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SUMMARY 34 

Background: SARS-CoV-2 viral loads change rapidly following symptom onset so to assess antivirals it is important to 35 

understand the natural history and patient factors influencing this. We undertook an individual patient-level meta-analysis of 36 

SARS-CoV-2 viral dynamics in humans to describe viral dynamics and estimate the effects of antivirals used to-date. 37 

Methods: This systematic review identified case reports, case series and clinical trial data from publications between 38 

1/1/2020 and 31/5/2020 following PRISMA guidelines. A multivariable Cox proportional hazards regression model (Cox-39 

PH) of time to viral clearance was fitted to respiratory and stool samples. A simplified four parameter nonlinear mixed-effects 40 

(NLME) model was fitted to viral load trajectories in all sampling sites and covariate modelling of respiratory viral dynamics 41 

was performed to quantify time dependent drug effects. 42 

Findings: Patient-level data from 645 individuals (age 1 month-100 years) with 6316 viral loads were extracted. Model-43 

based simulations of viral load trajectories in samples from the upper and lower respiratory tract, stool, blood, urine, ocular 44 

secretions and breast milk were generated. Cox-PH modelling showed longer time to viral clearance in older patients, males 45 

and those with more severe disease. Remdesivir was associated with faster viral clearance (adjusted hazard ratio (AHR) = 46 

9·19, p<0·001), as well as interferon, particularly when combined with ribavirin (AHR = 2·2, p=0·015; AHR = 6·04, p = 47 

0·006). 48 

Interpretation: Combination therapy including interferons should be further investigated. A NLME model for designing 49 

and analysing viral pharmacodynamics in trials has been established. 50 
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RESEARCH IN CONTEXT 52 

 53 

Evidence before this study 54 

We performed a systematic literature search for studies reporting serial viral load measurements in humans for SARS-CoV-55 

2 in MEDLINE and Embase, MedRxiv and BioRxiv along with the PROSPERO systematic review register. As of 27/5/20, 56 

no previous or ongoing review has systematically searched for and pooled individual patient-level serial viral load data in 57 

this disease or depicted SARS-CoV-2 viral load trajectories in a meta-analysis. In addition, modelling of SARS-CoV-2 viral 58 

dynamics and model-based quantification and simulation of antiviral drug activity is to date only available from single 59 

studies. A comprehensive dataset for distinguishing between natural history of the disease and drug effect related viral load 60 

decline was therefore lacking. 61 

 62 

Added value of this study 63 

This individual patient meta-analysis includes a large dataset of individual patient serial viral load measurements for SARS-64 

CoV-2 with and without drug therapy. The full dataset contains 645 individuals with 6316 viral load samples. The majority 65 

were sampled from the upper respiratory tract. There were also samples available from the lower respiratory tract, blood, 66 

urine and stool, breast milk and ocular secretions. This enabled us to estimate parameters of a nonlinear mixed effects 67 

(NLME) viral dynamics model to characterise the course of viral shedding across each sample site. 68 

A multivariable Cox proportional hazards regression analysis revealed increasing age, disease severity and male sex to be 69 

associated with longer time to viral clearance, indicating that patients with worse clinical outcomes do have higher viral 70 

loads. A NLME model incorporating drug effects showed early initiation of antivirals shortened time to viral clearance. By 71 

including data on multiple drug combinations Cox proportional hazards suggests type I interferons plus ribavirin to be 72 

potentially synergistic in vivo.  Our NLME model can be used to determine the sample size of future Phase II trials. For 73 

example, to detect a significant difference in proportion of patients clearing the virus after 7 days of treatment in patients 74 

starting therapy at day 3 post symptom onset with 90% power, one would require 606, 284, 90 or 31 patients per group for 75 

lopinavir/ritonavir, ribavirin, interferon or interferon plus ribavirin drug effects respectively. The later that antivirals are 76 

initiated, the smaller the drug effect and hence the larger sample size required to determine antiviral activity.  77 

 78 
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Implications of all the available evidence 79 

This individual patient level meta-analysis provides insight into the natural history of the SARS-CoV-2 viral dynamics 80 

through the biggest serial viral load data set available to date. A NLME viral dynamics model was established enabling 81 

estimation of the impact of drug effects on viral clearance. The full data set and model code is available to as a tool to design 82 

and analyse Phase II antiviral trials. 83 
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INTRODUCTION 85 

Finding antivirals that target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will be crucial in managing 86 

the ongoing pandemic. In addition to the development of novel agents, substantial efforts are underway to establish whether 87 

currently available agents may be re-purposed1. A key biomarker for clinical antiviral activity is viral load in bodily fluids 88 

and assessing a drug’s or drug combination’s ability to reduce viral load is an important first step in identifying therapies that 89 

influence clinical outcome. 90 

 91 

To correctly assess antiviral activity, it is first necessary to understand viral load natural history. As a rapidly progressing, 92 

primarily respiratory viral infection, SARS-CoV-2 elimination from the body seems to be mainly driven by a combination of 93 

innate immune response and exhaustion of target cells available for infection2. Observational cohort studies published to date 94 

have shown that the rate of viral load decline seems slower in older patients, those with more severe disease and those with 95 

comorbidities such as diabetes mellitus and immunosuppression3-6. Interpreting these observational studies requires caution 96 

because patients have often received antiviral therapies. Due to the time point of initial infection being unknown, assessing 97 

viral load in response to treatment must account for time since symptom onset7.  98 

 99 

Since February 2020 case reports and case series of patient-level viral dynamics have been published, some of which report 100 

dosing of antiviral drugs8. Clinical trials of antivirals and their association with viral load are also beginning to read out9. 101 

Meanwhile large pragmatic trials of repurposed monotherapy antivirals have yet to find a clearly effective agent10. At this 102 

crucial juncture, it is vital to develop a pharmacodynamic modelling framework that can be used to describe the natural 103 

history of SARS-CoV-2 viral dynamics, make initial estimates on antiviral efficacy of agents used to-date, and to design and 104 

evaluate Phase II trials using viral load as a biomarker. 105 

 106 

This systematic review therefore aimed to search for case reports, case series and clinical trials reporting serial individual 107 

patient-level SARS-CoV-2 viral load measurements in humans from any sampling site upon which an individual patient-108 

level meta-analysis was then performed. A nonlinear mixed effects (NLME) viral dynamic model was fitted to describe the 109 

viral trajectories in each sampling site and to give a quantitative measure of viral dynamics. In data of sufficient quality, the 110 
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parameters of multivariable Cox proportional hazards regression models of time to viral clearance, and NLME models of 111 

antiviral efficacy were estimated. 112 

 113 

  114 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.20.20178699doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20178699
http://creativecommons.org/licenses/by-nd/4.0/


7 

 

METHODS 115 

Protocol and registration 116 

The protocol for this systematic review and individual patient meta-analysis, which follows the PRISMA Individual Patient 117 

Data systematic reviews protocol11, was first published on 27/5/2020 at: https://github.com/ucl-pharmacometrics/SARS-118 

CoV-2-viral-dynamic-meta-analysis. The final dataset and statistical analysis code are also published here. The review was 119 

registered with PROSPERO (CRD42020189000). 120 

 121 

Eligibility criteria 122 

This study aimed to identify serial viral loads with time in human subjects infected with SARS-CoV-2 in order to describe 123 

and model viral load trajectory. The inclusion criteria were therefore papers containing individual subject-level reports of 124 

viral load with time, either since symptom onset or time since start of monitoring for asymptomatic subjects, and sampling 125 

site. Authors of manuscripts describing summary statistics of viral load with time were contacted requesting participant level 126 

data. Viral load was defined as either a value in copies/mL or a cycle threshold (Ct) value of an uncalibrated polymerase 127 

chain reaction (PCR) assay. 128 

 129 

Overall search strategy 130 

Since SARS-CoV-2 was notified to the WHO on 31/12/2019, we did not expect to find relevant papers published prior to 131 

this date. Hence, PubMed, EMBASE, medRxiv, and bioRxiv were searched with a date range of 1/1/2020 to 31/5/2020. The 132 

following search terms were used for PubMed and EMBASE: (SARS-CoV-2 OR COVID OR coronavirus OR 2019-nCoV) 133 

AND (viral load OR cycle threshold OR rtPCR OR real-time PCR OR viral kinetics OR viral dynamics OR shedding OR 134 

detection OR clinical trial). Due to character limits in the search engine, the following search terms were used for medRxiv 135 

and bioRxiv: (SARS-CoV-2 OR COVID-19 OR coronavirus) AND (viral load OR cycle threshold OR PCR OR viral 136 

dynamics OR clinical trial). 137 

 138 

After removing duplicates, two reviewers independently identified papers for full text screening, with any discrepancies 139 

resolved by a third reviewer. 140 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.20.20178699doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20178699
http://creativecommons.org/licenses/by-nd/4.0/


8 

 

 141 

Data extraction 142 

Viral loads were reported as either numerical values in tables, figures, or in viral load versus time plots. Where possible, 143 

numerical values were copy-pasted directly into a comma separated value (csv) format from the source, whereas tabulated 144 

numerical values contained in pdf images were extracted using https://extracttable.com/. Viral loads reported in plots were 145 

extracted using Web Plot Digitizer12.  146 

 147 

Each viral load was paired with a time since symptom onset or in asymptomatic subjects, the time since viral monitoring 148 

started. Furthermore, sampling site and, if viral load not reported in copies/mL, the PCR assay including the primers used, 149 

were extracted along with limit of quantification and limit of detection, if available. The following patient-level covariates 150 

were extracted if available: 151 

 Presence of fever >37·5 °C at any time (non-time varying covariate)  152 

 age, where possible individual age but otherwise the study’s reported central measure (e.g. mean, median)  153 

 sex or the male/female ratio was extracted if patient-level data not reported  154 

 need for and days of intensive care treatment 155 

 need for and days of mechanical ventilation  156 

 whether patient died and time to death from symptom onset.  157 

In addition, a standardised disease score was constructed for each patient as follows: 158 

0 - asymptomatic 159 

1 - mild disease (fever, cough or other mild symptoms reported) 160 

2 - moderate disease (in addition to mild criterion: need for supplemental oxygen /non-invasive ventilation) 161 

3 - severe disease (requirement for mechanical ventilation) 162 

All data were stored on a shared github repository, and standardised R-scripts took data from each paper to merge into a 163 

single master dataset. A quality control (QC) check on viral load values and all covariates was performed for each paper by 164 

an independent reviewer. 165 

 166 
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Data quality assessment 167 

Viral load quality score 168 

Two quality assessments were applied to each dataset. Firstly, the quality of viral load reporting was rated on a 1-3 scale. 169 

The highest quality 1 was assigned to studies reporting viral load in copies/mL or reporting a calibration curve allowing for 170 

direct conversion of Ct values to viral load. Quality 2 was assigned if viral load was reported in PCR Ct and primers used in 171 

the assay were reported, but calibration data was missing. In this case a published calibration curve for that primer from 172 

another source was used to convert to viral load in copies/mL13,14. Where more than one calibration curve was available for 173 

the same primer the mean slope and intercept was used. The lowest (quality score 3) was assigned when viral load was 174 

reported in PCR Ct but no further information was available on the PCR assay. In this instance a conversion to copies/mL 175 

was made using the mean slope and intercepts from all calibration curves. 176 

 177 

Drug quality score 178 

The second quality assessment on a 3-point scale related to reporting of the antiviral drug therapy administered: which drug(s) 179 

and upon which days did patients receive the drug(s). The highest quality 1 was assigned when it was reported which days 180 

each patient received each drug, or these data were provided by corresponding authors.  If it was reported that no antiviral 181 

was administered this was also assigned quality 1. Quality 2 was assigned when antiviral drug treatment was reported, but 182 

ascertaining which days the patient had received the drugs was not possible. The lowest category, quality 3, was assigned 183 

when it was not possible to determine whether or not antivirals had been administered. 184 

 185 

Statistical analysis 186 

Primary analysis of time to viral clearance using Cox proportional hazards modelling  187 

The primary analysis was conducted on observed time to viral clearance, which was analysed fitting Cox proportional hazards 188 

regression models with adjusted hazard ratios estimated for each covariate. We verified the assumptions of proportional 189 

hazards using the Therneau-Grambsch test.15 The data used for this analysis were limited to respiratory and stool sampling 190 

sites only, as virus was found to be mostly undetectable at other sites. Furthermore, only data from patients with known 191 

antiviral history (drug quality 1 and 2) were used. To assess the possible risk of bias in different drug and viral load qualities, 192 
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the analysis was repeated on two further subsets: Firstly, with only drug quality 1 and respiratory samples, and secondly on 193 

assay quality 1 data only. 194 

 195 

Time to viral load dropping below the limit of detection was modelled with Cox proportional hazards regression in R (version 196 

3·6·3)16. Where a single patient contributed samples from multiple sampling sites (e.g. upper respiratory and stool), the time 197 

to the last site testing negative was used. Multivariable models for covariate effects on time to viral clearance were fitted, 198 

with additional interaction terms for drug therapies included, where multiple antiviral agents were given simultaneously. In 199 

studies reporting sex as a proportion of males, 10 000 datasets were simulated using the reported fraction of males to randomly 200 

assign individuals to being male from the binomial distribution. The Cox proportional hazards regression model was then 201 

fitted to each dataset and parameter estimates compared with the model, where individual sex was assigned by rounding the 202 

fraction of males. Model parameter estimates were visualised using forest plots. 203 

Secondary analysis antiviral pharmacology model  204 

The secondary analysis was to use a NLME model to quantify the increase in viral elimination rate with antiviral therapy.  205 

This analysis used data only from respiratory samples and rated drug quality 1. 206 

Nonlinear mixed-effects (NLME) viral dynamic model  207 

Firstly, a descriptive analysis of all data was undertaken. A NLME viral dynamics model was fitted to the individual patient-208 

level viral load versus time data. The structural model was based on the general target cell limited model, which has 209 

previously been used to describe respiratory viral infections7,17. This model consists of three ordinary differential equations 210 

relating to changes in uninfected target cells (T), infected target cells (I) and free virus (V) over time (t), as follows: 211 

𝑑𝑇(𝑡)

𝑑𝑡
=  −𝛽𝑇(𝑡)𝑉(𝑡) 212 

𝑑𝐼(𝑡)

𝑑𝑡
=  𝛽𝑇(𝑡)𝑉(𝑡) − 𝛿𝐼(𝑡) 213 

𝑑𝑉(𝑡)

𝑑𝑡
=  𝜌𝐼(𝑡) − 𝑐𝑉(𝑡) 214 

where β is the rate at which target cells become infected in the presence of virus, δ is the death rate of infected cells, ρ is the 215 

rate of viral production from infected cells and c is the rate of clearance of free virus. This model is structurally unidentifiable, 216 

as tested through the IdentifiabiltyAnalysis package in Wolfram Mathematica 12·1 (Wolfram Research, Illinois, USA) 18, 217 
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unless the initial condition for T, β, or ρ are known. Furthermore, the elimination rate of free virus (c) is likely to be much 218 

faster than the death rate of infected cells (δ). Hence, by assuming a quasi-steady-state between I and V, and normalising the 219 

total cell number by the number of infected cells when observations begin (t = 0), it is then possible to reduce the model to a 220 

structurally identifiable, two state ordinary differential equation model relating to the fraction (f) of infected cells with time 221 

and infected cells as a proxy for viral load as follows19: 222 

𝑑𝑓(𝑡)

𝑑𝑡
=  −𝛽𝑓(𝑡)𝑉(𝑡) 223 

𝑑𝑉(𝑡)

𝑑𝑡
=  𝛾𝑓(𝑡)𝑉(𝑡) − 𝛿𝑉(𝑡) 224 

with γ, a new parameter equal to ρβT0/c and interpreted to be the maximum rate of viral replication. δ can now be interpreted 225 

as overall viral elimination rate. This population model was then fitted to viral load data with time using the following form: 226 

𝑦௜௝ = 𝑓൫𝜑௜ , 𝑡௜௝൯ + 𝜀௜௝ 227 

where yij was the viral load from subject i at time tij, f is the nonlinear model defined above with parameters φi, and εij the 228 

residual between the model prediction and the observed data. 229 

 230 

Four parameters were estimated: the initial viral load at symptom onset (V0), β, δ and γ. Interindividual variability was 231 

estimated for V0, β and δ with each assumed to follow a log-normal distribution. Viral loads were log transformed and the 232 

residual error was assumed to follow a normal distribution. Parameter estimation by maximum likelihood was undertaken 233 

using the stochastic approximation expectation maximization (SAEM) in NONMEM version 7·420. Model evaluation was 234 

undertaken by analysis of normalised prediction distribution errors (NPDE) and visual predictive checks (VPC)21.  Viral 235 

loads below the limit of detection (LOD) were included by integrating the density function from minus infinity to the limit 236 

of detection to yield a probability of the data being below the LOD (“M3 Method”)22.  237 

In some participants, multiple samples were taken at the same time point (either different sampling site or the same sample 238 

assayed by more than one method). In this case a common residual error term was used to allow for modelling one-level 239 

nested random effects. 240 

 241 
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Descriptive analysis of viral shedding by sample site 242 

The above model was fitted to data from each sampling site. The resulting parameters were then used to simulate the overall 243 

population viral load trajectories. For the respiratory sample sites viral area under the curve (AUC), peak viral load and half-244 

life were derived from the model and plotted versus patient covariates. 245 

Covariate analysis and antiviral drug effects modelling 246 

The initial model used only data obtained in untreated patients. A covariate analysis was undertaken testing the influence of 247 

sampling site (nasal versus oral versus lower respiratory tract), sex, age and disease status on either V0, β or δ. Covariates 248 

were retained in the model based on the likelihood ratio test with a threshold level of significance of p<0·01, and if the same 249 

covariate addition to V0, β or δ all gave significant improvement to model fit then the model with the largest decrease in -2 250 

log likelihood was chosen. For the final model viral area under the curve (AUC), peak viral load and half-life were derived 251 

and plotted versus patient covariates. 252 

 253 

Using the final demographic model, data from patients undergoing antiviral treatment (antiviral drug quality 1) were added. 254 

A univariable analysis was performed, testing each drug’s ability to increase δ. Drugs showing significant improvement in 255 

model fit (p<0·01), according to the likelihood ratio test, were then included in the final multivariable model. 256 

 257 

Simulations based on the antiviral pharmacology model  258 

Simulations were performed to explore the change in viral trajectories for different time points of therapy initiation: Day 1 259 

after symptom onset, Day 3, Day 7 and Day 10. Interferon, lopinavir/ritonavir and ribavirin monotherapy along with the 260 

following combination therapies: interferon plus ribavirin, lopinavir/ritonavir plus ribavirin and the interferon plus 261 

lopinavir/ritonavir and plus ribavirin were explored this way. A dummy population of 5100 subjects with ages uniformly 262 

distributed across 50 to 100 years, consisting of an equal ratio of males and females was created. Each regimen was simulated 263 

using the entire population, assuming sampling from the upper respiratory tract or nose for a time window of 14 days. 264 

Comparisons of the sample size required to detect a significant difference in the proportion of undetectable virus between 265 

antiviral and no treatment were made after 7 days of treatment with a 90% power and alpha level of p<0·05 for antivirals 266 

starting at Days 1, 3 and 7 post symptom onset. 267 

  268 
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RESULTS 269 

Results of the systematic search are given in Figure 1, and details of included papers in Table 1. Individual patient-level data 270 

were extracted from 45 articles reporting viral loads and/or PCR Ct values with time since symptom onset. Of these 32 papers 271 

either reported antiviral participant-level drug histories, or these were provided by the corresponding author. The full dataset 272 

contained 645 individuals contributing 6316 viral load samples. The majority of samples (n) were taken from the respiratory 273 

tract: nasopharyngeal (315 individuals, n=2208), oropharyngeal or saliva (381 individuals, n=2144) and lower respiratory 274 

tract (81 individuals, n=799). The other reported samples sites were stool/rectal swabs (99 individuals, n=655), blood/plasma 275 

(42 individuals, n=258), urine (31 individuals, n=112), ocular (16 individuals, n=50), breastmilk (4 individuals, n=90). 276 

Metrics of the full data set are given in Supplementary Table S1. 277 

 278 

Full details of the extracted patient-level covariates are given in Table 2. Recording of fever, days on ICU and days ventilated 279 

was largely unavailable. Therefore, no further analysis was performed on these variables. However, it was possible to 280 

categorise disease status in all drug quality 1 and 2 papers, either through reports in the manuscript or by contacting 281 

corresponding authors. Overall, most patients had mild disease (376, 66·8%), whereas 79 (14·0%) patients had moderate and 282 

84 (14·9%) severe disease. In total 24 (4·3%) asymptomatic patients were reported. 283 

The distribution of recorded drug therapies, available for drug quality 1 data and respiratory site samples, is summarised in 284 

Supplementary Table S2. 67 patients did not receive antivirals. 285 

 286 

The NLME model fits to the overall data, stratified by sampling site, are provided in Supplementary Table S3 and 287 

Supplementary Figure S1. Simulations from the models for each sampling site showing the expected viral load trajectory 288 

along with the predicted proportion of samples, that would be below the limit of detection are given in Figure 2. For 289 

respiratory sites model-derived AUC, peak viral load and half-life is given in Supplementary Figure S2 290 

 291 

Data on a total of 354 patients with respiratory and/or stool/rectal sampling and drug quality 1 or 2 were available. A forest 292 

plot of the parameter estimates from the Cox proportional hazards regression model is provided in Figure 3. Viral clearance 293 

was fastest from upper respiratory tract samples and slowest from stool. More sensitive assays (with lower detection limits) 294 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.20.20178699doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20178699
http://creativecommons.org/licenses/by-nd/4.0/


14 

 

were associated with longer time to viral clearance and viral clearance was faster in females, younger patients and those who 295 

were asymptomatic. 296 

 297 

Regarding antiviral therapies, only remdesivir (adjusted hazard ratio (AHR) = 9·19, p<0·001) and interferons (AHR = 2·20, 298 

p =0·015) were independently associated with faster viral clearance. The effect of interferon alpha and beta (Supplementary 299 

Figure S3) was similar and hence these were combined. Lopinavir/ritonavir, ribavirin and interferons were most used and 300 

also most used in combination. Adding interaction terms for interferon plus lopinavir/ritonavir, interferon plus ribavirin and 301 

lopinavir/ritonavir plus ribavirin showed a trend towards synergy between interferons and ribavirin in the full dataset (AHR 302 

= 6·04, p=0·006 Figure 3), as well as in the additional analysis taking in quality assessments to account for potential bias: 303 

respiratory data limited to drug quality 1 (Figure 4) and in data limited to only viral load quality 1 data (Supplementary Figure 304 

S4). 305 

  306 

Covariate relationships and drug effects were explored through NLME modelling with parameter estimates of the model 307 

given in Supplementary Table S4 along with visual predictive checks and NPDEs in Supplementary Figures S5 and FigureS6 308 

and visualization of viral area under the curve, peak viral load and half-life derived from the final model in Supplementary 309 

Figure S7. Drug effects were estimated to increase δ. Drug regimens containing interferon (p<0·001), lopinavir/ritonavir 310 

(p=0·0016) and ribavirin (p<0·001) each improved model fit and so were taken forward to the final multivariable drug model.  311 

The final model was then used to simulate expected viral trajectories from upper respiratory sampling sites for interferon, 312 

lopinavir/ritonavir and ribavirin monotherapy, interferon plus ribavirin as well as lopinavir/ritonavir plus ribavirin and the 313 

triple combination of interferon, lopinavir/rintonavir and ribavirin started at 1, 3, 7 and 10 days post symptom onset (Figure 314 

5). The sample sizes for hypothetical Phase II trials to detect significant differences in viral load versus no treatment after 7 315 

days of therapy are given in Supplementary Table S5.  316 

  317 
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DISCUSSION 318 

This systematic review and individual level meta-analysis has identified viral load trajectories from 645 individuals aged 319 

from the first month of life to 100 years. Data from all major sampling sites showed, that: following symptom onset in most 320 

patients, upper respiratory tract viral load has peaked and is declining, whereas in the lower respiratory tract viral load peaks 321 

2-3 days after symptom onset; virus is detectable in stool for at least 2 weeks in 75% of individuals, and virus is detected in 322 

low levels in blood, urine, ocular secretions and breast milk (Figure 2). In addition to simulating the expected trajectory of 323 

viral load at each site, we were able to simulate the percentage of samples expected to be below a typical detection limit of 324 

10 copies/mL (Figure 2). From this it can be seen, that from day 10 post symptom onset over a quarter of upper respiratory 325 

samples have undetectable viral load. This emphasises the importance of early antiviral therapy, and for Phase II trials using 326 

viral load as an endpoint to commence therapy in the first few days of symptom onset in order to reliably differentiate antiviral 327 

effects from natural viral decline (Figure 5, Supplementary Table S5). 328 

 329 

A heterogeneous range of antivirals, administered in different combinations, was observed in our data (Supplementary Table 330 

S2) meaning multivariable modelling of time to viral clearance was used to tease out individual drug effects. No antiviral 331 

activity was seen for chloroquine/hydroxychloroquine, azithromycin, lopinavir/ritonavir, umifenovir and thymalfasin.  332 

However, remdesivir and interferons were both independently associated with shorter time to viral clearance and combination 333 

of interferons with ribavirin also appeared to reduce viral load compared with untreated patients (Figures 3, 4 and S4). 334 

Remdesivir did not however significantly decrease δ in the NLME model, but this is likely due to the low number of included 335 

patients. 336 

 337 

Our most interesting finding is the promising antiviral activity of interferons, possibly due to low endogenous interferon 338 

levels induced by SARS-CoV-227,28. Interferons (alpha and beta) have shown extensive in vitro activity against Severe acute 339 

respiratory syndrome-1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV)23,24.However, this 340 

has not translated into clinical effectiveness in MERS-CoV23, although results from one trial are still pending25. Although 341 

recent data suggests interferon beta may be more potent than alpha against SARS-CoV-2 in vitro26, possibly due to higher 342 

selective indices for interferon-beta 1b, upon finding similar effects of interferon alpha and beta in our primary analysis 343 

(Figure S3), we decided to combine the interferon effect to better explore drug combinations. Consistent across data qualities 344 
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and sampling site combinations, we found either a significant or trend towards significant synergistic activity of interferon 345 

plus ribavirin (Figures 3, 4, S4). 346 

 347 

An extensive body of literature exists to show both interferon alpha and beta are synergistic with ribavirin in vitro against 348 

both SARS-CoV-1 and MERS-CoV23, and we have now shown a signal towards this in vivo with SARS-CoV-2. Although 349 

ribavirin monotherapy was rarely used (two patients), the finding of ribavirin plus interferon synergy is likely to be robust, 350 

since we studied large numbers of lopinavir/ritonavir plus ribavirin, lopinavir/ritonavir alone, lopinavir/ritonavir plus 351 

interferon and triple therapy with ribavirin plus lopinavir/ritonavir plus interferon in addition to patients receiving no 352 

antivirals. Our result suggests, that combining interferons with a nucleoside analogue, possibly remdesivir or favipiravir as 353 

less toxic alternatives to ribavirin, is a potentially promising combination. In our secondary analysis, we included interferon 354 

plus ribavirin in the NLME model and simulations show that virus should be suppressed 2-3 days faster compared to no 355 

treatment (Figure 5).  356 

 357 

Another main finding of our work was the limited antiviral effect of lopinavir/ritonavir, in addition to its lack of significant 358 

synergistic effect with either ribavirin or interferons. The protease inhibitor lopinavir had a modest but consistent in vitro 359 

activity against the major coronaviruses, including SARS-CoV-2, although activity is confined to concentrations at the upper 360 

end of the clinically achievable range1, and our simulations suggest monotherapy studies would require well over 500 361 

participants per arm just to show antiviral activity (Supplementary Table S5). In SARS-CoV-1 however, lopinavir/ritonavir 362 

plus ribavirin was found to be synergistic in vitro and when initiated immediately upon diagnosis led to a significant decrease 363 

in mortality compared to historical controls30,31. Early post-exposure prophylaxis against Middle East Respiratory Syndrome 364 

(MERS-CoV) in healthcare workers showed that lopinavir/ritonavir plus ribavirin reduced the incidence of infection from 365 

28% to 0%32. The lopinavir/ritonavir plus ribavirin combination has therefore been the basis for many clinical trials and 366 

treatment protocols, but our findings suggest that it may not be as useful in SARS-CoV-2 (Figure 3).  367 

 368 

The antiviral effects of remdesivir in vitro are well established and despite only being able to extract individual patient-level 369 

data on six patients, it produced a significantly faster viral clearance in the primary analysis (Figure 3). Despite in some cases 370 

showing promising in vitro activity, we did not find significant antiviral effects of azithromycin, 371 
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chloroquine/hydroxychloroquine, thymalfasin or umifenovir. In the case of hydroxychloroquine and azithromycin the raw 372 

viral load data from the heavily criticised study by Gautret et al33 was included, but contrary to the original analysis we found 373 

no clinical antiviral activity of either drug and, in the case of hydroxychloroquine, a trend towards slower viral clearance. 374 

The reason for this difference in interpretation appears to stem from using time since symptom onset as opposed to time since 375 

starting drug and with untreated patients being monitored from an earlier day-post symptom onset. This example highlights 376 

the necessity of accounting for the time course of the infection when analysing viral loads. 377 

 378 

In our secondary NLME analysis the simplified target cell limited model provided a good fit to data from each sampling site. 379 

In many cases this approximated a mono-exponential decay, but in others, particularly in lower respiratory tract, there was a 380 

pronounced peak in the first days following symptom onset. The model was stable with high inter-individual variability on 381 

V0 and β, reflecting the fact that relative changes in these parameters lead to the initial part of the curve either rising then 382 

falling (in situations when V0 ≈ -β) or approximately monoexponentially declining (when V(0) >> -β). In addition, we found 383 

the model to be less sensitive to changes in γ, meaning it can take a wide range of values with little influence on model fit, 384 

hence we did not estimate an inter-individual variability term on it. 385 

 386 

In contrast to authors who have estimated parameters for more mechanistic models34, we estimated all drug effects to increase 387 

δ, which implies a mode of action relating to inhibition of viral replication or stimulation of viral clearance mechanisms. 388 

Whilst for most of the drugs studied this may be reasonable, entry inhibitors may be more appropriately described by 389 

inhibition of γ, which may not be statistically identifiable with the data possible to collect in the clinical setting. Despite this 390 

potential limitation, we found similar agents (combinations including interferons, ribavirin and lopinavir/ritonavir) to those 391 

identified in the primary analysis of time-to viral clearance.  392 

 393 

The major limitation of our work is the lack of clinical trial data and lack of data on potentially important re-purposing agents 394 

such as favipiravir and nitazoxanide and that only one of the authors of a major clinical trial agreed to share their data9. 395 

Through applying quality assessment criteria on drug history and assay reporting, before undertaking Cox proportional 396 

hazards and NLME modelling we aimed to reduce possible bias in the heterogenous data available. 397 

 398 
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In conclusion, this individual patient level meta-analysis has yielded useful insights into SARS-CoV2 viral dynamics. A 399 

model-based description of viral trajectories in different sampling sites has been elucidated, and we have found covariates 400 

such as increasing age, disease severity and male sex to be associated with slower viral clearance. Our review firmly 401 

establishes a role for early viral suppression in the management of SARS-CoV-2 and an important signal as to the possible 402 

benefits of interferons as a component of antiviral therapy has been found. It has been shown that viral dynamic models such 403 

as ours can increase the power to detect drug effects due to their utilisation of serial measures35 and our model should be 404 

useful to others in both the design and analysis of future Phase II trials, hence the model code and raw data from this analysis 405 

is made available. 406 

  407 
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TABLES 

 

Table 1 Individual papers included in the Meta-Analysis 

Study 
ID 

Country Sample Type Assay Gene  No. of 
Patients  

Sampled 
Patients 

Treatment Symptom details Age, years  

median (IQR) {R} 

Sex M 
(F) 

Ref. 

1 SGP URT, Vn, Un, 
Re, Br 

N, Orf1ab  2 2 None Yes 0.5 1 (1) 36 
 

2 KOR URT, LRT, 
Vn, Un, Re 

RdRp, E  2 2 lpvr, other Yes 55/35 1 (1) 8 
 

3 HKG URT, LRT, Vn RdRp  23 23 lpvr, riba, Ifn Yes*  

(not longitudinal) 

62 {37-75}* 13 
(10)* 

2 
 

4 CHN URT, LRT N, Orf1ab  12 5 riba, ifn, other Yes (not 
longitudinal) 

63 (47-65) [10-72] 8 (4) 37 

5 KOR URT RdRp  1 1 lpvr, azit, other Yes 54 1 (0) 38 
 

6 CHN URT, LRT N  80 (2) 2 - - - - 39 
 

7 CHN URT N, Orf1lab  17 17 - Yes  

(not longitudinal) 

59 {26-78} 8 (9) 1 
 

8 CHN URT, Re, Vn S  16 16 - - - - 40 
 

9 FRA URT RdRP, E  36 26 cqhcq, azit - Mean 45 +/- 22 15 
(21) 

33 
 

10 CHN URT N, Orf1lab  51 50 lpvr, Ifn, umif, 
thym, other 

Yes 43 (29-53) 25 
(26) 

41 
 

11 CHN URT, Vn, Re N, Orf1lab  6 6 - - - 5(1) 42 
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Study 
ID 

Country Sample Type Assay Gene  No. of 
Patients  

Sampled 
Patients 

Treatment Symptom details Age, years  

median (IQR) {R} 

Sex M 
(F) 

Ref. 

12 CHN URT N  94 94 - - 46 (33-61)* 47 
(47)* 

3 
 

13 SGP URT N, S, and 
Orf1ab 

 18 18 lpvr Yes 47 {31-73}* 9 (9)* 43 
 

14 CHN URT -  5 5 lpvr, Ifn, other Yes {36-73}* 3 (2) 44 
 

15 CHN URT Orf1ab  2 2 lpvr, riba Yes 19/36 2 (0) 45 
 

16 FRA URT, Re RdRp, E, 
RdRp-IP1, 
GAPDH 

 5 5 remd Yes  

(not longitudinal) 

46 (31-48) 3 (2) 46 
 

17 GER URT, LRT, Re RdRP, E  9 9 - Yes 40 (33-49) 8 (1) 47 
 

18 CHN URT, Re N, Orf1lab  10 9 - Yes 7 (3-13) 6 (4) 48 
 

19 KOR URT, Vn, Re, 
Un 

E  2 2 None Yes 0.08, neonate 0 (2) 49 
 

20 USA URT -  44 19 - - {23-92}, 61 (mean)* 23 
(21)* 

50 
 

21 TWN URT, LRT RdRp1, RdRp2, 
E, N 

 5 5 lpvr, None Yes 52 (50-53) 2 (3) 51 
 

22 CHN URT, LRT -  213  13 AVT Yes 52 (2-86) 108 
(105) 

52 
 

23 CHN URT -  1 1 inf, cqhcq, other Yes  

(not longitudinal) 

44 1 (0) 53 
 

24 USA URT -  12 12 remd, other Yes  

(not longitudinal) 

53 {21-68} 8 (4) 54 
 

25 HKG URT, LRT,Vn, 
Re 

-  11 11 lpvr, riba, ifn* Yes  

(not longitudinal) 

58 (42-70) 7 (4) 55 
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Study 
ID 

Country Sample Type Assay Gene  No. of 
Patients  

Sampled 
Patients 

Treatment Symptom details Age, years  

median (IQR) {R} 

Sex M 
(F) 

Ref. 

26 CHN URT, Re Orf1ab, N   3 3 ifn, cqhcq, other Yes 28 {25-32} 2 (1) 56 
 

27 SGP URT E  17 17 - Yes* 37 {20-75}* 11 (6) 57 
 

28 TWN URT, LRT  N, RdRp, E  1 1 - Yes  

(not longitudinal) 

50 0 (1) 58 
 

29 CHN URT, Re -  3  1 Ifn and Riba Yes  

(not longitudinal) 

5 {1.5-6} 2 (1) 59 
 

30 CHN URT, Re N, RdRp, E  1 1 lpvr, umif, Ifn, other Yes 47 1 (0) 60 
 

31 KOR URT, LRT E  28  9 lpvr, none Yes* 40 (28-54) {20-73} 15 
(13) 

61 
 

32 ITA URT -  1 1 - Yes 65 0 (1) 62 
 

33 GBR URT -  1 1 none Yes 51 1 (0) 63 
 

34 CHN URT, LRT, 
Co, Vn, Un, Re 

-  16 16 - - 59.5 {26-79}* 13 
(3)* 

64 
 

35 HKG URT RdRp  127 127 lpvr, riba, ifn - 51.5 {31.0-62.5} 68 
(59) 

9 
 

36 CHN URT N  31  19 NA - 41 {28-60}* 10 
(21) 

65 
 

37 CHN URT Orf1ab  147  61 AVT Yes 42.0 (35.0-54.0) {19-
81}* 

67 
(80) 

66 
 

38 CHN URT, Re Orf1ab  54  13 NA Yes 6.8 {2.7-11.7}* 37 
(17) 

67 
 

39 CHN URT Orf1ab  308  10 Lpvr, ifn, riba, 
cqhcq 

Yes 63.5 {45-81}* 151 
(157) 

68 
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Study 
ID 

Country Sample Type Assay Gene  No. of 
Patients  

Sampled 
Patients 

Treatment Symptom details Age, years  

median (IQR) {R} 

Sex M 
(F) 

Ref. 

40 CHN URT -  1 1 other Yes 100 1 (0) 69 
 

41 AUS URT, Br E  2 2 none Yes 0.7/40 1 (1) 70 
 

42 KOR URT, LRT, Un RdRp  2 2 lpvr, cqhcq Yes 46/65 0 (2) 71 
 

43 VNM URT RdRp  2 2 other Yes 65/27 2 (0) 72 
 

44 FRA URT, LRT, 
Vn, Re 

E  1 1 lpvr - - 1 (0) 73 
 

45 GER Br N, Orf1lab  2 2 NA Yes - 0 (2) 74 
 

br = breastmilk, Co = conjunctiva, LRT = lower respiratory tract, Re = faecal/rectal/anal, Un = urine, URT = upper respiratory tract,  Vn = venous (blood, plasma, serum), - = Not Reported. AVT = anti-viral 

therapy, cqhcq = chloroquine/ hydroxychloroquine, ifn = interferon, lpvr = lopinavir/ritonavir, remd = remsdesivir,  riba = ribavarin,  umif = umifenivir. 
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Table 2 Overview extracted variables across different analyses, median [range] (%missing data records). n, number of 

individuals included. 

descriptive (%missing) All Data  

 

n=645  

Cox-PH - Full data 

set 

n=354 

NLME/ reduced 

Cox-PH 

n=317 

Age [years] 

 

46 [0.1 – 100] 

(31.3%) 

48 [0.1-100] 

(0%) 

46 [0.1-100] 

(0%) 

Sex [male/female] 

 

217/189  

(37%) 

215/139 

(0%) 

182/135 

(0%) 

ICU admission [yes/no]* 

 

36/371 

(36.9%) 

8/271 

(21.2%) 

8/257 

(16.4%) 

Invasive ventilation [yes/no]* 14/348 

(43.9%) 

9/262 

(23.4%) 

5/247 

(20.5%) 

Death [yes/no] 

 

1/455 

(29.3%) 

1/330 

(6.5%) 

1/293 

(7.3%) 

Disease severity* 

 

Asymptomatic 

Mild 

Moderate 

Severe 

 

 (12.7%) 

24  

376  

79  

84  

 

(0%) 

19 

258 

52 

25 

 

(0%) 

16 

239 

44 

18 

*There is discord between the reported ICU and mechanical ventilation and disease severity score due to incomplete reporting 

in some papers.  Disease severity was taken from individual reports of disease status in cases where ICU admission and 

invasive ventilation were not specifically mentioned, and only Disease severity was used in the analyses.  
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Figure 1: PRISMA diagram detailing the systematic search results
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Figure 2: Model-predicted viral load trajectories at each sample site studied.
Black lines are the median predictions, with shaded areas representing the 95% prediction interval.
The percentage of samples that are predicted to be below a typical limit of detection (10 copies/mL)
are given in 2-daily time bins on each plot
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Figure 3: Multivariable Cox proportional hazard results on all drug quality 1 and drug quality 2 data
from respiratory and stool/rectal sampling sites.
Adjusted hazard ratios exceeding 1 indicate virus being more likely to become undetectable
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Figure 4: Multivariable Cox proportional hazard results on drug quality 1 data from respiratory sam-
pling sites only.
Adjusted hazard ratios exceeding 1 indicate virus being more likely to become undetectable
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Figure 5: Simulated viral load trajectories.
Simulations with a dummy population equally distributed between 50 and 100 years, and equal
male/female ratio were performed for each scenario. Drugs were started at day 1 (blue), day 3 (or-
ange), day 7 (green) or day 10 (red) post symptom onset.
Mean black line and error bars represent simulations of the dummy population without drug treat-
ment. Coloured mean lines and error bars represent the respective drug regimen. Percentage values
represent expected proportion of samples below the limit of detection for no drug (black) versus drug
therapy (coloured) at each time point.
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