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ABSTRACT 

Background: There is a need in clinical genomics for systems that assist in clinical 

diagnosis, analysis of genomic information and periodic re-analysis of results, and can 

utilize information from the electronic health record to do so. Such systems should be 

built using the concepts of human-centered design, fit within clinical workflows, and 

provide solutions to priority problems. 

Methods: We adapted a commercially available diagnostic decision support system 

(DDSS) to use extracted findings from a patient record and combine them with genomic 

variant information in the DDSS interface. Three representative patient cases were 

created in a simulated clinical environment for user testing. A semi-structured interview 

guide was created to illuminate factors relevant to human factors in CDS design and 

organizational implementation.  

Results: Six individuals completed the user testing process. Tester responses were 

positive and noted good fit with real-world clinical genetics workflow. Technical issues 

related to interface, interaction, and design were minor and fixable. Testers suggested 

solving issues related to terminology and usability through training and infobuttons. 

Time savings was estimated at 30-50% and additional uses such as in-house clinical 

variant analysis were suggested for increase fit with workflow and to further address 

priority problems. 

Conclusion: This study provides preliminary evidence for usability, workflow fit, 

acceptability, and implementation potential of a modified DDSS that includes machine-

assisted chart review. Continued development and testing using principles from human-

centered design and implementation science are necessary to improve technical 
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functionality and acceptability for multiple stakeholders and organizational 

implementation potential to improve the genomic diagnosis process. 
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SUMMARY 

What is already known? 

• There is a need in clinical genomics for tools that assist in analysis of genomic 

information and can do so using information from the electronic health record. 

• Such tools should be easy to use, fit within clinical workflows, and provide 

solutions to priority problems as defined by clinician end-users. 

• Natural language processing (NLP) is a useful tool to read patient records and 

extract findings. 

 

What does this paper add? 

• We demonstrated the use of Human-centered design and implementation 

science principles in a simulated environment for assessment of a new version of 

a decision support tool prior to large-scale implementation. 

• This study provides preliminary evidence that a clinical decision support tool with 

machine-assisted chart review is acceptable to clinical end-users, fits within the 

clinical workflow, and addresses perceived needs within the differential diagnosis 

process across all Mendelian genetic disorders.  

• Terminology codes for DDSSs should have levels of granularity tuned to the 

sensitivity and specificity appropriate to its various functions, e.g., NLP versus 

chart documentation. 
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INTRODUCTION 

Clinical Decision Support (CDS) integrated into Electronic Health Records (EHRs) has 

long been considered a promising way to improve patient outcomes and decrease 

inefficiencies.1-4 It is also recognized that CDS must be designed with the user in mind, 

fitting the concepts of human-centered design with computer interfaces at the individual 

clinician level.1 5 Design alone, however, is insufficient to facilitate implementation. For 

CDS to impact care and patient outcomes, it must fit within clinician workflow and 

provide a solution to a priority problem for the clinician and the healthcare system.4 6-8 

Diagnostic Decision Support Systems (DDSSs) are a key type of CDS needed in 

genomics to supplement a shortage of trained clinicians and address the inherent 

complexity of genomic diagnosis.9 10 This complexity arises from the heterogeneous 

nature of genetic diseases, the variable expression in patients, and the degree of 

overlap in findings (i.e., signs, symptoms, and test results) among genetic conditions, 

sometimes differentiated mainly by onset age of individual findings.11 Position 

statements and a systematic review note two new functions needed for DDSSs in 

genomics: (1) a cost-effective, regular approach to re-evaluation of patient cases in light 

of new findings or genetic knowledge, when testing does not immediately yield a 

diagnosis; and (2) developing machine-assisted chart review.12 13 Most genomic patient 

records are extensive and written by multiple clinicians, such that manual review is 

prohibitively time-consuming; resulting in added costs from repeated or unnecessary 

tests and increased risk of missed information that could have facilitated timely 

diagnosis. Because most of the relevant information is in unstructured clinical notes, 
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approaches such as natural language processing (NLP) are needed to automate and 

assist this manual process. 

To address both re-evaluation and automation, we adapted a commercially available 

DDSS already capable of incorporating genomic sequencing data to perform automated 

chart review. We then created clinical case vignettes to simulate the real-world clinical 

diagnostic workflow for user testing. The goal was to provide preliminary evidence of 

usability, perceived fit with clinical need and workflow, and potential for implementation 

into the real-world clinical environment.  

METHODS 

Setting 

Development of the clinical case vignettes, simulated EHR environment, and user 

testing were conducted at Geisinger, a healthcare system in rural Pennsylvania. 

Adapting a DDSS for machine-assisted chart review of clinical findings 

We adapted a commercial DDSS currently in clinical use to automate chart review and 

present the information to a clinician in the form of findings obtained through structured 

data mining and NLP of an EHR. SimulConsult’s Genome-Phenome Analyzer has been 

shown to be accurate and helpful in clinical diagnosis, including interpreting genomic 

results.14-16 SimulConsult correlates annotated variant call files (VCFs) with patient-

specific clinical and family history information. SimulConsult also generates both a 

Patient Summary for saving interim patient findings and a customizable genomic Return 

of Results (RoR) report shown in previous research to be effective for facilitating 
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standardized communication for patients and referring clinicians.17-20 When clinicians 

enter findings, the DDSS returns a ranked list of candidate diseases and suggestions of 

other findings to check, ranked by usefulness in narrowing the differential diagnosis in a 

way that takes into account cost and treatability; thus facilitating the iterative approach 

of information gathering in diagnosis.21 22 For each finding, presence (with onset age) or 

absence can be specified (Figure A).    

Figure A. SimulConsult main interface showing ranked list of candidate diseases 
and guidance for entering finding presence (or absence) with onset age. 

  

 

We used the Logica platform to create a simulated EHR and the cTAKES tool with the 

Unified Medical Language System (UMLS) module23 for NLP of patient notes in the 

EHR. Steps in adaption included (1) mapping DDSS findings to Human Phenotype 
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Ontology (HPO) and UMLS codes, including creation of hundreds of new HPO terms 

resulting in creation of new UMLS concepts, (2) using results from NLP analysis of EHR 

notes to flag mentions of the findings used by the DDSS, and (3) augmenting the 

DDSS’s interface to present the flagged findings with contextual information needed to 

clinically assess the information (Table 1).  

Table 1. Adaptations made to existing DDSS to create GPACSS 

Adaptation Component Approach 

Overall design 

SMART-on-
FHIR enabled 
EHR 

• Logica platform (https://www.logicahalth.org/; 
formerly Health Services Platform Consortium; 
HSPC)  

Archive • Custom archive stores key files 
• RESTful interface. 

Coordination 
and 
communication 

User 
interface 

• SMART-on-FHIR application (GPACSS FHIR 
app client, Figure B).  

• Interface allows user access to DDSS directly 
from patient record. 

• Choice to launch with no findings or with 
findings previously saved   

Coordination • GPACSS “Coordinator” API saves the NLP 
output 

• Matching of UMLS codes in NLP output to 
DDSS findings  

• Send the matched flagged findings to the DDSS 
at launch (Figure B)  

Natural 
language 
processing 

Extraction of 
findings 

• NLP:  open source Apache cTAKES 4.0 23 
• cTAKES default modules to handle sentence 

boundary detection, tokenization, normalization, 
tagging parts of speech, recognizing named 
entities, and negation. 

• cTAKES pre-trained module to recognize UMLS 
concepts in text  

Mapping in 
DDSS 

• DDSS findings mapped within the DDSS to one 
or more Unified Medical Language System 
(UMLS) and Human Phenotype Ontology (HPO) 
codes 
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• Mapping strategy minimizes false negatives in 
term capture while tolerating false positives 
(identifying information unrelated or irrelevant to 
the diagnostic process).   

Display in 
DDSS 

• Findings identified by NLP display a flag icon 
• Clicking the flag enables viewing of metadata  

 

The architecture of the resulting prototype, called the Genotype-Phenotype Archiving 

and Communication System with SimulConsult (GPACSS), is shown in Figure B.  

 

FIGURE B:  Architecture of the Genotype-Phenotype Archiving and 
Communication System with SimulConsult (GPACSS)  

The key components are the coordination / archiving system (blue), the DDSS (green) 
and the NLP (yellow). 

 

 

Clinician review of the flagged findings created from the automated findings search 

using NLP is facilitated through flag icons (Figure C). The clinician then uses this 
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information to decide whether to specify presence (with a particular onset) or absence 

(or omit) as shown in Figure A, resulting in the “machine-assisted” chart review. The 

mapping of DDSS findings to multiple UMLS concepts was chosen to minimize false 

negatives in concept identification; relying on the user decisions about findings and the 

limited set of UMLS concepts to minimize false positives (Table 2).   

 

FIGURE C:  Flagged findings with EHR text display for DDSS  

A finding having a flag icon indicates that information was found in the EHR.  Clicking 
the flag shows the various mentions of the flagged finding. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2021. ; https://doi.org/10.1101/2020.08.21.20179580doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.21.20179580
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Solutions for Minimizing False Positives and Negatives Identified Through NLP 
and DDSS by Clinician Review 

False Negative/Positive 
Problem 

Solution Included in GPACSS 

Minimizing false 
negatives on NLP 
flagging of findings 

 

• Include parent and child codes (e.g. finding of intellectual 
disability in DDSS includes codes for developmental delay 
and particular types of intellectual disability) 

Minimizing false 
positives through the 
DDSS Usefulness metric 

 

• Use DDSS usefulness algorithm24 to display flagged findings; 
thus prioritizing data of greater relevance and de-prioritizing 
data of low relevance for clinician review 

Minimizing false 
positives through 
clinician verification 

• Use flag icon to indicate findings identified through NLP 
(Figure C) 

• Clinician clicks the flag icon to display information needed to 
assess reliability, presence or absence, and onset 

• Information displayed from the EHR includes date of chart 
note, observer identity, and 3 sentences of chart note 
(sentence with finding plus preceding and subsequent 
sentence) 

 

Creating simulated cases for user testing 

Three cases of increasing complexity created for testing were real but de-identified 

(Supplemental Table 1). Case vignettes assumed that some patient characterization 

was already noted by the clinician and genomic results were now available and could be 

interpreted in light of clinical information available in the EHR (Supplemental Figure A). 

For the 3 cases, a total of 5 findings were used for initial information before the genomic 

results, with 3 (one per case) being flagged findings identified through NLP. Using the 

simulated EHR environment created a “near live”25 experience for user testing while 

limiting the expense and time of EHR integration during the user-testing phase. 
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User Testing Methods 

Participants: Testers were staff members at Geisinger purposively sampled to represent 

target and potential end-users of GPACSS. Based on the limited number of individuals 

at Geisinger regularly engaged in utilizing genomic information for differential diagnosis, 

we followed guidance suggesting that a target of 3 - 5 evaluators are considered 

sufficient for preliminary usability testing.26 

Testing Sessions: At the beginning of the session, testers viewed a 4-minute training 

video (https://simulconsult.com/videogpacss) beginning from saved patient findings, 

then importing a VCF, and review of flagged findings to arrive at a diagnosis and create 

a customizable patient-friendly RoR report. 

A semi-structured interview guide was created to elucidate factors relevant to human 

factors in CDS design (information, interaction, interface)1 5 27 and organizational 

implementation (acceptability, perceived need, feasibility, workflow fit).28 We utilized a 

think aloud25 approach where testers were asked to verbalize thoughts while using the 

GPACSS prototype with the interviewer asking questions as needed and at key points 

in the testing to create a cognitive walkthrough with heuristic evaluation.26 29  

An experienced interviewer (AKR) and observer (MAW) from Geisinger worked with 

each tester to imagine using GPACSS for each clinical scenario. The interview and 

process were piloted with a cancer genetic counselor reviewing one test vignette. Data 

from the pilot tester was consistent with the testers selected for organizational 

implementation potential and thus is included in the results. At the end of the session, 

testers were asked a series of questions to rate the overall usefulness of GPACSS and 

specific key components. Transcripts were created from the audio portion of each 
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session and the computer screen was video recorded to capture tester movement 

through GPACSS. Testers received a $100 gift card and the user testing protocol was 

reviewed and approved by the Geisinger IRB. 

Analysis 

Two Geisinger coders (MAW, JCR) viewed each user test session, read transcripts, and 

created a codebook of themes identified across transcripts. Transcripts were coded and 

the corresponding quotes were organized into the 3 categories of CDS components 

(information, interface, and interaction) identified by Miller et al,1 and categories of 

acceptability, perceived need, feasibility, and workflow fit according to Rogers’ Diffusion 

of Innovations in organizations constructs.28  

RESULTS 

Six individuals completed the user testing process. Testers included genetic counselors 

(n=3; 1: cancer; 1: variant analysis; 1: pediatrics and research); pediatric geneticist 

(n=1; orders exomes daily); laboratory director (n=1; variant interpretation); and internal 

medicine (n=1; ordered 4-5 exomes in past month). Each test session lasted 2 hours, 

except for the pilot session, which was 1 hour and 1 vignette only. Differences related to 

the standard clinical process of differential diagnosis were noted between testers whose 

scope of practice included diagnosis of patients after ordering sequencing (n=3; 

pediatric genetic counselor, pediatric geneticist, internist) and other areas of genetics 

(n=3; laboratory director, cancer and variant analysis genetic counselors); therefore, 

results are grouped by testers regularly performing differential diagnosis, as this is the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2021. ; https://doi.org/10.1101/2020.08.21.20179580doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.21.20179580
http://creativecommons.org/licenses/by-nc-nd/4.0/


current primary purpose of GPACSS, and by testers addressing broader organization 

implementation potential. 

Usability of GPACSS prototype for differential diagnosis 

Overall reception to the prototype was positive. Testers raised general issues relevant 

to CDS design1 5 (interface, interaction, information); including terminology, functionality 

they had trouble finding, and the desire for more infobuttons and training. Testers liked 

the flagged findings (Figure C), the contextual information for each mention in the EHR, 

and the rank ordering of flagged findings by usefulness. Testers also liked the 

visualization of the evolving differential diagnosis and the automated RoR report for 

sharing with patients and referring clinicians, including the ability to save and access 

this report from the EHR.  

Testers were thoughtful and purposeful in use of GPACSS. Notably, in case 3 (the most 

complex case), one tester did not immediately choose the top diagnosis offered by 

GPACSS. Supported by the data displayed, the tester indicated that to make a definitive 

diagnosis they would evaluate for the second-ranked disease – as that second condition 

had a test that was easy and accurate and the condition was also more treatable – 

indicating utilization of the DDSS as intended and consistent with clinical diagnostic 

decision-making. 

Interface: The interface was noted to be complex, but testers stated this was expected 

due to the inherent complexity of genetic diagnosis and that they anticipated a learning 

curve to develop proficiency. Placement, positioning, and the multiple presentation 

layers (text and graphics in the interface)1 were well liked. In particular, the “Assess 
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diagnosis” display was seen as valuable because it made transparent to the end-user 

the logic used by the DDSS in comparing patient findings to known information about 

the disease. Varying interpretations were stated by testers for the different graphical 

bars and shading used in the DDSS, however, this did not hinder their ability to use the 

information to make the diagnosis or to question the need for the bar itself. More 

labeling was suggested to help with interpretation (Table 3). 

 

Table 3. Tester Experience with GPACSS for the Differential Diagnosis Process*  

CDS design 
category  

Tester Experience 

Interface 

“It’s going to take a lot to learn. A lot of clicking back and forth and 
it’s not super intuitive but I get it” [Tester 2] 
 
“More training would be good… unless I was doing it all the time for 
all of my patients, every step, I might not realize that some of the 
features are available…” [Tester 3] 

“These bars are different lengths, so I assume it's having something 
to do with frequencies...  so I'm not sure why this part is purple....if 
there were something [on the assess diagnosis tab] that said this is 
100% over here and this is 0% over here, that would kind of help, if 
I knew that that was the case... I'm not sure what these other colors 
are referring to.” [Tester 5] 
 
“To me, the green bar in it shows me they are confident that this 
genetic variant aligns with the phenotypic markers that we have 
identified.  I don't necessarily know how far the bars will tell me 
they're confidence in pathogenic versus VUS.” [Tester 3] 

Workflow fit “Everything's there [in the chart] and the question is how easy is it 
to find. I'm sure if you're a malpractice lawyer you get very good at 
pulling stuff out of these charts and asking why didn't you see that. 
Yet I can't look at everything.” [Tester 2]  
 
“This is stuff that you are doing anyway… you could make your 
note a lot shorter and just refer to that document [the automated 
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Summary] … I like the idea that you can explore.  Clinical genetics 
now is limited on time.” [Tester 5] 

Perceived 
Need 

“It's nice because it helps guide me… it's very easier for me to 
realize that Prader–Willi is associated with narcolepsy....” [Tester 3]  
 
“…The report is a great idea for highlighting why you think it's [the 
care instructions] important, [in] a standard format…  The average 
primary care physician that gets the genetic testing reports, says I 
don't know what this means at all.  I think this [the Prognosis Table] 
is a step towards making it more understandable.” [Tester 2] 

Acceptability “I would use it most of the time. To me, this is the frontier of 
genomic medicine and I look at my role as not only taking care of a 
patient but figuring out how we make genomics part of everyday 
medical practice.  The useful things in the chart, genetics people 
can now get to right away. [Tester 2] 
 
I think the interface is really good, in that you have that ability to 
explore those variants that may or may not make it on the reports 
that we get now, so you can drill deeper if you want. [Tester 5] 

*Comments only from testers experienced with differential diagnosis of genetic 
conditions through sequencing (n=3; pediatric genetic counselor, pediatric geneticist, 
internist ordering 4-5 exomes in the past month) 

 

Interaction: Testers initially expressed concern around “too many clicks” and “click 

fatigue”, but subsequently noted most clicking was unavoidable and necessary as the 

testing session continued. For example, they saw value in taking the time to correctly 

specify onset information (which requires clicking and cognitive load in the DDSS), as 

this is standard in the genetic diagnostic process. “Cognitive Load” in DDSS testing 

refers to additional thinking required of users to interact with the tool, and the general 

recommendation is to minimize this in CDS design.1 Testers did comment on the 

cognitive load required to review and choose age of onset for flagged findings, but the 

cognitive load was noted as similar whether completing this task with GPACSS or 

without it.  
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Information: Testers appreciated existing resources, such as the hover feature that 

revealed synonyms to findings and requested even more infobuttons and hovers. 

Testers indicated confusion over some terminology, notably “zygosity” and “severity 

score” when reviewing the genomic variants. Some testers located the explanatory 

resource for these terms in the GPACSS prototype while others did not.   

The fact that the EHR mentions displayed in flagged findings were sometimes triggered 

by parent or by child concepts was noticed by all testers, and some found the findings 

used in the DDSS not as granular as they were expecting. Regardless, testers 

recognized and emphasized the importance of being able to review the mention 

information from the EHR and manually adjust for any false positives and false 

negatives from the NLP process. 

Acceptability and Fit for Differential Diagnosis: The 3 testers regularly performing 

differential diagnosis noted benefits to GPACSS through ratings of satisfaction and 

navigation (0-10 hard to easy). Satisfaction averaged 8.5 out of 10 (range 8-9.5) and 

navigation ease averaged 8 out of 10 (range 7.5-9). While all 3 felt that GPACSS would 

save time throughout the clinical process, one tester estimated this savings at “30-50%” 

[Tester 3]. Specific value in time saved was noted for chart review.  

These testers also noted that the GPACSS process as tested fit with their clinical 

workflow diagnosing genetic conditions. As an added benefit addressing a perceived 

need, they described how using GPACSS helped them learn about diseases and 

associated findings with which they were less familiar (Table 3).  
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The RoR report generated in each scenario includes a detailed prognosis table20 that 

was highly valued for being standardized and for its ability to communicate complex 

genetic information to patients and other clinicians (Table 3). Further acceptability was 

noted as testers exhibited learning and familiarity with GPACSS as they progressed 

through the testing session; appreciating the DDSS assistance as each vignette 

increased in complexity; noting “It takes it [clinical diagnosis and diagnostic thinking] to 

a higher level”. [Tester 2]. These testers also expressed readiness to adopt the tool in 

clinical practice; and one tester (pediatric geneticist) suggested that GPACSS could 

also serve as a differential diagnosis training tool for medical students and genetics 

residents in their clinic.  

 

Acceptability and fit beyond the differential diagnosis process 

The RoR report was noted by the additional testers as an improvement over current 

laboratory reports and that it addressed an unmet clinical need, stating it was “where 

the most utility would be” [Tester 4] for GPACSS in their clinical process. Furthermore, 

they expressed enthusiasm that GPACSS could fit especially well with in-house 

sequencing laboratories where EHR data would be fully available during sequence 

interpretation.  

Because these testers currently interact with genomic data from external labs only, they 

wondered at the fit with a clinical genetic testing workflow in which they receive a report 

with variants labeled as to pathogenicity and association with a condition, implying a 

clinical diagnosis, rather than receiving the sequence for further evaluation. However, 
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they did identify value in situations with greater uncertainty as to the diagnosis after 

sequencing or where flagged findings and the usefulness ranking would allow clinicians 

to draw on other information to make the diagnosis. Furthermore, these testers 

hypothesized that the ability to periodically re-analyze an existing VCF in minutes with 

GPACSS would improve the diagnosis rate over time.  

DISCUSSION 

This study reports on the adaptation of a DDSS tool and user testing in a simulated real-

world clinical workflow for perceived need, acceptability, and workflow fit. Such 

assessment is critical if CDS is to fulfil the promise of standardizing and improving 

care.1 4 5 8 We demonstrated that the combination of NLP with a CDS tool optimized to 

support the clinical process of differential diagnosis addressed the needs of those 

involved in this complex task. 

Technical issues related to the interface and interaction of CDS design were minor and 

fixable; as were issues with design layout. Despite initial remarks on the number of 

clicks and cognitive load, testers acknowledged these as necessary to the genetic 

diagnosis process and no different with or without the DDSS. Other issues related to 

terminology and usability could be solved through a combination of training, added 

infobuttons, and experience using GPACSS. Some of the technical gaps noted or 

additions requested by testers already exist within GPACSS, however, the 4-minute 

training video was created to provide enough instruction only to facilitate user testing. 

These results therefore provide necessary information to include in training and ongoing 

reference materials for future implementation. 
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GPACSS fits with the new CDS heuristic proposed by Miller et al5 of “integration into 

real-time workflow,” as all testers identified ways GPACSS added such value and fit. 

Furthermore, according to Rogers’ Diffusion of Innovations model, organizations must 

evaluate innovations for fit to meet a perceived need and be an acceptable solution at 

the organization level.28 30 All testers noted ways GPACSS filled multiple needs in the 

diagnostic process; therefore, GPACSS was found overall by testers to have good fit for 

implementation regardless of individual tester issues and suggestions for technical 

improvements. While workflow fit was highest among testers involved in differential 

diagnosis of genetic conditions, opportunities for workflow fit were described by all 

testers.  

 

LIMITATIONS 

To facilitate user testing of GPACSS in the context of clinical workflow prior to full 

integration and implementation simulations of the real-world were required. Because 

this study used the Logica EHR simulation, benefits or drawbacks of GPACSS in a 

production EHR could not be directly observed. Similarly, full annotations for the causal 

variants were not included in the variant table for the simulated patients; limiting full 

assessment of the value of the DDSS in variant interpretation. This impacted the 

understanding of the “severity score” by all testers, as the annotation information that 

would be provided for a real patient was not included in the VCF for the simulated 

patients. Finally, the generic cTAKES NLP using the UMLS concepts found only 20 of 

the 30 (67%) pertinent positive concepts that a pediatric neurologist (MMS) identified by 
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reading the records, but this was sufficient to return key terms to support differential 

diagnosis generation. Further enrichment and to reverse the deliberate decisions in 

generic NLP to avoid false positives was not appropriate for this preliminary user 

testing31. However, subsequent automated search for UMLS terms for flagging and 

addition of a separate stage of text search enrichment for terms missed by the NLP 

such as “tall” improved NLP yield to 30 of 30 (100%).   

These simulations and user testing were a necessary first step and provide data to 

guide implementation of GPACSS. NLP improvements and additional beta testing within 

an actual EHR, with real patient results, and in real-world clinical workflows will be 

necessary to fully assess individual user-level and organizational-level facilitators and 

barriers to use, implementation, and impact on clinical care.  

 

CONCLUSIONS 

This study provides preliminary evidence for the usability, workflow fit, acceptability, and 

implementation potential of a DDSS that includes machine-assisted chart review. 

Overall, responses suggest the GPACSS prototype is usable based on technical CDS 

and human-centered design criteria, addresses perceived clinical need, and has good fit 

within the real-world clinical workflow of genetic testing and diagnosis. Further 

development is needed to improve usability for multiple clinical stakeholders and 

organizational implementation. 
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Figure Legends: 

Figure A. SimulConsult main interface showing ranked list of candidate diseases 

and guidance for entering finding presence (or absence) with onset age. 

 

FIGURE B:  Architecture of the Genotype-Phenotype Archiving and 

Communication System with SimulConsult (GPACSS)  

The key components are the coordination / archiving system (blue), the DDSS (green) 

and the NLP (yellow). 

 

FIGURE C:  Flagged findings with EHR text display for DDSS  

A finding having a flag icon indicates that information was found in the EHR.  Clicking 

the flag shows the various mentions of the flagged finding. 
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