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Abstract4

In the United States, schools closed in March 2020 due to COVID-19 and began reopening in5

August 2020, despite continuing transmission of SARS-CoV-2. In states where in-person in-6

struction resumed at that time, two major unknowns were the capacity at which schools would7

operate, which depended on the proportion of families opting for remote instruction, and adher-8

ence to face-mask requirements in schools, which depended on cooperation from students and9

enforcement by schools. To determine the impact of these conditions on the statewide burden of10

COVID-19 in Indiana, we used an agent-based model calibrated to and validated against mul-11

tiple data types. Using this model, we quantified the burden of COVID-19 on K-12 students,12

teachers, their families, and the general population under alternative scenarios spanning three13

levels of school operating capacity (50%, 75%, and 100%) and three levels of face-mask adher-14

ence in schools (50%, 75%, and 100%). Under a scenario in which schools operated remotely,15

we projected 45,579 (95% CrI: 14,109-132,546) infections and 790 (95% CrI: 176-1680) deaths16

statewide between August 24 and December 31. Reopening at 100% capacity with 50% face-17

mask adherence in schools resulted in a proportional increase of 42.9 (95% CrI: 41.3-44.3) and18

9.2 (95% CrI: 8.9-9.5) times that number of infections and deaths, respectively. In contrast,19

our results showed that at 50% capacity with 100% face-mask adherence, the number of infec-20

tions and deaths were 22% (95% CrI: 16%-28%) and 11% (95% CrI: 5%-18%) higher than the21

scenario in which schools operated remotely. Within this range of possibilities, we found that22

high levels of school operating capacity (80-95%) and intermediate levels of face-mask adherence23

(40-70%) resulted in model behavior most consistent with observed data. Together, these results24

underscore the importance of precautions taken in schools for the benefit of their communities.25
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1 Introduction28

The United States has been the country most severely impacted by the COVID-19 pandemic29

in terms of total reported cases and deaths, with over 28 million reported cases and more than30

500 thousand deaths by March, 2021 [1]. This severity led to social interventions on an unprece-31

dented scale, including restrictions on mass gatherings, bans on non-essential travel, and school32

closures [2, 3, 4, 5]. While such restrictions were initially successful in reducing transmission, the33

subsequent relaxation of restrictions on mass gatherings and movement were followed by large34

increases in notified cases and deaths [1, 3, 6, 7]. By the time the 2020-2021 school year began35

in August, transmission was at its highest point in the epidemic yet in some parts of the US. In36

Indiana, for example, the maximum number of daily cases was around 1,200 by then, which was37

higher than the previous maximum of fewer than 800 in late April [8].38

This context of intense community transmission raised numerous questions about how schools39

should approach reopening for the start of the school year in August [9, 10, 11]. During influenza40

epidemics, school closures have been estimated to reduce transmission community-wide [12, 13,41

14]. In general, schools are seen as key drivers of the transmission of respiratory pathogens due to42

close contact among children at school [15, 16, 17]. However, several factors complicated the effect43

of school reopenings on SARS-CoV-2 transmission. In particular, children and adolescents appear44

less susceptible to infection and are much less likely to experience severe outcomes following45

infection [18, 19, 20, 21, 22, 23]. It is also still unclear what their contribution to transmission is,46

but several studies suggest they can play an important role [18, 24, 25, 26]. There are additional47

economic and social factors to consider, too, such as the economic costs of school closures for48

families that must then stay home from work, and the nutritional benefits of school reopening49

for children who rely on free and subsidized school meals [27, 28, 29].50

Our objective in this study was to explore how different conditions for school reopening during51

the fall semester of 2020 could have impacted the statewide burden of COVID-19 in Indiana.52

Specifically, we focused on the effects of school operating capacity and adherence to wearing face53

masks in schools. This focus was motivated by the fact that Indiana and other US states reopened54

their schools for in-person instruction in August with only minimal interventions of requiring face55

masks and physical distancing in schools, despite uncertainty about the proportion of students56

who would elect to attend in person and the degree to which they would adhere to face-mask57

and physical-distancing requirements. We approached this question with an agent-based model58

originally developed for pandemic influenza [30], which we tailored to SARS-CoV-2 [19, 31, 32,59

33, 21, 34] and applied to a geographically and demographically realistic synthetic population60

representing Indiana. In addition to presenting outcomes across a range of hypothetical scenarios,61

we calibrated our model to data from the fall to assess the plausibility of K-12 school reopening62

as a driver of the observed resurgence of SARS-CoV-2 in Indiana during fall 2020.63
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2 Methods64

2.1 Approach65

Our approach to modeling SARS-CoV-2 transmission was based on the Framework for Recon-66

structing Epidemic Dynamics (FRED) [30], an agent-based model that offers the ability to explore67

the impacts of complex, non-pharmaceutical interventions in a natural way through modifications68

to individual behaviors. Using this model, we simulated the spread of SARS-CoV-2 in Indiana69

using a synthetic population with demographic and geographic characteristics of the state’s real70

population, including age, household composition, household location, and occupation [35]. We71

analyzed the impact of school reopening from August 24 (first day of classes in Marion County,72

the most populous) to December 31, 2020 in the population of Indiana as a whole, as well as in73

students, teachers, and their cohabitants. We quantified impact as the difference in the num-74

ber of COVID-19 infections, symptomatic infections, and deaths between each scenario and a75

baseline scenario, the details of which differed according to which comparisons were of interest.76

2.2 Agent-based model77

Our model was based on a synthetic population of the entire state of Indiana [35], which included78

1.3 million K-12 students, 1.7 million people living with students, and 6.3 million people in total79

(Table S10). Each of these agents visits a set of places defined by their activity space, which can80

include houses, schools, workplaces, long-term care facilities, and various neighborhood locations.81

Transmission can occur when an infected agent visits the same location as a susceptible agent on82

the same day, with numbers of contacts per agent specific to each location type. For example,83

school contacts depend not on the size of the school but on the age of the student and their84

assigned school grade, given that students have a higher number of contacts with students in85

their classroom than with those in other classrooms. Every day of the week, students and86

teachers visit their school, and students are assigned to classrooms based on their age. Given87

that schools are closed during the weekends, community contact is increased by 50% for students88

and teachers on weekends, unless they are sheltering in place [30]. Community contacts are89

modeled as contacts with other agents in the same neighborhood. For both schools and other90

locations, we adopted contact rates for each location type that were previously calibrated to91

influenza attack rates specific to each location type [30, 36].92

Once infected, each agent had a latent period (mean = 3.35 days, standard deviation = 1.1693

d) and an infectious period (mean = 3.7 d, s.d. = 1.2 d) drawn from distributions calibrated94

so that the average generation interval distribution matched estimates from Singapore (mean =95

5.20 d, s.d. = 1.72 d) [33]. The absolute risk of transmission depended on the number and loca-96

tion of an infected agent’s contacts and a parameter that controls SARS-CoV-2 transmissibility97

upon contact, which we calibrated. A proportion of the infections were asymptomatic, with the98

probability of symptoms increasing with age [37, 19, 38] (Table S9, Fig. S4). We assumed that99

these infections were as infectious as symptomatic infections and had identical incubation and100

infectious period distributions [39, 40, 26, 41]. Furthermore, we assumed that children were less101

susceptible to infection than adults, which we modeled with a logistic function calibrated to102
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model-based estimates of this relationship by Davies et al. [19]. We assumed that severity of103

disease increased with age, consistent with statistical analyses described elsewhere [32, 31, 38,104

21].105

Agent behavior in FRED has the potential to change over the course of an epidemic. Following106

the onset of symptoms, infected agents self-isolate at home according to a fixed daily probability,107

whereas others continue their daily activities [42, 43]. This probability was chosen so that, on108

average, 68% of agents will self-isolate at some point during their symptoms. This figure of 68%109

was based on the proportion of symptomatic infections among healthcare workers in the USA110

that developed fever during the course of their infection [43], and assuming that those with fever111

are likely to self-isolate. Agents can also engage in a variety of non-pharmaceutical interventions,112

including school closure, sheltering in place, and a combination of mask-wearing and physical113

distancing. School closures occur on specific dates across the state [44], resulting in students114

limiting their activity space to household and neighborhood locations on those days. Within115

households, agents interacted with their cohabitants on a daily basis. We assumed that agents116

did not wear face masks inside their homes, nor did they isolate from their household members117

if infected. To capture temporal changes in overall mobility and community contact over the118

course of the epidemic, we modeled a time-varying probability of sheltering in place. On days119

when an agent sheltered in place, they reduced their activity spaces to their home only, whereas120

other agents continued with their normal routines.121

We modeled protection from face masks by reducing the probability of transmission when122

an infected agent wore a face mask. Our default assumption followed a median estimate of an123

adjusted odds ratio of 0.3 against SARS-CoV in non-healthcare settings [45, 34]. A meta-analysis124

by Chu et al. [34] included studies in healthcare settings in addition to those from non-healthcare125

settings, but we included only estimates that referred to the latter. The proportion of agents126

wearing face masks in workplace and community settings changed over time, and we assumed127

that agents did not wear face masks inside their households. In addition, students and teachers128

wore face masks according to probabilities specified as part of school reopening scenarios in our129

analysis. Further details about the model are available in the Supplementary Text.130

2.3 Model calibration and validation131

Two of the time-varying drivers of transmission in our model were informed by time-varying data132

inputs. First, we informed the daily probability of sheltering in place with mobility reports from133

Google [46]. In doing so, this sheltering-in-place probability in our model accounts for both the134

effects of shelter-in-place orders and some people deciding to continue staying at home after those135

orders are lifted [47]. Second, we informed the daily proportion of agents wearing face masks in136

workplace and community settings with Google Trends data for Indiana using the terms “face137

mask” and “social distancing” [48]. To inform the magnitude of the proportion of people wearing138

face masks in workplace and community settings, we used survey data [49] on face-mask usage139

from a single point in time.140

The values of nine model parameters (listed in Table S9) were informed by calibrating the141

model to three time-varying epidemiological data streams corresponding to the state of Indiana—142

daily deaths, daily hospitalizations, and daily test positivity at the state level through August143
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10—and to the age distribution of cumulative deaths through July 13. We obtained daily in-144

cidence of reported cases and deaths from the New York Times COVID-19 database [1]. Daily145

hospitalizations and the age distribution of cumulative deaths were obtained from the Indiana146

COVID-19 dashboard [8]. Daily numbers of tests performed in the state were available from The147

Covid Project [50]. To calibrate the model to these data, we first used a Sobol design sampling148

algorithm [51, 52] to draw 6,000 combinations of the nine calibrated parameters. We then calcu-149

lated the likelihood of each parameter combination given the data, and resampled the parameter150

combinations proportional to their likelihoods to obtain an approximation of the posterior dis-151

tribution of parameter values. Additional details about the calibration procedure are described152

in the Supplementary Material.153

To validate the model, we compared its predictions to data withheld from model calibration.154

Specifically, we compared the calibrated model’s predictions of the infection attack rate, both155

overall and by age, to results from two statewide serological surveys undertaken in late April156

and early June [53, 54]. We assessed the model’s success in this validation exercise by visual157

comparison of the model’s predictions with the data, with a focus on overlap between the 95%158

prediction intervals of the model and the 95% credible intervals associated with the empirically-159

derived estimates from the serological surveys.160

2.4 Model outputs161

The main outputs from our model were the numbers of infections, symptomatic cases, hospital-162

izations, and deaths at the state level. For different comparisons, these outputs were examined163

either on a daily basis, cumulatively between August 24 and December 31, or stratified by place164

of infection (school, home, other) or affiliation with schools (student, teacher, none). Another165

output that we examined was the daily reproduction number, R(t), which was calculated in the166

model for each infected agent and averaged across the modeled population. We defined R(t) as167

the average number of secondary infections caused by any agent who was infected on day t—168

i.e., the case reproduction number a la Fraser [55]. Finally, to account for uncertainty in these169

outcomes due to uncertainty in the calibrated parameters, we sampled parameter sets from our170

approximation of the posterior distribution of parameter values.171

2.5 Model scenarios172

2.5.1 Effects of conditions in schools173

To explore how alternative conditions for school reopening could have impacted the statewide174

burden of COVID-19 in Indiana, we performed simulations that spanned a range of assumptions175

about school operating capacity and adherence of students and teachers to face masks while in176

school. We chose to focus on these parameters given that they were two of the major unknowns as177

the state proceeded with its plans for in-person instruction beginning in August 2020. Given that178

students were offered the option of either in-person or remote instruction, we evaluated scenarios179

in which school operating capacity was either 50%, 75%, or 100%. Specifically, this parameter180

represents the daily probability that a student would go to school, such that all students could go181
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to school at some point during the simulation but the average number of students in attendance182

on a given day is determined by the school operating capacity parameter. For each of these183

scenarios about school operating capacity, we also considered scenarios in which the adherence184

of students and teachers to face masks was either 50%, 75%, or 100%. In addition, we considered185

a scenario in which schools reopened normally (100% capacity, 0% face-mask adherence) and a186

scenario in which schools operated remotely (0% capacity, face-mask adherence irrelevant since187

no one in school).188

2.5.2 Sensitivity analyses189

To explore the sensitivity of our results to model uncertainties, we performed three sets of sensi-190

tivity analysis. First, for each of the nine scenarios comprising our primary analysis, we analyzed191

the sensitivity of cumulative infections and the proportion of infections acquired in schools to192

each of the nine calibrated parameters by calculating partial rank correlation coefficients [56].193

Second, we considered the sensitivity of our results to values of two assumed parameters not194

included in the calibration: protection afforded by face masks and the probability of isolation195

given symptoms. This included a total of four scenarios exploring lower and higher values of196

each of those parameters. Third, we considered alternative scenarios about select model assump-197

tions that we regarded as potentially important unknowns about transmission of SARS-CoV-2198

by children. These included scenarios in which asymptomatic infections (which are more likely199

to occur among children) are half as infectious as symptomatic infections, a scenario in which200

children aged 0-10 years have lower susceptibility (0.1), and a scenario in which individuals of all201

ages are equally susceptible to SARS-CoV-2 infection. For each of the alternative scenarios in202

the second and third sets of sensitivity analyses, we re-calibrated the model under that scenario203

and simulated it forward for the fall semester under the nine primary scenarios about school204

operating capacity and adherence to face-masks in schools. These latter two sets of sensitivity205

analyses all focused on cumulative infections statewide between August 24 and December 31,206

2020.207

2.5.3 Retrospective analysis208

To understand what conditions for school reopening resulted in model behavior consistent with209

data from fall 2020, we calibrated parameters for school operating capacity and face-mask adher-210

ence in schools to data from this time period. To do so, we held all other calibrated parameters211

at the values we estimated based on calibration to data from January 1 to August 24, 2020.212

Whereas we used Google mobility reports to drive a time-varying probability of sheltering in213

place during that initial period, we opted to assume fixed levels of mobility from August 24214

through December 31. The main reason for this choice was that the Google data we used for215

the initial period showed a decrease in mobility during the fall, despite an increase in incidence,216

making it difficult to explain the epidemiological data under that assumption. To overcome that217

problem and to make this analysis more directly comparable to our other analyses, we held the218

probability of sheltering in place fixed at either of two levels of mobility during the fall: 1) mo-219

bility remained at summer levels, or 2) mobility increased to pre-pandemic levels. Under these220
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assumptions, we calibrated the two focal parameters about conditions in schools to data from221

the fall using the same calibration procedure as we used during the initial period.222

3 Results223

3.1 Model calibration and validation224

Our model was generally consistent with the data to which it was calibrated, capturing trends over225

time in daily deaths, hospitalizations, and test positivity at the state level (Fig. 1A-C), as well as226

greater proportions of deaths among older age groups (Fig. 1D). Some trade-offs in the model’s227

ability to recreate different data types were apparent, such as a recent increase in hospitalizations228

that the model failed to capture (Fig.1C), likely due to the predominance of data on deaths in the229

likelihood. Similarly, the model underestimated the proportion of deaths in people older than 80230

(Fig. 1B), indicating a possible underestimation of the contacts in this age group in the overall231

community or in long-term care facilities. Even so, the model’s predictions reproduced the range232

of variability in the data, as assessed by the coverage probabilities of its 95% posterior predictive233

intervals (daily deaths: 0.85; daily hospitalizations: 0.93; daily test positivity: 0.95; cumulative234

deaths by age: 1.0). The model was also consistent with data withheld from fitting. Across235

all ages, the model’s 95% posterior predictive intervals of the cumulative proportion infected236

through late April (median: 0.017; 95% CrI: 0.0045-0.051) and early June (median: 0.022; 95%237

CrI: 0.0058-0.069) spanned estimates from two state-wide serological surveys [53] (Fig. 2A). Our238

model’s predictions also overlapped with age-stratified estimates from those surveys (Fig. 2B),239

although it underpredicted infections among individuals aged 40-60 years.240

Calibration of the parameter that scaled the magnitude of SARS-CoV-2 importations [57, 58]241

in our model resulted in a median of 1.30 (95% PPI: 0.50-1.46) imported infections per day from242

February 1 to August 10. To ensure that the model reliably reproduced the high occurrence of243

deaths observed in long-term care facilities, we seeded infections into those facilities at a daily244

rate proportional to the prevalence of infection on that day; this calibrated proportion was 0.037245

(95% PPI: 0.022-0.092). On the opposite end of the age spectrum, our calibration resulted in246

a median estimate of susceptibility among children of 0.346 (95% CrI: 0.311-0.506), compared247

to 0.834 (95% CrI: 0.652-0.946) in adults (Fig. S1). Our calibration resulted in an estimate of248

transmissibility (median: 0.593; 95% CrI: 0.501-0.788) that corresponded to values of R(t) during249

the initial phase of the epidemic in Indiana of 1.73 (95% CrI: 1.11-2.34), which represents an250

average of daily values across the first two weeks of March (Fig. 1A). This estimate is within the251

range of other estimates for R(t) that include the state of Indiana [59, 60]. Driven by a calibrated252

estimate that the proportion of people sheltering in place rose in early March and peaked at a253

median of 32.1% (95% CrI: 28.8-66.9%) on April 7 (Fig. S2A), our estimates of R(t) dropped to254

a low of 0.57 (95% CrI: 0.42-0.71) on April 7 and remained below 1 thereafter (Fig. 1A). Also255

impacting our estimates of R(t) was the increasing use of face masks in the community, which256

we estimated at 53.4% (95% CrI: 46.1-54.0%) as of July 19 (Fig. S2B). Note that this estimated257

distribution of community face-mask adherence does not differ between scenarios and is not the258

same as the level of adherence in schools, which we imposed at different levels depending on the259
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scenario.260

Figure 1. Model calibration to statewide data: A) daily incidence of death; B) proportion of
deaths through July 13 in decadal age bins; C) daily incidence of hospitalization; and D) daily
proportion of tests administered that are positive for SARS-CoV-2. In all panels, blue diamonds
represent data. In A, C, and D, the gray line is the median, the dark shaded region the 50%
posterior predictive interval, and the light shaded region the 95% posterior predictive interval.
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3.2 Effects of conditions in schools261

3.2.1 Effects on statewide burden262

Under a scenario in which schools reopened at full capacity and without any use of face masks,263

our model projected that R(t) across the state as a whole would have increased to 1.72 (95%264

CrI: 1.43-2.17) by mid-September (Fig. 3A). Given our assumption that levels of sheltering in265

place and face-mask adherence in the community remained constant during the fall (Fig. S2B),266

this increase in transmission was driven by infections arising in schools (Fig. 3B). As a result,267

new infections statewide would have risen to levels in the fall far exceeding those from the spring268

(Fig. 3C). Under this scenario, our model projected a total of 2.57 million (95% CrI: 2.36-2.88269

million) infections (Fig. 4A) and 10,246 (95% CrI: 7,862-13,794) deaths (Fig. 4B) from Indiana’s270

population as a whole between August 24 and December 31.271

Under a scenario in which schools went to remote instruction and all children remained at272

home, our model projected that R(t) would have remained near levels from August for the273

remainder of 2020 (Fig. S3A). This was a result of our assumption that sheltering in place274

and face-mask adherence in the community would have remained at their estimated levels as275

of August 13. Under this scenario, transmission would have continued through contacts at276

workplaces, within homes, and elsewhere in the community (Fig. S3B), resulting in a total of277

Figure 2. Model comparison with data withheld from fitting. We validated the model’s pre-
dictions against statewide data withheld from fitting on A) the cumulative proportion of the
population of Indiana infected through late April and early June, and B) the cumulative propor-
tion infected among individuals aged 12-40, 40-60, and 60+. Data are shown in navy and come
from a random, statewide serological survey [53]. Model predictions are shown in gray. In A,
the line and band indicate the median and 95% posterior predictive interval. In B, lines, boxes,
and error bars indicate median, interquartile range, and 95% posterior predictive interval.
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45,579 (95% CrI: 14,651-132,546) infections (Fig. S3C) and 790 (95% CrI: 176-1,680) deaths278

from Indiana’s population as a whole between August 24 and December 31.279

Less extreme scenarios about school operating capacity and face-mask adherence in schools280

also resulted in a wide range of variation in the projected statewide burden of COVID-19 during281

fall 2020. Under a scenario in which schools operated at 50% capacity and achieved 100% face-282

mask adherence, the cumulative numbers of infections and deaths that our model projected were283

similar to projections under a scenario in which schools operated remotely (Fig. 4, Tables S1284

& S5). In general, cumulative infections and deaths statewide in fall 2020 were more sensitive285

to school operating capacity than to face-mask adherence in schools, with the worst outcomes286

projected to occur under a scenario with 100% school operating capacity and 50% face-mask287

adherence. Under this scenario, cumulative infections statewide were projected to have been288

42.8 (95% CrI: 41.3-44.3) times greater than if schools had operated remotely, and cumulative289

deaths statewide were projected to have been 9.2 (95% CrI: 8.9-9.5) times greater (Table S1).290

3.2.2 Effects on risk for individuals affiliated with schools291

Relative to a scenario with remote instruction, risk of infection and symptomatic infection was292

greatest for students (Figs. 5 & S5, left column), with a hundred-fold or greater increase in the293

risk of infection under a scenario with 100% school operating capacity and 50-75% face-mask294

adherence in schools (Tables S2 & S6). The risk of symptomatic disease in school-aged children295

was two-fold lower for children under 10 years of age (Fig. S6). Compared to students, the risk296

of infection was slightly lower for teachers, and much lower for students’ families. Due to their297

older ages, however, teachers and families experienced a much higher risk of death than students298

(Figs. 5 & S5, center & right columns). The highest risk of death was for teachers under scenarios299

with 100% school operating capacity (Figs. 5 & S5, center column). Compared to a scenario300

with remote instruction, the relative risk of death for teachers under these scenarios ranged from301

a 41-fold increase when face-mask adherence was 100% to a 166-fold increase when face-mask302

adherence was 50% (Table S3, S7). Under scenarios with 75% school operating capacity, those303

same relative risks dropped to a four-fold increase when face-mask adherence was 100% and a304

22-fold increase when face-mask adherence was 50%. This again illustrates the overall greater305

effect of school operating capacity than face-mask adherence in schools.306

3.3 Sensitivity analyses307

Our sensitivity analysis of the model’s nine calibrated parameters quantified the partial rank308

correlation coefficient (PRCC) of each of two model outputs: cumulative infections statewide309

from August 24 to December 31, and the proportion of infections acquired in schools. In general,310

these outputs were most sensitive to parameters controlling the age-susceptibility relationship311

(Figs. S7 & S8). Under some scenarios, the minimum susceptibility parameter, which applied to312

young children, had a PRCC as high as 0.6. The transmissibility parameter also had a PRCC313

that high, but only in some scenarios. For example, in scenarios with lower school operating314

capacity, the two parameters most relevant to community transmission—transmissibility and315

face-mask adherence in community settings—had a greater influence on cumulative infections316
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statewide (Fig. S7), given that the contribution of schools to transmission was diminished in317

those scenarios.318

Our sensitivity analysis of parameters for protection afforded by face masks and the proba-319

bility of isolation given symptoms focused on cumulative infections statewide in fall 2020. For320

each alternative value of these parameters, we re-calibrated the model and generated projec-321

tions under our nine primary scenarios about school operating capacity and face-mask adherence322

in schools. In general, the relative effects of differences in face-mask adherence in schools and323

school operating capacity were similar under alternative values of protection afforded by face324

masks (Table S11). However, relative to a baseline with schools operating remotely, the magni-325

tude of the proportional increase in cumulative infections was sensitive to the level of protection326

afforded by face masks. For example, under a scenario with 75% face-mask adherence and 75%327

school operating capacity, the increase in cumulative infections ranged from 23.5-fold to 1.6-fold328

across the range of values of protection afforded by face masks that we explored (adjusted odds329

ratio = 0.12-0.73). Proportional increases in cumulative infections were generally insensitive to330

the probability of isolation given symptoms (Table S12). For example, under a scenario with331

75% face-mask adherence and 75% school operating capacity, the increase in cumulative infec-332

tions ranged from 4.9-fold to 6.9-fold across the range of values of isolation probability that we333

explored (0.5-0.9).334

Our sensitivity analysis of assumptions related to the role of children in transmission also335

focused on cumulative infections statewide in fall 2020. Relative to a baseline with schools336

operating remotely, the proportional increase in cumulative infections was very similar to our337

default assumptions under a scenario with lower susceptibility among children aged 0-10 years and338

a scenario with lower infectiousness of asymptomatic infections (Table S13). This was the case339

for all scenarios about face-mask adherence in schools and school operating capacity, except for340

the most extreme case in which face-mask adherence in schools was 50% and school operating341

capacity was 100%. In that case, our default assumptions resulted in a 42.9-fold increase in342

cumulative infections, whereas the two alternative scenarios resulted in a 26-fold increase. Under343

a scenario with equal susceptibility for all ages, proportional increases in cumulative infections344

were much higher than under our default assumptions (Table S13). Because susceptibility in345

children was higher under this scenario, transmission statewide was much higher when school346

reopened, especially in scenarios with higher school operating capacity (Fig. S9). By the same347

token, prevalence dropped to levels over the summer when school was not in session that were348

much lower than the data suggest (Fig. S10), which raises doubts about the plausibility of this349

scenario.350

3.4 Retrospective analysis351

The model successfully reproduced statewide data from fall 2020 under relatively high values of352

school operating capacity and intermediate values of face-mask adherence in schools (Fig. 6).353

Under an assumption that the probability of sheltering in place in the state as a whole was fixed354

at levels from summer 2020 (Fig. 6, gray), the model calibration resulted in a median school355

operating capacity of 0.88 (95% CrI: 0.8-0.95) and a median face-mask adherence in schools of356

0.6 (95% CrI: 0.4-0.7). Under an assumption that the probability of sheltering in place was fixed357
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at pre-pandemic levels (Fig. 6, red), the model calibration resulted in a median school operating358

capacity of 0.85 (95% CrI: 0.77-0.92) and a median face-mask adherence in schools of 0.61 (95%359

CrI: 0.41-0.75). Overall, there was a wide range of values of face-mask adherence in schools that360

were consistent with the data, and the range of values of school operating capacity consistent361

with the data depended somewhat on face-mask adherence in schools (Fig. 6, bottom left).362
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Figure 3. The impact of school reopening on August 24 under a scenario with 100% school
operating capacity and 0% face-mask adherence in schools. Model outputs shown include: A)
the reproduction number, R(t), over time; B) the proportion of infections acquired in different
location types (colors) over time; and C) the daily incidence of infection statewide over time.
In A and C, the line represents the median, and the shaded region represents the 50% posterior
predictive interval.
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Figure 4. The impact of different scenarios about conditions for school reopening on A) cu-
mulative infections and B) cumulative deaths in Indiana between August 24 and December 31.
Scenarios are defined by school operating capacity (x-axis) and face-mask adherence in schools
(shading). Orange lines represent projections under a scenario of school reopening at full capacity
without masks (solid: median; dotted: 95% posterior predictive interval). Blue lines represent a
scenario where schools operate remotely. Error bars indicate inter-quartile ranges.
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Figure 5. The impact of different scenarios about conditions for school reopening on infections
(top row), symptomatic infections (middle row), and deaths (bottom row) per 1,000 people.
These outcomes are presented separately for students (left column), teachers (middle column),
and school-affiliated families (right column). Scenarios are defined by school operating capacity
(x-axis) and face-mask adherence in schools (shading). Orange lines represent projections under a
scenario of school reopening at full capacity without masks (solid: median; dotted: 95% posterior
predictive interval). Blue lines represent a scenario where schools operate remotely. Error bars
indicate inter-quartile ranges.
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Figure 6. Retrospective analysis of the model calibrated to statewide data from fall 2020.
Under two alternative scenarios about the daily probability of sheltering in place (summer vs.
pre-pandemic mobility level in gray and red, respectively), we calibrated the parameters for
school operating capacity and face-mask adherence in schools to data from August 24 through
December 31, 2020 (blue diamonds). The calibrated model’s correspondence to daily incidence
of death statewide is shown in the top two panels, and values of the calibrated parameters are
shown in the bottom panels.
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4 Discussion363

Our model provides a detailed, demographically realistic representation of SARS-CoV-2 trans-364

mission in Indiana that is consistent both with data to which it was calibrated and to data that365

was withheld from calibration. In contrast to models that rely on assumptions about intervention366

impacts or estimate them statistically [2, 61], our model makes predictions about intervention367

impacts based on first-principles assumptions about individual-level behavior and contact pat-368

terns. Consistent with results from other analyses [2, 61, 20], the inputs and assumptions in369

our model led to a prediction that schools made a considerable contribution to SARS-CoV-2370

transmission in February and early March, prior to large-scale changes in behavior. Extending371

that, a primary result of our analysis is that K-12 school reopening was capable of making a372

considerable contribution to SARS-CoV-2 transmission during fall of 2020, with the degree of373

that contribution dependent on conditions in schools.374

The burden of COVID-19 associated with in-person school operation was predicted by our375

model to fall unevenly across the state’s population. In scenarios of school operating capacity of376

100% with 50% face-mask adherence in schools, our model predicted that hundreds of thousands377

of children could have been infected during the fall semester, with very few of those resulting in378

deaths. In contrast, our results show that hundreds of deaths in teachers and school-affiliated379

families could have occurred. Our model indicates that the burden of COVID-19 in schools,380

teachers, and school-affiliated families across the state could have been reduced by operating381

at reduced capacity and achieving high face-mask adherence in schools. Under the relatively382

optimistic scenario of 50% school operating capacity and 100% face-mask adherence in schools,383

our model predicted that infections and deaths statewide would have been only 22% greater384

than under a scenario with fully remote instruction. In contrast, our model results suggest385

that if schools would have operated at full capacity, infections and deaths statewide could have386

been one to two orders of magnitude greater than the scenario with fully remote instruction,387

especially with poor face-mask adherence in schools. When we extended our model calibration to388

account for data from fall 2020, we found that school operating capacity of 80-95% and face-mask389

adherence in schools of 40-70% resulted in model predictions most consistent with the observed390

data. For reference, data from the National COVID-19 School Response Dashboard [62] indicate391

that school operating capacity in Indiana was 77-83% during the fall. Although conditions392

elsewhere in the community likely played a role in statewide trends during the fall and were not393

accounted for fully by our model, these results demonstrate that transmission associated with394

K-12 school reopening was capable of driving the statewide resurgence of COVID-19 observed in395

Indiana in fall 2020.396

The impacts associated with reduced school operating capacity result from reductions in both397

the number of contacts within the school and the probability that an infected student would be398

in attendance in the first place, similar to the logic behind why smaller gatherings are associated399

with reduced risk of transmission [3, 63, 64]. The magnitude of our results was most sensitive400

to the degree of protection afforded by face masks, which remains uncertain in school and other401

community settings for SARS-CoV-2 [34]. That uncertainty can be reduced as more studies are402

conducted. Recently, some studies have shown that face masks offer significant protection in403
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community settings similar to what we assumed. For example, Payne et al. followed 382 U.S.404

Navy service members who reported wearing face masks and found a reduced risk of 70% in405

those who did [65]. Similar values were found in studies of 124 households in China [66] and 839406

close contacts of 211 index cases in Thailand [67].407

Although the scenarios we considered resulted in projected impacts spanning nearly the full408

range between fully remote instruction and fully in-person instruction with no face masks, they409

are a simplification of the complexities of how schools likely operated in fall 2020. Scenarios410

that we did not explore include different groups of students attending in person or remotely [68],411

varying degrees of modularization within schools [69], and the implementation of testing-based412

control strategies in schools [70]. In the event that infectiousness is lower for asymptomatic413

infections, the impact of school reopening on lower grades could have been lower than our results414

suggest. A related simplification of our statewide analysis is that the state, in reality, consists415

of a patchwork of policies across districts. In light of this complexity that our model does not416

capture, our results should be interpreted with caution in relation to specific counties or school417

districts below the state level. Across all scenarios though, our results illustrate the importance418

of reduced school operating capacity and maximal face-mask adherence in schools, as do other419

modeling studies [68, 69, 70, 71, 72].420

A critical assumption of our analysis is that children are capable of being infected with SARS-421

CoV-2 and transmitting it to others at meaningful levels. Although the burden of severe disease422

skews strongly towards older ages [22, 73, 8], there are other lines of evidence that support423

our assumption. These include a contact-tracing study that found no distinguishable difference424

between infectivity of children and adults [26], several studies that found no distinguishable425

difference in viral load between children and adults [74, 40, 39, 75], a study that observed a426

greater secondary attack rate among children in homes [26], and a modeling study that found427

no evidence that children were less infectious [76]. More direct evidence comes from COVID-19428

outbreaks that have been observed in schools, such as one in a high school in Israel in which429

13.2% of students and 16.6% of staff were infected in just 10 days [77]. Even more pertinent, since430

schools reopened in September 2020, 31,658 COVID-19 cases have been reported in students and431

13,240 cases have been reported in teachers and school staff across the state, as of April 2021 [8].432

There is now a growing body of evidence that school closures contributed to mitigating the433

first wave of the epidemic [6, 70] and, as we have shown, may have contributed to the resurgence434

of SARS-CoV-2 during fall 2020. Our study adds to this evidence, and suggests an even greater435

impact of school reopening than several other studies [72, 70, 69, 78, 68]. This is due in part to our436

assumption that asymptomatic and symptomatic infections contribute similarly to transmission437

[26, 74, 40, 39, 75], and in part to our model’s ability to capture chains of transmission within438

schools and extending out into the community. Our study echoes several modeling studies in439

emphasizing the importance of reducing school operating capacity to impede transmission [69,440

70, 71, 72, 78]. As schools grapple with COVID-19 going forward, results such as these provide441

an important basis for motivating the adoption and sustainment of reduced school operating442

capacity and adherence to face-mask requirements in schools. As we demonstrated, these actions443

are highly consequential for those directly linked to schools and for the communities in which444

they are embedded.445
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Supplementary material1

Figure S1. Susceptibility to SARS-CoV-2 infection by age. The black line shows the median of
the estimated curve of susceptibility by age, which took the form of a modified logistic function
defined by four parameters: minimum, maximum, inflection point, and slope. The gray band
represents the 95% credible interval. Navy lines show estimates from Davies et al. [19] that were
used to inform our estimates. The dashed green line shows an alternative scenario with lower
susceptibility for children under 10 years of age.
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Figure S2. Changes in A) mobility patterns over time and B) face-mask adherence in the
community as a whole. In A, the gray line shows the fitted pattern for the Google mobility index
related to residential locations (navy line). Adherence to shelter-in-place in the model follows
the same trend, but with its magnitude estimated through the model calibration process. In
B, the gray line is informed by fitting to Google search data on “face mask” and assuming that
values plateau from July 19 onward at a value informed by survey data [48, 49].
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Figure S3. The impact of remote instruction (i.e., 0% school operating capacity). Model
outputs shown include: A) the reproduction number, R(t), over time; B) the proportion of
infections acquired in different location types (colors) over time; and C) the daily incidence of
infection statewide over time. In A and C, the line represents the median, and the shaded region
represents the 50% posterior predictive interval.
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Figure S4. Distributional representations of select model parameters: A) probability of symp-
toms by age group; B) cumulative probability of the duration of the incubation period; C)
cumulative probability of the duration of the symptomatic period; D) relative probability of
death by age; E) cumulative probability of death by day after symptom onset; and F) density of
duration of the pre-infectious and infectious periods.
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Figure S5. The impact of different scenarios about conditions for school reopening on infections
(top row), symptomatic infections (middle row), and deaths (bottom row) cumulatively between
August 24 and December 31 across the state of Indiana. These outcomes are presented separately
for students (left column), teachers (middle column), and school-affiliated families (right column).
Scenarios are defined by school operating capacity (x-axis) and face-mask adherence in schools
(shading). Orange lines represent projections under a scenario of school reopening at full capacity
without masks (solid: median; dotted: 95% posterior predictive interval). Blue lines represent a
scenario where schools operate remotely. Error bars indicate inter-quartile ranges.
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Figure S6. The impact of different scenarios about conditions for school reopening on cumulative
symptomatic infections per 1,000 people for ages 0-10 (left column) and 10-20 (right column).
Results are shown under: (top row) the baseline assumption for susceptibility and infectiousness
of asymptomatic infections; (middle row) lower susceptibility for children under 10 years of age;
and (bottom row) the baseline assumption for susceptibility but with lower infectiousness of
asymptomatic infections. Scenarios are defined by school operating capacity (x-axis) and face-
mask adherence in schools (shading). Orange lines represent projections under a scenario of
school reopening at full capacity without masks (solid: median; dotted: 95% posterior predictive
interval). Blue lines represent a scenario where schools operate remotely. Error bars indicate
inter-quartile ranges.
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Figure S7. Sensitivity analysis of cumulative infections statewide between August 24 and De-
cember 31 to variation in the model’s nine calibrated parameters. Bars indicate values of the
partial rank correlation coefficient. Results are presented separately by school operating capacity
(panels) and face-mask adherence in schools (gray shading).
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Figure S8. Sensitivity analysis of the proportion of infections acquired in schools between August
24 and December 31 to variation in the model’s nine calibrated parameters. Bars indicate values
of the partial rank correlation coefficient. Results are presented separately by school operating
capacity (panels) and face-mask adherence in schools (gray shading).
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Figure S9. Comparison of median daily incidence of infection statewide in Indiana under al-
ternative model assumptions and conditions in schools. Default model assumptions (gray) are
contrasted with an alternative assumption of equal susceptibility for all ages (blue). A baseline
scenario of schools operating remotely (light) is contrasted with two scenarios with schools re-
opened (dark): school operating capacity at 50% (left) or 75% (right). Face-mask adherence in
schools was assumed to be 100% in both scenarios. The date on which schools reopened in the
fall (August 24) is indicated by the vertical line.
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Figure S10. Model calibration to statewide data under an alternative assumption of equal
susceptibility for all ages: A) daily incidence of death; B) proportion of deaths through July
13 in decadal age bins; C) daily incidence of hospitalization; and D) daily proportion of tests
administered that are positive for SARS-CoV-2. In all panels, blue diamonds represent data. In
A, C, and D, the gray line is the median, the dark shaded region the 50% posterior predictive
interval, and the light shaded region the 95% posterior predictive interval.
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Capacity Facemask Cumulative infections Cumulative deaths
0.50 0.50 1.56 (1.48-1.64) 1.19 (1.14-1.24)
0.50 0.75 1.34 (1.28-1.41) 1.13 (1.09-1.18)
0.50 1.00 1.22 (1.16-1.28) 1.09 (1.04-1.13)
0.75 0.50 10.66 (10.06-11.28) 2.64 (2.53-2.75)
0.75 0.75 4.94 (4.63-5.28) 1.81 (1.74-1.89)
0.75 1.00 2.39 (2.26-2.52) 1.39 (1.33-1.45)
1.00 0.50 42.81 (41.44-44.44) 9.22 (8.91-9.55)
1.00 0.75 30.92 (29.82-32.10) 6.18 (5.96-6.43)
1.00 1.00 14.31 (13.58-15.10) 3.30 (3.18-3.44)

Table S1. Proportional increase in risk of infection and death for the overall population of
Indiana under alternative scenarios about school operating capacity and face-mask adherence in
schools. We define the proportional increase in risk as the ratio of the cumulative number of
events (infections or deaths) between August 24 and December 31 under the scenario indicated
by the left two columns as compared to a scenario in which schools operate remotely.
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Capacity Facemask Student infections Student symptoms
0.50 0.50 3.3 (3.1-3.5) 3.1 (2.9-3.3)
0.50 0.75 2.4 (2.3-2.5) 2.3 (2.2-2.4)
0.50 1.00 1.8 (1.7-1.9) 1.8 (1.7-1.9)
0.75 0.50 56.5 (53.1-60.1) 49.0 (45.6-52.3)
0.75 0.75 21.8 (20.3-23.6) 18.9 (17.6-20.3)
0.75 1.00 7.4 (6.9-7.9) 6.6 (6.2-7.1)
1.00 0.50 251.0 (241.2-260.9) 236.4 (227.8-246.7)
1.00 0.75 178.2 (170.1-186.1) 162.8 (155.5-169.7)
1.00 1.00 76.6 (72.1-81.3) 67.7 (63.6-71.7)

Table S2. Proportional increase in risk of infection and symptomatic infection for students under
alternative scenarios about school operating capacity and face-mask adherence in schools. We
define the proportional increase in risk as the ratio of the cumulative number of events (infections
or symptomatic infections) between August 24 and December 31 under the scenario indicated
by the left two columns as compared to a scenario in which schools operate remotely.
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Capacity Facemask Teacher infections Teacher symptoms Teacher deaths
0.50 0.50 2.1 (2.0-2.2) 2.0 (1.9-2.2) 2.0 (1.9-2.2)
0.50 0.75 1.7 (1.6-1.8) 1.7 (1.6-1.8) 1.8 (1.7-2.0)
0.50 1.00 1.5 (1.4-1.6) 1.5 (1.4-1.6) 1.6 (1.5-1.7)
0.75 0.50 24.8 (23.2-26.5) 23.6 (22.1-25.1) 22.0 (20.2-23.7)
0.75 0.75 10.7 (10.0-11.5) 10.1 (9.4-10.9) 9.8 (9.1-10.6)
0.75 1.00 4.5 (4.2-4.8) 4.4 (4.1-4.7) 4.4 (4.1-4.7)
1.00 0.50 119.5 (114.6-125.0) 126.7 (120.8-132.9) 166.1 (157.4-175.6)
1.00 0.75 88.8 (84.9-93.1) 90.2 (86.0-94.8) 102.7 (96.6-109.6)
1.00 1.00 41.8 (39.5-44.3) 41.0 (38.5-43.7) 41.1 (38.5-44.1)

Table S3. Proportional increase in risk of infection, symptomatic infection, and death for teachers
under alternative scenarios about school operating capacity and face-mask adherence in schools.
We define the proportional increase in risk as the ratio of the cumulative number of events
(infections, symptomatic infections, or deaths) between August 24 and December 31 under the
scenario indicated by the left two columns as compared to a scenario in which schools operate
remotely.
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Capacity Facemask Family infections Family symptoms Family deaths
0.50 0.50 3.5 (3.3-3.7) 3.3 (3.1-3.5) 2.8 (2.6-3.0)
0.50 0.75 2.5 (2.3-2.6) 2.4 (2.2-2.5) 2.3 (2.2-2.5)
0.50 1.00 1.9 (1.8-2.0) 1.9 (1.8-2.0) 1.9 (1.7-2.0)
0.75 0.50 55.8 (52.2-59.5) 49.3 (46.0-52.5) 32.5 (30.0-35.5)
0.75 0.75 22.1 (20.5-23.6) 19.4 (18.0-20.8) 13.3 (12.3-14.4)
0.75 1.00 7.7 (7.2-8.3) 7.0 (6.6-7.6) 5.7 (5.3-6.1)
1.00 0.50 253.1 (242.4-263.4) 249.1 (239.9-259.3) 222.7 (211.2-236.5)
1.00 0.75 177.7 (169.9-186.8) 168.6 (161.4-176.2) 132.0 (124.4-140.0)
1.00 1.00 77.0 (72.6-81.7) 69.5 (65.4-73.8) 48.4 (44.8-52.2)

Table S4. Proportional increase in risk of infection, symptomatic infection, and death for family
members of students and teachers under alternative scenarios about school operating capacity
and face-mask adherence in schools. We define the proportional increase in risk as the ratio of
the cumulative number of events (infections, symptomatic infections, or deaths) between August
24 and December 31 under the scenario indicated by the left two columns as compared to a
scenario in which schools operate remotely.
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Capacity Facemask Cumulative infections Cumulative deaths
0.50 0.50 0.03 (0.03-0.03) 0.09 (0.09-0.10)
0.50 0.75 0.03 (0.03-0.03) 0.09 (0.09-0.09)
0.50 1.00 0.02 (0.02-0.02) 0.08 (0.08-0.09)
0.75 0.50 0.21 (0.20-0.22) 0.21 (0.20-0.21)
0.75 0.75 0.10 (0.09-0.10) 0.14 (0.14-0.15)
0.75 1.00 0.05 (0.04-0.05) 0.11 (0.11-0.11)
1.00 0.50 0.84 (0.83-0.85) 0.72 (0.71-0.73)
1.00 0.75 0.61 (0.60-0.62) 0.48 (0.47-0.49)
1.00 1.00 0.28 (0.27-0.29) 0.26 (0.25-0.26)

Table S5. Risk ratio for the overall population of Indiana under alternative scenarios about school
operating capacity and face-mask adherence in schools. We define the risk ratio as the ratio of
the cumulative number of events (infections or deaths) between August 24 and December 31
under the scenario indicated by the left two columns as compared to a scenario in which schools
operate at full capacity and without face masks.
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Capacity Facemask Student infections Student symptoms
0.50 0.50 0.011 (0.011-0.012) 0.011 (0.010-0.011)
0.50 0.75 0.008 (0.008-0.008) 0.008 (0.008-0.008)
0.50 1.00 0.006 (0.006-0.006) 0.006 (0.006-0.006)
0.75 0.50 0.186 (0.176-0.196) 0.169 (0.161-0.178)
0.75 0.75 0.072 (0.068-0.077) 0.065 (0.061-0.070)
0.75 1.00 0.024 (0.023-0.026) 0.023 (0.022-0.024)
1.00 0.50 0.828 (0.823-0.834) 0.817 (0.811-0.822)
1.00 0.75 0.587 (0.577-0.599) 0.562 (0.550-0.573)
1.00 1.00 0.253 (0.241-0.265) 0.234 (0.223-0.245)

Table S6. Risk ratio for students under alternative scenarios about school operating capacity and
face-mask adherence in schools. We define the risk ratio as the ratio of the cumulative number
of events (infections or symptomatic infections) between August 24 and December 31 under the
scenario indicated by the left two columns as compared to a scenario in which schools operate
at full capacity and without face masks.
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Capacity Facemask Teacher infections Teacher symptoms Teacher deaths
0.50 0.50 0.015 (0.014-0.016) 0.014 (0.013-0.014) 0.009 (0.008-0.009)
0.50 0.75 0.012 (0.012-0.013) 0.011 (0.011-0.012) 0.008 (0.008-0.008)
0.50 1.00 0.011 (0.010-0.011) 0.010 (0.010-0.010) 0.007 (0.007-0.007)
0.75 0.50 0.178 (0.170-0.187) 0.157 (0.149-0.164) 0.095 (0.090-0.100)
0.75 0.75 0.077 (0.072-0.082) 0.067 (0.063-0.071) 0.043 (0.041-0.045)
0.75 1.00 0.032 (0.031-0.034) 0.029 (0.027-0.031) 0.019 (0.018-0.020)
1.00 0.50 0.858 (0.852-0.863) 0.839 (0.832-0.844) 0.723 (0.711-0.733)
1.00 0.75 0.637 (0.626-0.648) 0.598 (0.585-0.610) 0.447 (0.433-0.461)
1.00 1.00 0.300 (0.288-0.313) 0.271 (0.259-0.283) 0.179 (0.170-0.188)

Table S7. Risk ratio for teachers under alternative scenarios about school operating capacity and
face-mask adherence in schools. We define the risk ratio as the ratio of the cumulative number
of events (infections, symptomatic infections, or deaths) between August 24 and December 31
under the scenario indicated by the left two columns as compared to a scenario in which schools
operate at full capacity and without face masks.

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 26, 2021. ; https://doi.org/10.1101/2020.08.22.20179960doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.22.20179960
http://creativecommons.org/licenses/by/4.0/


Capacity Facemask Family infections Family symptoms Family deaths
0.50 0.50 0.005 (0.005-0.005) 0.005 (0.004-0.005) 0.004 (0.004-0.005)
0.50 0.75 0.003 (0.003-0.003) 0.003 (0.003-0.003) 0.003 (0.003-0.003)
0.50 1.00 0.002 (0.002-0.002) 0.002 (0.002-0.002) 0.003 (0.003-0.003)
0.75 0.50 0.081 (0.077-0.086) 0.069 (0.066-0.072) 0.042 (0.039-0.044)
0.75 0.75 0.015 (0.014-0.015) 0.013 (0.013-0.014) 0.011 (0.011-0.012)
0.75 1.00 0.004 (0.004-0.004) 0.004 (0.004-0.004) 0.004 (0.004-0.005)
1.00 0.50 0.705 (0.694-0.716) 0.673 (0.661-0.685) 0.533 (0.519-0.546)
1.00 0.75 0.241 (0.232-0.251) 0.210 (0.201-0.218) 0.128 (0.122-0.133)
1.00 1.00 0.015 (0.015-0.016) 0.014 (0.013-0.015) 0.012 (0.012-0.013)

Table S8. Risk ratio for family members of students and teachers under alternative scenarios
about school operating capacity and face-mask adherence in schools. We define the risk ratio
as the ratio of the cumulative number of events (infections or deaths) between August 24 and
December 31 under the scenario indicated by the left two columns as compared to a scenario in
which schools operate at full capacity and without face masks.
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Parameter Value
Importations scaling factor 1.299 (95% CrI: 0.502-1.461)
Susceptibility slope 0.757 (95% CrI: 0.578-3.344)
Susceptibility minimum 0.346 (95% CrI: 0.311-0.506)
Susceptibility inflection point 18.640 (95% CrI: 18.521-19.804)
Susceptibility maximum 0.834 (95% CrI: 0.652-0.946)
Shelter in place adherence 0.321 (95% CrI: 0.288-0.669)
Face-mask adherence 0.534 (95% CrI: 0.461-0.540)
LTC importations scaling factor 0.037 (95% CrI: 0.022-0.092)
Transmissibility 0.593 (95% CrI: 0.501-0.788)
Probability of symptoms (by age) Fig. S4A
Incubation period Fig. S4B
Symptomatic period Fig. S4C
Probability of death (by age) Fig. S4D
Probability of death after symptom onset Fig. S4E
Pre-infectious period meanlog = 23.7, sdlog = 50 (Fig. S4F)
Infectious period meanlog = 33.8, sdlog = 43.1 (Fig. S4F)
Adjusted odds ratio for face-mask efficacy 0.30 [34]
School contacts 0.6 [30, 36]
Classroom contacts 1.2 [30, 36]
Workplace contacts 0.06 [30, 36]
Office contacts 0.13 [30, 36]
Household contacts 0.14 [30, 36]
Neighborhhood contacts 0.78 [30, 36]

Table S9. List of model parameters. The first nine were estimated through the model calibration
process, and the subsequent fourteen were assumed based on the literature, as described in the
Methods. Values of the first nine parameters reflect marginal posterior estimates.

19

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 26, 2021. ; https://doi.org/10.1101/2020.08.22.20179960doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.22.20179960
http://creativecommons.org/licenses/by/4.0/


Group Size
Schools of size 0-100 945
Schools of size 100-500 703
Schools of size 1000+ 291
Schools of size 500-1000 830
State populalation 6,286,795
Students in grades 1 to 12 1,094,916
Students in kinder 72,210
Students in prek 73,695
Students in ungraded 57,222
Total 0 - 10 903,156
Total 10 - 20 907,120
Total 20+ 4,476,519
Total living with students 1,682,904
Total students 1,298,043

Table S10. Summary of key features of the synthetic population of Indiana.
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Face-mask adjusted odds ratio
Capacity Facemask 0.12 0.30 0.73
0.50 0.50 1.3 (1.2-1.3) 1.6 (1.5-1.6) 3.7 (3.6-3.9)
0.50 0.75 1.1 (1.1-1.2) 1.3 (1.3-1.4) 3.4 (3.2-3.5)
0.50 1.00 1.1 (1.0-1.1) 1.2 (1.2-1.3) 3.1 (2.9-3.2)
0.75 0.50 3.3 (3.1-3.4) 10.7 (10.1-11.3) 24.9 (24.0-25.7)
0.75 0.75 1.6 (1.5-1.6) 4.9 (4.6-5.3) 23.5 (22.7-24.2)
0.75 1.00 1.2 (1.1-1.2) 2.4 (2.3-2.5) 21.9 (21.1-22.7)
1.00 0.50 29.5 (28.7-30.4) 42.8 (41.5-44.3) 33.5 (32.3-34.7)
1.00 0.75 5.6 (5.3-5.9) 31.0 (29.8-32.1) 33.1 (32.0-34.2)
1.00 1.00 1.5 (1.4-1.5) 14.3 (13.6-15.2) 32.7 (31.7-33.9)

Table S11. Proportional increases in cumulative infections statewide during fall 2020 under
alternative values of face-mask protection, defined as the odds ratio (columns) and alternative
scenarios about school operating capacity and face-mask adherence in schools (rows). These
increases are relative to a scenario in which schools operated remotely in fall 2020.
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Settings related to probability of isolation
Capacity Facemask 0.5 0.68 0.9
0.50 0.50 1.8 (1.8-1.9) 1.6 (1.5-1.6) 1.8 (1.6-2.0)
0.50 0.75 1.5 (1.4-1.6) 1.3 (1.3-1.4) 1.5 (1.4-1.7)
0.50 1.00 1.3 (1.2-1.3) 1.2 (1.2-1.3) 1.3 (1.2-1.5)
0.75 0.50 13.1 (12.6-13.7) 10.6 (10.1-11.3) 10.6 (9.6-11.6)
0.75 0.75 6.9 (6.5-7.3) 4.9 (4.7-5.2) 6.2 (5.6-6.8)
0.75 1.00 3.3 (3.1-3.5) 2.4 (2.3-2.5) 3.3 (3.0-3.6)
1.00 0.50 34.1 (33.1-35.2) 42.9 (41.2-44.4) 31.3 (29.1-33.7)
1.00 0.75 26.7 (25.8-27.6) 30.9 (29.8-32.2) 23.3 (21.5-25.0)
1.00 1.00 14.4 (13.8-15.1) 14.3 (13.6-15.2) 12.7 (11.6-13.9)

Table S12. Proportional increases in cumulative infections statewide during fall 2020 under alter-
native values of the probability of isolation given symptoms (columns) and alternative scenarios
about school operating capacity and face-mask adherence in schools (rows). These increases are
relative to a scenario in which schools operated remotely in fall 2020.
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Settings related to juvenile transmission
Capacity Facemask Default Equal Susc. Low 0-10 Susc. Low Asymp.

Inf.
0.50 Low 1.6 (1.5-1.6) 6.1 (5.8-6.4) 1.5 (1.4-1.6) 1.7 (1.7-1.8)
0.50 Med 1.3 (1.3-1.4) 4.2 (4.0-4.4) 1.3 (1.3-1.4) 1.5 (1.4-1.5)
0.50 High 1.2 (1.2-1.3) 3.0 (2.9-3.1) 1.2 (1.1-1.3) 1.3 (1.3-1.4)
0.75 Low 10.7 (10.0-11.3) 348.0 (335.2-

361.7)
9.3 (8.8-9.8) 10.0 (9.5-10.4)

0.75 Med 4.9 (4.6-5.2) 265.3 (254.7-
276.8)

4.6 (4.4-4.9) 5.9 (5.7-6.2)

0.75 High 2.4 (2.3-2.5) 181.6 (174.0-
189.9)

2.3 (2.2-2.4) 3.2 (3.0-3.3)

1.00 Low 42.9 (41.4-44.5) 687.5 (670.0-
706.1)

26.5 (25.4-27.7) 26.2 (25.5-26.9)

1.00 Med 31.0 (29.8-32.2) 669.3 (652.3-
686.8)

20.8 (19.9-21.7) 21.0 (20.3-21.6)

1.00 High 14.3 (13.6-15.1) 641.9 (624.5-
659.7)

11.3 (10.8-11.9) 13.2 (12.7-13.8)

Table S13. Proportional increases in cumulative infections statewide during fall 2020 under
alternative assumptions about juvenile transmission (columns) and alternative scenarios about
school operating capacity and face-mask adherence in schools (rows). These increases are relative
to a scenario in which schools operated remotely in fall 2020.
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Supplementary methods2

Model description3

People and their contacts4

FRED simulates pathogen spread in a population by recreating interactions among people on5

a daily basis. To realistically represent the population of Indiana, we drew on a synthetic6

population of the US that represents demographic and geographic characteristics from 2010 [35].7

Each human is modeled as an agent that visits a set of places defined by their activity space. This8

activity space contains places such as houses, schools, workplaces, and neighborhood locations.9

Transmission can occur when an infected person visits the same location as a susceptible person10

on the same day, with numbers of contacts per person specific to each location type. For instance,11

school contacts depend not on the size of the school but on the age of the student. We adopted12

contact rates specific to each location type that were previously calibrated to attack rates for13

influenza in each location type [30, 36].14

Importation to seed local transmission15

To initialize the model, we simulated international and domestic importations similar to Perkins16

et al. [57]. First, we obtained data on internationally and domestically imported deaths in17

Indiana up to March 18 [58], which we used to extrapolate total international and domestic im-18

portations based on the case fatality risk [38], the proportion of infections that are asymptomatic19

[37], and the probability of detecting local and international symptomatic infections [57]. Second,20

we assigned times to internationally imported infections proportional to international incidence21

patterns, adjusted to account for the timing of a ban on travel from China. We assigned times to22

domestically imported infections proportional to total US incidence. Drawing from uncertainty23

distributions for each of the three aforementioned parameters, we repeated this process 1,00024

times and averaged across replicates. We used that average curve to seed our model, scaling25

its magnitude with a parameter that we calibrated. Although importations from outside Indi-26

ana likely continued beyond those that we were able to account for explicitly, we assumed that27

transmission within Indiana was sufficient at that point to be the primary driver of incidence.28

In addition to importations in the overall population, we simulated importation into long-term29

care facilities, given the large number of deaths that took place there and the limited realism of30

our model in simulating visitors to those facilities. We introduced infections into these facilities31

at a constant rate that we calibrated.32

Transmission and disease progression33

Once infected, each individual had latent and infectious periods drawn from distributions cal-34

ibrated so that the average generation interval distribution matched estimates from Singapore35

(µ = 5.20, σ = 1.72) [33]. The absolute risk of transmission depended on the number and location36

of an infected individual’s contacts and a parameter that controls SARS-CoV-2 transmissibility37

upon contact, which we calibrated. We assumed asymptomatic infections were as infectious as38
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symptomatic infections and had identical timing of infectiousness [39, 40, 26, 41]. Following39

exposure, we assumed that children were less susceptible to infection than adults, which we40

modeled with a modified logistic function calibrated to results of Davies et al. [19]. We defined41

four parameters of this function as the minimum susceptibility, the maximum susceptibility, the42

inflection point of susceptibility with respect to age, and the slope of the age-susceptibility re-43

lationship around the inflection point. For agents that developed symptoms, we took random44

draws from lognormal distributions for the incubation period [32] and duration of symptoms45

[31]. Both the probabilities of developing symptoms and dying [21] were assumed to increase46

with age. The probability of developing symptoms by age was estimated using the age distribu-47

tion of cases in the China CDC report from early in the pandemic[38] and the age distribution48

of the population in China[79]. By assuming equal exposure by age and assuming that 50% of49

infections proceed asymptomatically (an intermediate value of two estimates from the Diamond50

Princess [37, 80]), we can calculate the proportion of symptomatic infections we would expect51

in each age group as under our assumptions, the total number of infections in an age-group will52

be proportional to the population size in that age-group. For infections that resulted in death,53

we modeled the time to death with a gamma distribution [22] truncated at the 99th percentile.54

These and other parameters are summarized in Table S9 and Fig. S4.55

Changes in agent behavior during the epidemic56

Agent behavior in FRED has the potential to change over the course of an epidemic. Following57

the onset of symptoms, infected agents self-isolate at home according to a fixed daily rate,58

whereas others continue their daily activities [42]. This rate is chosen so that on average 68% of59

agents will self-isolate at some point during their symptoms, assuming that all individuals who60

develop a fever will isolate at some point during their symptoms, based on published studies in61

the U.S. [43]. Agents can also respond to public health interventions, including school closure,62

shelter in place, and a combination of mask-wearing and social distancing. School closures63

occur on specific dates [81], resulting in students limiting their activity space to household and64

neighborhood locations. Shelter-in-place interventions reduce some agents’ activity spaces to65

their households only, whereas others continue with their daily routines. We used mobility66

reports from Google [46] to drive daily compliance with shelter-in-place, such that shelter-in-67

place compliance in our model accounts for both the effects of shelter-in-place orders and some68

people deciding to continue staying at home after those orders are lifted [47]. To account for69

voluntary mask-wearing and social distancing, we used Google Trends data for Indiana using the70

terms “face mask” and “social distancing” [48] and used estimates on face-mask adherence from71

a New York Times analysis of a survey from Dynata [49].72

Model calibration73

We selected nine parameters to estimate based on calibration of the model to four data types74

on COVID-19 in Indiana: daily incidence of death, age distribution of deaths, daily incidence of75

hospitalization, and daily test positivity. The initial ranges for the statewide and long-term care76

facility importations were adjusted to cover a wide range of values. Compliance with shelter-77
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in-place was informed with changes in mobility patterns in the Google community reports [46].78

We fitted a GAM to the trends from the percentage change on mobility trends for places of79

residence, and projected the compliance of shelter-in-place orders after the period for which we80

had data by assuming a linear trend thereafter. We normalized these mobility trends from 0%81

(baseline) to 100% (everyone at home) and adjusted its magnitude with a parameter representing82

the maximum compliance in the historical trends. The minimum, maximum, inflection point,83

and slope of the logistic function with which we model the age-susceptibility relationship were84

calibrated to estimates by Davies et al. [19].85

We simulated 6,000 combinations of these nine parameters, ~θ, using a sobol design sampling86

algorithm with the sobolDesign function in R [51, 52]. For each parameter set, we calculated the87

likelihood of the model given the observed data on daily incidence of death, cumulative deaths88

in long-term care facilities through July 13, the decadal age distribution of cumulative deaths89

through July 13, daily incidence of hospitalization, and test positivity.90

We calculated the contribution to the likelihood for daily incidence of death and cumulative91

deaths in long-term care facilities using a negative binomial distribution as92

L(~θ|Dt,k) = Negative Binomial(r, p),

where Dt,k is the daily incidence of death on day t and location k (long-term care facilities or all93

other locations), and r and p are size and probability parameters, respectively. We informed r and94

p using the conjugate prior relationship between a beta prior and negative binomial likelihood,95

such that r = rprior + dt,m and p = 1/(1 +
pprior

pprior+1), where dt,m is the daily incidence of death96

predicted by the model on day t. For the decadal age distribution of cumulative deaths through97

July 13, we used a multinomial distribution, such that98

L(~θ|Da) = Multinomial(Da, da,m/
∑
a

da),

where Da is the observed number of deaths in the age group a, and da,m are the deaths by age99

group obtained by the model. To fit to data on testing, we first observe, using Bayes’ rule, that100

P (C|T ) = P (T |C)P (C)
P (T |C)P (C) + P (T |¬C)P (¬C)

=
P (C)

P (C) + r(1− P (C))
,

where C refers to a symptomatic case, T refers to an administered PCR test for current in-101

fection, and r = P (T |¬C)/P (T |C). Next, we assume that non-symptomatic infections (either102

presymptomatic or asymptomatic) exhibit treatment-seeking behavior similar to uninfected in-103

dividuals, or P (T |I) = P (T |U) = P (T |¬C), where I refers to a non-symptomatic infection and104

U to uninfected. We then observe, again using Bayes’ rule, that105

P (I|T ) = rP (I)

P (C) + r(1− P (C))
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and106

P (U |T ) = rP (U)

P (C) + r(1− P (C))
.

Next, we incorporate PCR sensitivity and specificity by assuming that sensitivity = (P |C) =107

P (P |I), where P refers to a positive test (i.e., we assume that PCR sensitivity is similar for108

non-symptomatic and symptomatic infections). This allows us to write109

P (P |T ) = sensitivity(P (C|T ) + P (I|T )) + (1− specificity)P (U |T ).

Then, we are in a position to write the contribution to the likelihood from the testing data,110

assuming that the number of positive tests in the data, T+, follows a binomial distribution111

L(~θ|T+, T−) = Binomial(T+ + T−, P (P |T )),

where T− represents the number of negative tests in the data.112

Finally, the combined log-likelihood was obtained as113

log(L(~θ)) =
∑
t

(
log(L(~θ|Dt,overall))

)
+log(L(~θ|Dlongtermcare)+log(L(~θ|T+, T−))+

∑
a

(
log(L(~θ|Da)

)
.

We sampled the parameters proportional to their likelihood to obtain a set of parameter combi-114

nations that constitute our approximation of the posterior distribution of parameter values.115
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