

levels was also developed for healthy volunteers (HV, from our study cohort), metabolic 238 

conditions 45,46, DC (or alcohol use disorder patients from our study cohort), septic shock 47,48, 239 

and viral infections12,49. IL-17 data on severe COVID-19 patients (as mentioned above) were 240 

collected from the recently peer-reviewed published articles found in PubMed (searched until 241 

August 5, 2020). Doses administered to our DC study cohort, and data from healthy individuals 242 

(HV) were also used in the development of the dose profile. All these data were incorporated in 243 

the predictive regression model for identifying a tentative effective dose range of thiamine 244 

(Figure 3).  245 

The pharmacokinetic response of thiamine was calculated at both the low and high ends 246 

of the dose range described above. The area under the curve and maximum concentration 247 

(Cmax) were established for both blood and plasma for a 10-hour trajectory (Figure 4) using the 248 

indices of thiamine’s in vivo blood pharmacokinetics32. For the derived 79 mg thiamine dosing 249 

(low end), the slopes used to identify AUC in blood were 2.14, and 1.76 in plasma . For the 474 250 

mg thiamine dosing (upper end), the slope used to derive AUC in blood was 1.02, while in 251 

plasma it was 1.09. Similarly, for the 79 mg thiamine dosing, the slope used to derive Cmax in 252 

blood was 0.40, and in plasma it was 0.39. For the 474 mg thiamine dose, the slope used to 253 

derive AUC in blood was 0.14, and in plasma it was 0.18. 254 

Statistical Analysis 255 
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Data are expressed as Mean ± standard deviation (M±SD) in Table 1 as well as in Figures 256 

1 and 2. Two-sided Student’s t-test was used to examine the difference between disease 257 

controls and healthy volunteers at baseline (see Suppl. Table 1 and Fig. 1), and two-sided 258 

Student’s paired t-test was used to examine the changes at baseline versus 3 weeks for disease 259 

controls (Figure 1).  260 

Post-hoc one-sided t-tests were performed for the IL-17 and IL-22 mRNA expression 261 

analyses for the RAW 264.7 cells testing (Figure 2). A pharmacokinetic model for anticipated 262 

therapeutic dosing range of thiamine based on IL-17 ranges in different inflammatory 263 

conditions was constructed using predictive regression computation (Figure 3). Factorial 264 

between-group ANOVA was used to evaluate demographic and cytokine profiles (Table 1). 265 

Statistical significance was established at p<0.05. SPSS 26.0 (IBM Chicago, IL) and Microsoft 266 

Excel 365 (MS Corp, Redmond WA), statistical software R (https://www.r-project.org/), and 267 

Prism GraphPad (GraphPad Software, San Diego CA) were used for statistical analysis, data 268 

computation, and plotting the figures.  269 

Neurological Assessments 270 

We conducted a review on the neurological presentation in COVID-19 and other 271 

relevant viral occurrences of encephalitis (Table 1). We identified and tabulated the 272 

neurological symptoms of COVID-19 and viral encephalitis from the recently published findings. 273 

We also described the neurological symptoms, that are generally treated effectively with 274 

thiamine (Table 1). We used PubMed and Medline Plus for disease references (searched until 275 

August 5, 2020). 276 

 277 
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Results 278 

Demographics and Candidate Proinflammatory Cytokine Profile 279 

 DC group individuals in this study had significantly higher age than the healthy controls 280 

(HV) (Suppl Table 1). However, there was no significant difference in the mean BMIs between 281 

the two groups, and the sex-distribution was also similar between the two groups. Both IL-6 (~6 282 

fold) and IL-1β (~3 fold) cytokines were significantly higher in the DC group (AUD patients) 283 

compared to the healthy controls/volunteers (HV) group. IL-10 was also numerically higher in 284 

the DC group.  285 

 286 

Clinical Findings on the Immune Response of Th17 derived IL-17 and IL-22 Axis Response, and 287 

Thiamine Efficacy and Safety 288 

 To develop a model for thiamine effects on inflammation, we assessed IL-17 and IL-22 289 

cytokine expression (showing proinflammatory and anti-inflammatory effects, respectively). 290 

Both cytokines are produced by the Th17 cells 50. IL-17 concentrations were below the level of 291 

detection in the HV group, but were elevated in the DC group.  An approximate four-fold 292 

decrease was observed in the IL-17 concentration levels (0.09 pg/mL to 0.023 pg/mL) with a 293 

treatment dose of 200 mg thiamine daily (Estimated AUC = 204 nmol/L x hour approximately in 294 

the 10-hr. window) by the end of week 3. IL-22 was significantly decreased in DC group 295 

compared to healthy volunteers and thiamine therapy did not significantly improve levels in 296 

treated DC group individuals. No patients reported any kind of drug related adverse events; 297 

therefore, the safety profile of thiamine administration was excellent at 200 mg daily in this 298 

small pilot group.  299 
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 300 

Experimental Model for Treatment Efficacy of Thiamine on IL-17 and IL-22 Activity 301 

Using these clinical findings of the treatment efficacy of thiamine, we designed an in 302 

vitro experiment using mouse macrophage RAW264.7 cells to validate the effects of thiamine 303 

on alcohol-induced IL-17 and IL-22 expression. The results showed that a low dose of thiamine 304 

(VB1) decreased IL-17 expression in the absence (by 20% approximately) and/or presence of 305 

alcohol treatment (by 25% roughly) (Figure 2a). Importantly, IL-22 expression was upregulated 306 

by thiamine in both the control and ethanol-treated cells. This response in IL-22 expression was 307 

moderately reduced by alcohol but rescued by the thiamine (VB1) treatment (Figure 2b). Half of 308 

the treatment dose (0.02 µg/mL) that was found to be effective in humans was beneficial as a 309 

preventative dose (0.01 µg/mL) of thiamine in this in vitro model.    310 

 311 

IL-17 Dependent Dose and Pharmacokinetic Model of Thiamine 312 

 An IL-17 response dependent dose and pharmacokinetic model of thiamine 313 

administration was developed, based on responses from the pro-inflammatory disease cohorts 314 

and the corresponding thiamine dosing (controlled for by the corresponding values in healthy 315 

volunteers, as a point of reference). This model supported a tentative range of thiamine dosing 316 

for COVID-19 (Figures 3A and 3B), since the IL-17 levels are much higher in COVID-19 than in 317 

the reports from many other proinflammatory disease conditions. Using regression analysis, a 318 

range of 79 mg/day (lower end of dose range) - 474 mg/day (higher end of dose range) for 319 

thiamine administration was found to correspond to a range of 15-40 ng/mL level of IL-17 used 320 

in vitro.    321 
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The pharmacokinetic parameters were: Area Under the Curve (AUC), and Maximum (or 322 

peak) Concentration of a drug (Cmax). These gave a very close estimation of the specific oral 323 

thiamine dose (Figure 4). As expected, plasma values were higher for both AUC and Cmax at 324 

higher doses and were lower at lower doses (Suppl Table 2).  325 

 326 

Assessment of Neurological Presentation of COVID-19, Viral Encephalitis and Therapeutic 327 

Efficacy of Thiamine Administration 328 

 We tabulated the neurological symptoms from the recently published findings on 329 

COVID-19 (Table 1). Severely ill COVID-19 patients presented with various neurologic symptoms 330 

that could be grouped together as: acute cerebrovascular disease; altered mental status; and 331 

musculoskeletal symptoms 51. We also included the neurological presentation commonly 332 

observed in viral encephalitis of non-COVID-19 origin, grouped corresponding to the 333 

presentation of the symptoms of COVID-19.  334 

Lastly, we also tabulated the neurological symptoms that are commonly treated with 335 

thiamine. Several neurological symptoms of COVID-19 and viral encephalitis corresponded well 336 

with the neurological spectrum that is known to be managed effectively with thiamine.  337 

 338 

Discussion 339 

We evaluated individuals with significantly altered IL-17 and IL-22 responses associated 340 

with Th17 cells and found a significant role for a 3-week 200 mg/daily thiamine treatment 341 

regimen in improving the Th17 response in the AUD disease control patient cohort whose 342 

members exhibited a high pro-inflammatory status at baseline. SARS CoV-2 viral challenge 343 
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causes induction of IL-6 leading to altered Th17 responses 52. IL-17 synthesized by Th17 cells 344 

can markedly stimulate neutrophil chemotaxis and may lead to a skewed Th2 immune response 345 

53,54. Results from our AUD control group show the increases in candidate proinflammatory (IL-346 

1β and IL-17), and anti-inflammatory (IL-6, IL-10 and IL-22) cytokines. Changes in IL-17 and IL-22 347 

with alcohol abuse (pro-inflammatory), and thiamine as an anti-inflammatory therapy in our 348 

experiment provided potential proof of concept. IL-1β is a key cytokine initiating Th17 cells to 349 

synthesize IL-17 55, whereas IL-10 suppresses Th17 proinflammatory cytokine production 56. 350 

High IL-6 levels also are associated with Th17 cell proinflammatory activity 52. Thus, under 351 

inflammatory conditions, there is a complex interaction of proinflammatory/anti-inflammatory 352 

responses from Th17 cells. An intervention or prevention that could attenuate the Th17 353 

proinflammatory activity could help ameliorate the consequences of a cytokine storm. 354 

Thiamine deficiency has been reported to promote a proinflammatory response in Th1 355 

and Th17 cells 57.  To examine the role of thiamine in treating inflammation, in vitro testing was 356 

used to mechanistically examine the clinical outcomes.  Our in vitro model showed that 357 

thiamine could effectively lower IL-17 and increase IL-22 mRNA expression in macrophages. 358 

Both our clinical data, and the in vitro studies suggest that thiamine could play a potential role 359 

in attenuating the cytokine storm in patients who have a strong proinflammatory response. 360 

A study using a mouse model showed that IL-17 augments respiratory syncytial virus 361 

(RSV)-induced lung inflammation 58. In that study, immunodepletion of IL-17 before viral 362 

infection resulted in diminished RSV-driven mucous cell hyperplasia and airspace enlargement, 363 

suggesting IL-17 as a potential therapeutic target. Proinflammatory IL-17 production could also 364 

initiate pulmonary eosinophilic response, by promoting proliferation of eosinophils in the bone 365 
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marrow, followed by recruitment and extravasation into the lungs 59. These recent findings 366 

suggest that suppression of IL-17 may be vital to managing viral infections, including COVID-19 367 

and their harmful consequences.  368 

We derived an effective dose range of thiamine that could be administered for 369 

alleviating the Th17 cell proinflammatory response by using the IL-17 concentrations that we 370 

obtained from our AUD patients (termed as DC), levels found in the literature, and levels in the 371 

healthy control (HV) group. Thiamine has been administered as a treatment in other viral 372 

infections 60,61, and has proven effective for some inflammatory conditions and symptoms 62,63. 373 

A well-structured treatment profile of thiamine based on the results of proof of concept in vitro 374 

experiments, and analyses of proinflammatory response-relevant disease conditions support 375 

the potential efficacy of thiamine in ameliorating the proinflammatory Th17 response in severe 376 

COVID-19 patients. Use of preventive as well as interventional dosages show potential in the 377 

management of COVID-19. Thiamine Ctrough is reached generally in 10-12 hours; thus, the total 378 

dose prescribed can be divided into two doses per day. This may lead to fewer AEs or other side 379 

effects. 380 

One recent report identified that 36.4% of the COVID-19 diagnosed patients have 381 

neurologic symptoms, and this proportion was higher (45.5%) among those COVID-19 patients 382 

with more severe symptoms 51. Patients with other viral diseases have also shown clinical 383 

symptoms of beriberi 64, or Wernicke-Korsakoff syndrome (autopsies of 380 people with AIDS 384 

showed Wernicke’s encephalopathy in 10% of the cases) 65, and these conditions are associated 385 

with thiamine deficiency. It is possible that patients with viral infection could have an increased 386 

risk of thiamine deficiency, but this information has remained largely unexplained in viral 387 
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diseases 66, including COVID-19. A potential reason could be that a deficiency in thiamine could 388 

be related to the thiamine transport protein, which can have a general preference for multiple 389 

membrane transport molecules which can function as receptors for candidate viruses 67. The 390 

Th17 proinflammatory response has also been reported in the experimental encephalomyelitis 391 

model 57. Thus, thiamine could be a therapeutic agent to alleviate neurological symptoms of 392 

COVID-19.  393 

Adverse effects (AE) of thiamine are minimal and generally mild. Possible AEs include 394 

nausea, diarrhea, and abdominal pain. Rarely, individuals also suffer serious allergic reactions. 395 

There is no reported drug related symptoms at the 200 mg thiamine dose used in our study, 396 

and there are no reported AEs. A landmark pharmacokinetic study utilizing a 1500 mg 397 

maximum oral dose of thiamine in healthy subjects showed rapid absorption 32. Moreover, 398 

4000 mg thiamine administration showed no to mild AEs when used in children (Leigh’s 399 

disease). Thus, higher doses of thiamine for treatment of COVID-19’s cytokine storm could be 400 

considered a safe therapy. 401 

Our study has several limitations. This is a small study. However, both clinical and in 402 

vitro evidence collectively support the potential of thiamine as a therapeutic agent in 403 

attenuating the Th17 proinflammatory response. We did not test the in vitro/in vivo efficacy of 404 

thiamine in the treatment of COVID-19 or its derivative stimulated Th17 proinflammatory 405 

response directly. We anticipate conducting such in vitro experiments for COVID-19 as a 406 

continuation of this project. Moreover, plasma thiamine levels have not been assessed in 407 

COVID-19. Our study did not have sufficiently large numbers of males and females; thus, 408 

identifying sex-differences was not within the scope of this study.  409 
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In summary, Thiamine has been approved by the Food and Drug Administration (FDA) of 410 

the USA as a prescription product and is considered very safe even at higher doses since it is 411 

water soluble and can be excreted via urine, if in excess 68. Given its robust safety record, we 412 

suggest that thiamine should be considered for COVID-19 treatment studies. 413 

 414 

Tables 415 

Table 1. Neurological symptoms in COVID-19, Viral Encephalitis (Grouped/assorted by the 416 

neurological spectrum observed in COVID-19), showing their proximity in presentation. 417 

Therapeutic effects of thiamine on the corresponding neurological symptoms of pro-418 

inflammatory origin that are also observed in viral infection.  419 

Neurological symptoms 
 

Corresponding 
Clinical Indications COVID-19 Viral Encephalitis 

Therapeutic Effects of 
Thiamine on WKS and 

other Neurological 
Conditions 

Central Nervous System (CNS) Symptoms 

Altered Mental Status51,69 Disorientation70 
Mental Confusion71,72, 
Impaired Memory71, 

Confusion: WKS 
Classic Triad 

Epiphora, Conjunctival 
Congestion, or Chemosis 
(swollen conjunctiva) 73; 
Ophthalmoplegia74 (part 

of MFS) 

Ocular Paralysis75, 
internuclear 

Ophthalmoplegia76-78 

Ophthalmoplegia 
(nystagmus)71 

Ocular: WKS Classic 
Triad 

Ataxia51,79 (part of MFS): 
Movement74, and 

Unstable Walking69,  
Ataxia26,70 Gait Ataxia71 

Ataxia: WKS Classic 
Triad 

Fatigue69, Dizziness and 
Languidness51,69, 

Malaise69, Headache51,69 

Weakness and 
Somnolence26, 

Nausea80 

Lack of Energy/Fatigue, 
Drowsiness, Fainting, 

Sluggishness71; Apathy71 

Generalized 
features 

Cerebral Hemorrhage69, 
Cerebral Infarction69 

Cerebral 
Hemorrhage81, 

Intracranial 
Pressure82 

Hemorrhages71 Cerebrovascular 
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Epilepsy51,83 Epilepsy84,85 
Seizures  (Alcohol 

Withdrawal)86 
Pathophysiological 

Encephalomyelitis: 
Demyelinating 69,87, 

Disseminated88 
Encephalomyelitis89,90 

Demyelination91 within 
Periventricular 

Structures 
Pathomorphological 

Peripheral Nervous System (PNS) Symptoms 

Hypogeusia (low ability to 
taste)51,92-94 

Hypogeusia (low 
ability to taste)95 

Efficacy Not Well-
Established 

Sensory 

Hyposmia (low ability to 
smell)51,93,94,96 

Hyposmia (low ability 
to smell)95 

Efficacy Not Well-
Established 

Sensory 

Nerve pain97 (also in the 
head and face region51) 

Neuralgia98,99 Neuralgia100,101 Neuralgia 

Tachycardia102,103 Tachycardia70,104 

Racing of Heart (faster 
heartbeat), Low Blood 

pressure71, 
Tachycardia71 

Cardiovascular 

Musculoskeletal Symptoms 

Muscle Injury51,105 
Areflexia (part of MFS)74 

Dysarthria26, Nerve 
Impairment106 

Motor impairment107, 
Motor Cortex 
Excitability108 

Motor 

Footnote – WKS: Wernicke Korsakoff Syndrome 109; MFS: Miller Fisher Syndrome 110. 420 

 421 

Figure Legends 422 

Figure 1: Efficacy of thiamine treatment on Th17 cell derived response for IL-17, and IL-22 423 

cytokines. Levels of IL-17 and IL-22 in healthy volunteers (HV) at baseline; and Disease Controls 424 

(DC or [alcohol use disorder, AUD]) patients exhibiting a proinflammatory response (n=16) at 425 

baseline; and anti-inflammatory normalization of cytokines tested after the completion of 426 

three-week (W3) thiamine treatment. A drop in IL-17 coupled with a mild increase in IL-22 at 427 

W3 was observed compared to the baseline levels. BL: baseline, W3: three-week of thiamine 428 

treatment. Data are presented as M±SD. Statistical significance was set as p < 0.05. 429 

 430 
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Figure 2: mRNA expression of IL-17 and IL-22 in an in vitro model of the mouse macrophage cell 431 

line using a potent proinflammatory agent (alcohol), and preventative administration of 432 

thiamine. Fig. 2a: Significant lowering was observed in IL-17 mRNA expression in “EtOH + VB1” 433 

(Bar 4) group compared to the alcohol-treated group (Bar 3).  Fig. 2b: Significant elevation was 434 

observed in IL-22 mRNA expression in “EtOH + VB1” (Bar 4) group compared to the alcohol-435 

treated group (Bar 3). Controls (both Fig. 2a and 2b) show normal anti-inflammatory effects of 436 

thiamine on IL-17 and IL-22 response with thiamine administration. Ctrl: Non-treated controls. 437 

VB1 0.01 ug/ml. EtOH: alcohol treated. VB1+E: thiamine and alcohol treated. Data are presented 438 

as M±SD. Statistical significance was set as p < 0.05. 439 

 440 

Figure 3. PRIMARY: A dose titration by disease and proinflammatory Th17 status model of 441 

thiamine administration with parallel representation of Th17 proinflammatory response in 442 

various groups including healthy volunteers and disease groups with pro-inflammatory 443 

response. Fig. 3A: Linear regression model is predictive for the relation between the low dose 444 

thiamine (Vit B1) range versus low IL-17 ranges based on known observed pairs from different 445 

patients; lower range of vit B1 dose (79 mg/daily) corresponding to lower range of IL-17 (15 446 

ng/ml) in the COVID-19 patients. Dark grey shade depicts higher IL-17 response and lighter grey 447 

shade shows lower IL-17 response in various proinflammatory conditions. Fig. 3B: Linear 448 

regression shows the predictive model for the relation between a higher range of Vit B1 dose 449 

versus a higher range of IL-17 levels, derived from the known observed pairs from different 450 

patients; higher range of Vit B1 dose (474 mg/daily) corresponding to higher range of IL-17 (40 451 

ng/ml) reported in COVID-19 patients. High Range Thiamine Dose: Left Y-axis (primary). Low 452 
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Range Thiamine Dose, Low Range IL-17 levels, and High range IL-17 levels: Right Y-axis 453 

(Secondary). 454 

 455 

Figure. 4. Pharmacokinetics parameters of oral thiamine over 10 hr. (Projected) in whole blood 456 

and plasma. Fig. 4a: Predicted course of Area Under the Curve (AUC) for low values (79 mg/day) 457 

and high values (474 mg/day) of the range of oral thiamine dose in blood and plasma over the 458 

10 hours. Fig. 4b: Predicted maximum concentration of low values (79 mg/day) and high values 459 

(474 mg/day) of the range of oral thiamine dose in blood and plasma over the first 10 hours. 460 

Errors bars show a 5% variability in the pharmacokinetic measures at each dose.  461 

 462 
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