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Examining the status of improved air quality due to COVID-19 lockdown and an 1 

associated reduction in anthropogenic emissions   2 

 3 

Abstract 4 

Clean air is a fundamental necessity for human health and well-being. The COVID-19 5 

lockdown worldwide resulted in controls on anthropogenic emission that have a significant 6 

synergistic effect on air quality ecosystem services (ESs). This study utilised both satellite and 7 

surface monitored measurements to estimate air pollution for 20 cities across the world. 8 

Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI) data were used for 9 

evaluating tropospheric air quality status during the lockdown period. Surface measurement 10 

data were retrieved from the Environmental Protection Agency (EPA, USA) for a more explicit 11 

assessment of air quality ESs. Google Earth Engine TROPOMI application was utilised for a 12 

time series assessment of air pollution during the lockdown (1 Feb to 11 May 2020) compared 13 

with the lockdown equivalent periods (1 Feb to 11 May 2019). The economic valuation for air 14 

pollution reduction services was measured using two approaches: (1) median externality value 15 

coefficient approach; and (2) public health burden approach. Human mobility data from Apple 16 

(for city-scale) and Google (for country scale) was used for examining the connection between 17 

human interferences on air quality ESs. Using satellite data, the spatial and temporal 18 

concentration of four major pollutants such as nitrogen dioxide (NO2), sulfur dioxide (SO2), 19 

carbon monoxide (CO) and the aerosol index (AI) were measured. For NO2, the highest 20 

reduction was found in Paris (46%), followed by Detroit (40%), Milan (37%), Turin (37%), 21 

Frankfurt (36%), Philadelphia (34%), London (34%), and Madrid (34%), respectively. At the 22 

same time, a comparably lower reduction of NO2 is observed in Los Angeles (11%), Sao Paulo 23 

(17%), Antwerp (24%), Tehran (25%), and Rotterdam (27%), during the lockdown period. 24 

Using the adjusted value coefficients, the economic value of the air quality ESs was calculated 25 

for different pollutants. Using the public health burden valuation method, the highest economic 26 

benefits due to the reduced anthropogenic emission (for NO2) was estimated in US$ for New 27 

York (501M $), followed by London (375M $), Chicago (137M $), Paris (124M $), Madrid 28 

(90M $), Philadelphia (89M $), Milan (78M $), Cologne (67M $), Los Angeles (67M $), 29 

Frankfurt (52M $), Turin (45M $), Detroit (43M $), Barcelona (41M $), Sao Paulo (40M $), 30 

Tehran (37M $), Denver (30M $), Antwerp (16M $), Utrecht (14 million $), Brussels (9 million 31 

$), Rotterdam (9 million $), respectively. In this study, the public health burden and median 32 

externality valuation approaches were adopted for the economic valuation and subsequent 33 

interpretation. This one dimension and linear valuation may not be able to track the overall 34 

economic impact of air pollution on human welfare. Therefore, research that broadens the 35 

scope of valuation in environmental capitals needs to be initiated for exploring the importance 36 

of proper monetary valuation in natural capital accounting. 37 

Keywords: Air pollution; Google Earth Engine; Ecosystem services; COVID-19; lockdown; 38 

Human mobility; Natural capital; TROPOMI 39 
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1.   Introduction  41 

As per the Ecosystem Services (ESs) definition of Millennium Ecosystem Assessment 42 

(MA, 2005), provision of clean air is one of the fundamental needs of human lives, which 43 

mainly comes from natural vegetation and appropriates by human interferences (Schirpke et 44 

al., 2014; Ash et al., 2010; Charles et al., 2020; Baró et al., 2014). The accelerated increases of 45 

air pollution across the world that mainly comes from transport emissions, industrial emission, 46 

domestic emission, and waste incineration is the primary reason for the degrading status of air 47 

quality ecosystem services. The high concentration of air pollutants, including nitrogen dioxide 48 

(NO2), carbon monoxide (CO), particulate matter (PM2.5 and PM10), sulfur dioxide (SO2), 49 

which goes beyond the normal absorption capacity by the green canopy, leading to a paramount 50 

impact on the quality of human life (Nowak, 1994; Escobedo et al., 2008; De Carvalho and 51 

Szlafsztein, 2019; Gómez-Baggethun and Barton, 2013). The COVID-19 pandemic and its 52 

associated restriction on human activities cut down the pollution level drastically across the 53 

scale (Kumar et al., 2020a,b; Mahato et al., 2020). Many scholarly works appear on time to 54 

discuss the positive effect of COVID-19 lockdown on air quality (Venter et al., 2020, Kumar 55 

et al., 2020a; Ogen, 2020; Sasidharan et al., 2020; Sharma et al., 2020). However, a thorough 56 

evaluation is needed to measure the synergistic effects of these interventions on air quality 57 

ecosystem services. 58 

Air pollution has been reduced drastically due to COVID-19 led lockdown and its 59 

resultant restrictions on human activities. Veneter et al. (2020) had examined both tropospheric 60 

and ground air pollution levels using satellite data and a network of >10,000 air quality stations 61 

across the world and found that 29% reduction of NO2 (with 95% confidence interval -44% to 62 

-13%), 11% reduction of Ozone (O3), and 9% reduction of PM2.5 during the first two weeks of 63 

lockdown (Venter et al., 2020). Kerimray et al. (2020) study at Almaty, Kazakhstan, found that 64 

the effect of city-scale lockdown, which was effective on March 19, 2020, has resulted in 21% 65 

reduction of PM2.5 with spatial variation of 6 – 34%. The CO (49% reduction) and NO2 (35% 66 

reduction) concentration has also been reduced substantially. In the same period, an increase 67 

(15%) in O3 levels is also observed in Almaty, Kazakhstan (Kerimray et al., 2020). Mahato et 68 

al. (2020) had reported a sharp reduction in air pollution in Delhi, one of the most polluted 69 

cities in the world. The author found that the concentration of PM10 and PM2.5  in Delhi was 70 

reduced to 60% and 39%, compared to the air pollution levels in 2019 (considered the 71 

lockdown period only). The concentration of other pollutants, such as NO2 (−52.68%) and CO 72 

(−30.35%), have also been reduced substantially during the lockdown period. In addition to 73 

this, Mahato et al. study has observed a 40% to 50% improvement in air quality in Delhi within 74 

the first week of lockdown. Bao and Zhang, (2020) study combined air pollution and Intracity 75 

Migration Index (IMI) data for 44 cities in northern China and found that restriction on human 76 

mobility is strongly associated with the reduction of air pollution in these cities. The author 77 

found that the air quality index (AQI) in these cities is decreased by 7.80%, as the concentration 78 

of five key air pollutants, i.e., SO2, PM2.5, PM10, NO2, and CO have decreased by 6.76%, 79 

5.93%, 13.66%, 24.67%, and 4.58%, respectively. Sicard et al., (2020) had observed that due 80 

to lockdown and resulted in the restriction on human activities, NO2 mean concentrations were 81 

reduced substantially in all European cities, which was ~53% at urban stations. During the 82 

same period, the mean concentrations of O3was reported to be increased at the urban stations 83 

in Europe, i.e., 24% increases in Nice, 14% increases in Rome, 27% increases in Turin, 2.4% 84 

increases in Valencia and 36% in increases in Wuhan (China). Otmani et al., (2020) study at 85 
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Morocco using three-dimensional air mass backward trajectories and HYSPLIT model found 86 

that PM10, SO2, and NO2 are reduced up to 75%, 49%, and 96% during the lockdown period. 87 

In the southeast Asian (SEA) countries, (Kanniah et al., 2020) study found that PM10, PM2.5, 88 

NO2, SO2, and CO concentrations have been decreased by 26–31%, 23–32%, 63–64%, 9–20%, 89 

and 25–31% during the lockdown period in Malaysia. Kumar et al., (2020a) examined the 90 

impacts of COVID-19 mitigation measures on the reduction of PM2.5 in five Indian cities 91 

(Chennai, Delhi, Hyderabad, Kolkata, and Mumbai), using in-situ measurements from 2015 to 92 

2020. Kumar et al. study found that during the lockdown period (25 March to 11 May), the 93 

PM2.5 concentration in the selected cities has been reduced by 19 to 43% (Chennai), 41–53% 94 

(Delhi), 26–54% (Hyderabad), 24–36% (Kolkata), and 10–39% (Mumbai), respectively. This 95 

study also found that cities with higher traffic volume exhibited a greater reduction of PM2.5.  96 

The level of air pollution has a severe impact on human health and overall well-being. 97 

Air pollution is responsible for nearly 5 million deaths each year globally (IHME, 2020). In 98 

2017, air pollution had contributed to 9% of deaths, ranges from 2% in the high developed 99 

country to a maximum 15% in low-developed countries, especially in South and East Asia 100 

(IHME, 2020). Based on Disability-Adjusted Life Years (DALYs) statistics, which 101 

demonstrate of losing one year of good health due to either premature mortality or disability 102 

caused by any factors, it has been estimated that air pollution is the 5th largest contributor to 103 

overall disease burden, only after high blood pressure, smoking, high blood sugar, and obesity, 104 

respectively. The adverse impact of air pollution on human health is not only limited to 105 

(low)developing countries. In the European regions, nearly 193,000 deaths in 2012 were 106 

attributed to airborne particulate matter (Ortiz et al., 2017). In addition, it has been found that 107 

air pollution in China is accountable for 4000 deaths each day, i.e., 1.6 million casualties in 108 

2016 (Rohde and Muller, 2015; Wang and Hao, 2012). By looking at the adverse effects of air 109 

pollution on COVID-19 counts, Chen et al., (2020) found that reduction in PM2·5 during the 110 

lockdown period helped to avoid a total of 3214 PM2·5 related deaths (95% CI 2340–4087). 111 

Chen et al., (2020) also estimated that COVID-19 lockdown and resulted cut down of air 112 

pollution brought multi-faceted health benefits to non-COVID mortalities. Several research 113 

studies (He et al., 2020; L. et al., 2015; Dutheil et al., 2020a) have echoed the surmountable 114 

effects of air pollutants on human lives and found that an increase in 10μg m-3  of NO2 per day 115 

will be responsible for a 0.13% increases of all-cause mortality (He et al., 2020). The mortality 116 

rate would be around 2% when the 5-day NO2 level would reach 10μg m-3 (Monica et al., 2011). 117 

In addition to this, L. et al. (2015) estimated that the increase in 8.1 ppb in NO2 is attributed to 118 

1.052 increases in global hazard ratio related to air pollution.   119 

Ecosystem Services (ESs) are the supports and benefits (provisioning, such as food and 120 

water; regulating such as management of floods, drought, land degradation, and disease; 121 

supporting such as soil formation and nutrient cycling; and cultural such as recreational, 122 

spiritual, religious and other non-material) that humans have free access from natural 123 

environment and ecosystems, which adds to human well-being (Fisher et al., 2009; Costanza 124 

et al., 1997; Braat and de Groot, 2012; Sannigrahi et al., 2018;  Sannigrahi et al., 2019). The 125 

ecosystem service value (ESV) is a comprehensive assessment and has proven to be an 126 

alternative appraisal between environment and human development for sustainable natural 127 

resource management (Braat and de Groot, 2012; Potschin and Haines-Young, 2013; Pandeya 128 

et al., 2016; Sannigrahi et al., 2020c; Sannigrahi et al., 2020b; Adekola et al., 2015). The 129 

growing importance of ESs helps in adjusting the cost-benefit analysis by evaluating both the 130 
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negative and positive effects of human interferences on the natural environment and 131 

ecosystems. Considering the plausible application of ecosystem service valuation in different 132 

strata of planning, priorities should be given to developing a suitable valuation framework for 133 

estimating the biophysical and economic values of the key ESs (Bastian et al., 2013; Burkhard 134 

et al., 2014; Spangenberg et al., 2014; Affek and Kowalska, 2017; Sannigrahi et al., 2019). Due 135 

to unawareness about the importance of ESs on natural capital formation and human well-136 

being, the ecosystem service valuation research was neglected for an extended period (Jack et 137 

al., 2008). To overcome this, several national and international valuation framework were 138 

formed, including The Economics of Ecosystems and Biodiversity (TEEB), The Inter-139 

governmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 140 

Millennium Ecosystem Assessment (MA 2005), Ecosystem Service Partnership (ESP) to name 141 

a few (Burkhard et al., 2009; Costanza et al., 2014; Comberti et al., 2015). 142 

It is now well-established by many data-driven experiments that the accelerated rate of 143 

air pollution can have a substantial impact on overall human well-being. Due to this pandemic, 144 

the world witnessed an extraordinary transformation in all strata of lives, such as adopting 145 

digital alternatives to carry out the routine life and imposing national scale lockdown to restrict 146 

human mobility and social activity, to prevent the spread of infection. Additionally, as it is 147 

observed by many studies across the scale, the long term restriction on human mobility resulted 148 

in the reduction of road traffic, which improved the air quality status of a region. The 149 

importance of this human-induced reduction of air pollution needs to be evaluated in a way so 150 

that the same could be used as a reference for future decision making and policy formation. 151 

The present research thus made an effort to investigate the human impact on the natural 152 

environment by taking COVID-19 lockdown and its resultant effects of air pollution as a case 153 

for the experiment. The economic valuation was carried out to assess the synergistic effect of 154 

this pandemic on air pollutions at 20 cities across the world. The main objectives of this study 155 

are: (1) to estimate the spatiotemporal changes in air pollution during 1 February to 11 May in 156 

2019 and 2020 using both satellite and ground monitoring data; (2) to estimate the air quality 157 

ecosystem service using multiple economic valuation approaches; (3) to evaluate the 158 

association between human mobility and reduction of air pollution.           159 

 160 

2.   Materials and methods 161 

2.1  Data source and data preparation 162 

A total of 20 cities have been selected for evaluating the effect of lockdown on air 163 

quality ESs. These cities are Antwerp, Barcelona, Brussels, Chicago, Cologne, Denver, 164 

Frankfurt, London, Los Angeles, Madrid, Milan, New York, Paris, Philadelphia, Rotterdam, 165 

Sao Paulo, Tehran, Turin, and Utrecht. These cities have been considered based on two criteria: 166 

high air pollution and high COVID-19 casualties. Most of the cities listed here are from 167 

European and American countries. These countries reported more COVID-19 casualties 168 

compared with the Asian and Latin American countries (as of 11 May 2020) (WHO, 2020; 169 

Sannigrahi et al., 2020a). Sentinel 5P time series pollution data were also used to identify the 170 

most polluted cities. Both satellite and ground air pollution data were utilised for evaluating 171 

the positive effects of lockdown on the air quality index of these cities. For comparison, the 172 

satellite-based air pollution was measured from 01 February to 11 May for both 2019 173 
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(lockdown equivalent period) and 2020 (lockdown period). The concentration of four key air 174 

pollutants, nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and aerosol 175 

index (AI) concentration, was computed for both 2019 and 2020 using Sentinel 5P data. For 176 

six cities, i.e., Chicago, Denver, Detroit, Los Angeles, New York, and Philadelphia, the ground 177 

monitored air pollution data was collected for a more explicit assessment of air quality ESs. 178 

However, the ground monitored data was not adequate for the spatial evaluation for most of 179 

the cities considered in this study. Therefore, the in-situ data was only used for time series 180 

assessment of air pollutions, and the satellite measured pollution estimates were utilised for the 181 

spatially explicit appraisal and economic valuation. Human mobility data, including driving 182 

and transit for the selected cities, were collected from Apple (for city-scale) and Google (for 183 

country scale)  mobility reports. In addition to this, the gridded human settlement data and 184 

population density data (pixel format) were collected from the Socio-Economic Data 185 

Application Center, National Aeronautics and Space Application data center (SEDAC, 186 

NASA). For evaluating the total air pollution reduction of these 20 cities in a more accurate 187 

way, the Geographical Information System (GIS) enabled city boundary (shapefile format) was 188 

extracted from the OpenStreetMap (OSM) application. Two consecutive steps were followed 189 

to get the boundary of these cities. First, the OSM relation identifier number (OSM id) was 190 

generated for all the 20 cities using Nominatim, a search engine for OpenStreetMap data. Then, 191 

the OSM relation id of each city was ingested in the OSM polygon creation application 192 

interface, which generates the geometry (both actual and simplified) of the relation id in poly, 193 

GeoJSON, WKT or image formats. The formatted image geometry of the cities was then 194 

imported in ArcGIS Pro software, and the city boundary was extracted using an automatic 195 

digitisation function.             196 

           197 

2.3 Estimation of air pollution 198 

2.3.1 Sentinel 5P TROPOMI data and TROPOMI Explorer Application 199 

The ESA (European Space Agency) Sentinel-5 Precursor (S 5P) is an example of low 200 

earth Sun-synchronous Orbit (SSO) polar satellite that provides information of tropospheric air 201 

quality, climate dynamics and ozone layer concentration for the time period 2015–2022 202 

(Veefkind et al., 2012). The ESA led S 5P mission is one of the few missions that is intended 203 

to measure air and climatic variability from the space-borne application. The S 5P mission is 204 

associated with the Global Monitoring of the Environment and Security (GMES) space 205 

programme. The TROPOspheric Monitoring Instrument (TROPOMI) payload of S 5P mission 206 

was designed to measure the tropospheric concentration of few key air pollutants, i.e., ozone 207 

(O3), NO2, SO2, CO, CH4, CH2O and aerosol properties in line with Ozone Monitoring 208 

Instrument (OMI) and SCanning Imaging Absorption spectroMeter for Atmospheric 209 

CartograpHY (SCIAMACHY) programme (Veefkind et al., 2012). TROPOMI measures the 210 

concentration of key tropospheric constituents at 7 × 7 km2 spatial unit. This default spatial 211 

scale was downscaled into 1km × 1km scale for city-scale analysis and subsequent 212 

interpretation. In this study, the spatial and temporal variability of four key air pollutants was 213 

extracted and mapped from the TROPOMI measurements using the Google Earth Engine cloud 214 

platform. For this purpose, an interactive application called TROPOMI Explorer App, 215 

developed by Google developers teams (Google, 2020; Braaten, 2020), was utilised to facilitate 216 

quick and easy S5P data exploration and to examine the changes in air pollution in both cross-217 
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sectional and longitudinal way. Spatial visualisation and time series charts for the selected air 218 

pollutants were also prepared with the help of this TROPOMI Explorer application. The other 219 

accessories of this application, such as NO2 time series inspector, NO2 temporal comparison, 220 

NO2 time-series animation, were also utilised for different computational purposes.     221 

2.3.2   Ground pollution data 222 

Ground monitored air quality data was available only for a few cities considered in the 223 

study, including Chicago, Denver, Detroit, Los Angeles, New York, and Philadelphia. Thus, 224 

these cities were selected for the ground data-driven analysis. Ground monitored data for these 225 

cities were collected from the U.S. Environmental Protection Agency (US EPA). This data is 226 

available for a daily scale and for six key pollutants, such as CO, NO2, O3, PM2.5, PM10, and 227 

SO2, respectively. The in-situ air pollution concentration at a daily scale was considered only 228 

for the time series assessment of pollution concentration. Additionally, the said in-situ data had 229 

not been used for any validation and calibration of satellite pollution estimates. The time series 230 

(2000–2020) air quality index (AQI) of these selected cities were also generated using the 231 

multilayer time plot function. The overall AQI values were sub-divided into six groups, i.e., 232 

good, moderate, unhealthy for sensitive population groups, unhealthy, very unhealthy, and 233 

hazardous, respectively. In addition to this, the single year AQI data was also extracted for the 234 

selected cities from the EPA. The number of unhealthy days for each pollutant was measured 235 

using the EPA AQI plot function. The combination of two different pollutants, such as CO and 236 

NO2, PM10 and PM2.5, was permuted to assess the yearly AQI status of the cities. As several 237 

studies reported the increment of O3 due to the reduction of GHG emissions, this study also 238 

evaluated the O3 exceedances for the current year compared to the average O3 concentration 239 

of the last 5 and 20 years. This particular task was implemented using the EPA Ozone 240 

exceedances plot function (EPA, 2020). Table. S1 provides the criteria of categorisation for 241 

each index.      242 

       243 

2.4 Environmental significance of improving air quality status 244 

The accelerating increases of air pollution in cities is a major concern across the world 245 

(Chan and Yao, 2008; Kim Oanh et al., 2006; Mayer, 1999; Guttikunda et al., 2014; Abhijith 246 

et al., 2017; Rai et al., 2017; Pilla and Broderick, 2015). Various policies have been 247 

implemented for managing the city-based air pollution that mainly originated from 248 

anthropogenic activities from specific sources and sectors (Kumar et al., 2015; Kumar et al., 249 

2016; Baró et al., 2014; Feng and Liao, 2016; Zhang et al., 2016). These include the Directive 250 

2010/75/EU on industrial emissions, initiated by European Commission to define ‘‘Euro 251 

standards’’ for measuring the road vehicle emissions and the Directive 94/63/EC for 252 

calculating volatile organic compounds emissions from petrol storage (Baro et al., 2014). The 253 

reduction of these gaseous pollutants by green canopy has significant economic importance 254 

(Kumar et al., 2019). Two main ecosystem services, such as air quality regulation and 255 

climate/gas regulation, are mainly associated with air quality ecosystem services. Several 256 

studies have calculated the economic values of NO2, SO2, CO reductions using various 257 

valuation approaches such as carbon tax, the social cost of carbon, shadow price method, 258 

marginal cost method, etc. (Guerriero et al., 2016; Castro et al., 2017; Jeanjean et al., 2017; 259 

Bherwani et al., 2020). In this study, multiple relevant approaches were adopted for calculating 260 
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the economic values of the NO2, SO2, CO, aerosol reduction to gauge the economic benefits of 261 

these functions. Since this study has considered the air pollution reduction at the city scale, the 262 

public health burden and mean externality valuation approaches were utilised for estimating 263 

economic damage due to air pollution and to calculate the economic values of air quality 264 

services (Baro et al., 2014; Matthews and Lave, 2000). Unit social damage price due to air 265 

pollution was estimated for 2020 using the U.S consumer price index (CPI) inflation calculator 266 

(U.S Bureau of Labor Statistics, 2020). Additionally, using the most updated price conversion 267 

factors, the mean externality values for the key pollutants was estimated as: CO = 956 $ t-1, 268 

NOx = 5149 $ t-1, SO2 = 3678 $ t-1, PM10 = 7907 $ t-1.  269 

The public health burden valuation approach has also been utilised for economic 270 

valuation of air quality ESs (Kumar et al., 2020a, Etchie et al. 2018; Hu et al., 2015; Sharma et 271 

al., 2020; Sahu and Kota, 2017; COMEAP, 2009). The calculation of public health burden and 272 

the associated economic burden was conducted by three subsequent steps: first, estimation of 273 

population-weighted average concentration; second, estimation of health burden or a number 274 

of premature mortality attributable to air pollution; and third, the economic burden due to 275 

excess air pollution and economic benefits subject to the reduction of air pollution levels during 276 

the lockdown period. The population-weighted average concentration (PWAC) was measured 277 

as follows:  278 

( )x x

x

x

x

Pop C

PWAC
Pop



=



 279 

Where xPop is the population count of a pixel, xC is the average pollution concentration (1 Feb 280 

to 11 May 2020), x

x

Pop is the total population count of the city, PWAC is the population-281 

weighted average concentration. The PWAC was estimated using ArcPy Python module. 282 

Gridded population data from SEDAC, NASA, was utilised for this task.  Pollution and gridded 283 

population data for the same time period were used for estimations of PWAC.  284 

Following, the health burden (HB), which refers premature deaths attributable to short-285 

term exposure to air pollutants was estimated for the study period (1 February to 11 May 2020).  286 

The reduction in health burden (ΔHB) was also measured by calculating the difference between 287 

the previous and later HB estimates.  288 

x x x

x

HB AF B Pop=                                                                     (1) 289 

1x

x

RR
AF

RR

 −
=  
 

                                                                                (2) 290 

2019 2020HB HB HB = −                                                                       (3) 291 

,0( ) , 0i i i i iRR e C C C = −                                                              (4) 292 

1ER RR= −                                                                                       (5) 293 

 294 
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Where 
xHB is the health burden of city x, AF is the attributable fraction associated with the 295 

relative risk of each pollutant,
iRR is the relative risk of pollutant i, 

xB is baseline cause-specific 296 

mortality rate per 100,000 population. For calculating xB ,  country-wise cardiovascular and 297 

chronic respiratory baseline mortality rate was collected from Global Burden of Disease study 298 

of 2017 (IHME, 2020).
xPop is the population of city x derived from the SEDAC, NASA 299 

gridded population count data. HB is the difference in health burden (or avoidance of 300 

premature death due to the reduction of air pollution) from 1st February to 11th May 2020 301 

compared to the same period in 2019. 2019HB and 2020HB is the health burden estimates in 2019 302 

and 2020 (estimated for 1 February to 11 May time period). i is the exposure-response 303 

relationship coefficient, indicates the excess risk of health burden (such as mortality) per unit 304 

increase of pollutants.  is calculated 0.038%, 0.032%, 0.081%, 0.13%, and 0.048% per 1 305 

3/g m increases of PM2.5, PM10, SO2, NO2, and O3, respectively (Hu et al., 2015; Sharma et 306 

al., 2020, Kumar et al., 2020a; Chen et al., 2020).  is calculated 3.7% per 1 mg/m3 increases 307 

of CO. 
iC is the concentration of pollutant i, ,0iC is the threshold concentration, below which 308 

the pollutant exhibits no obvious adverse health effects (i.e., RR = 1).   309 

The economic burden (EB) and economic benefits of the reduced air pollution 310 

concentration were estimated using the value of statistical life (VSL) approach (Etchie et al. 311 

2018; Hu et al., 2015). The VSL represents an individual's willingness to pay for a marginal 312 

reduction in risk of dying. The VSL method has been utilised as a standard approach for 313 

ecosystem service valuation of non-marketable commodities and is often used for cost-benefit 314 

analysis (OECD, 2014; WHO, 2015), ecosystem service studies (Zhang et al., 2018, 2020). 315 

The economic benefits due to avoided premature mortality were estimated as follows:   316 

x x xEB HB VSL=                                                                                  (6) 317 

Where xEB  is the economic benefit attributed to the reduction of air pollution and resulted in 318 

estimates of avoidable mortality xHB , health burden estimates of city x, xVSL is the value of 319 

statistical life of the country x that corresponds to the city.  Using the value transfer method, 320 

OECD (2016a) estimated the VSL for the entire world, after incorporating income elasticity 321 

beta of 1. Since this study considers cities that cover many diversified economic setup and 322 

development background, a uniform income elastic global VSL estimates measured by Viscusi 323 

et a., (2017) was considered for the economic valuation and subsequent analysis. As city-324 

specific VSL data is not available for many cities, the VSL estimates for the corresponding 325 

countries were taken for the analysis. The 2017 VSL values were converted to 2020 unit price 326 

for adjusting price fluctuation. The income adjusted VSL was estimated as Belgium (8 $ 327 

millions, used this value for Antwerp and Brussels city), Spain (5 $ millions, this value was 328 

used for Barcelona, Madrid), USA (10 $ millions, this value was used for Chicago, Denver, 329 

Detroit, Los Angeles, New York, and Philadelphia), Germany (8 $ millions, this was used value 330 

for Cologne, Frankfurt), UK (8 $ millions, this value was used for London), Italy (6 $ millions, 331 

this value was used for Milan and Turin), France (7 $ millions, this value was used for Paris), 332 

Netherlands (9 $ millions, this value was used for Rotterdam and Utrecht), Brazil (2 $ millions, 333 

this value was used for Sao Paulo), and Iran (1 $ millions, this value was used for Tehran), 334 

respectively (Viscusi et a., 2017) (Table S5).           335 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.20.20177949doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20177949
http://creativecommons.org/licenses/by/4.0/


 

9 
 

2.5   Examining human mobility and its connections with air pollution status 336 

Due to the emergence of COVID-19 pandemic, countries across the world imposed 337 

mandatory lockdowns to restrict human-mobility. This reduced motorised traffic, which is one 338 

of the key sources of urban air pollution (Chinazzi et al., 2020; De Brouwer et al., 2020). 339 

Human mobility could accelerate the transmission of contagious diseases, especially when a 340 

larger section of daily commuter uses public transport to maintain their essential daily journey 341 

(Sasidharan et al., 2020). Joy et al. and Lara et al. research highlighted a statistically significant 342 

association between human mobility that is mainly attributed to public transport and 343 

transmissions of acute respiratory infections (ARI) (Troko et al., 2011; Goscé and Johansson, 344 

2018). Joy et al. (2011) also found that the use of public transport during a pandemic outbreak 345 

in the UK has increased the risk of ARI infection by six-times. To evaluate the effects of 346 

reduced human mobility  on air pollution, this study utilised the human mobility data provided 347 

by Apple and Google. Apple mobility data includes three mobility components, i.e., driving, 348 

walking, and transit (public transport), respectively. The reduction of human mobility during 349 

the lockdown period was calculated from the baseline (13 January). Both positive and negative 350 

changes in human mobility were recorded in percentage form to eliminate calculation bias and 351 

easy comparability across the cities/countries in the world. Among the three mobility 352 

components, driving and transit was considered for the evaluation, and walking was discarded 353 

from the analysis. Google mobility data was also used in this study which has six components 354 

(retail and recreation, grocery and pharmacy, parks, transits, workplace, and residential). This 355 

data is available from 15 February 2020 to recent date. Since Google mobility data is not 356 

available for city scale, the smallest scale (county/state) was taken for the analysis for which 357 

the mobility counts are available. This data is also prepared in percentage format to handle the 358 

calculation bias and better understanding of the data.        359 

 360 

3. Results 361 

3.1 Spatial changes in air pollution in different cities due to lockdown 362 

Spatial distribution of four key air pollutants, i.e., NO2 (Fig. 1) SO2 (Fig. S1), CO (Fig. 363 

S2), and aerosol concentration (Fig. S3) is analysed for 20 cities across the world. The spatial 364 

distribution of these pollutants was measured from 1 February to May 11 in 2019 and 2020. A 365 

sharp reduction in NO2 and CO emission is observed for all the cities. This could be due to the 366 

lockdown and resultant reduction of transportation and industrial emission. Among the 20 367 

cities, the maximum decrease of NO2 concentration is recorded for the European cities, such 368 

as Paris, Milan, Madrid, Turin, London, Frankfurt, Cologne, and American cities, such as New 369 

York, Philadelphia, etc. (Fig. 1). Moreover, among the 20 cities, the highest NO2 reduction is 370 

recorded in Tehran, and the lowest reduction is found in Los Angeles and Sao Paulo (based on 371 

1st Feb to 11th May pollution data). The SO2 emission is evaluated and presented in Fig. S1. 372 

An incremental trend of SO2 emission is observed during the study period. For most cities, SO2 373 

concentration was increased during the study period. However, for exceptions, a slight decrease 374 

in SO2 emission is observed in Rotterdam, Frankfurt, London, and Detroit cities (Fig. S1). The 375 

spatial distribution of CO is also evaluated using GEE cloud application and Sentinel 5P data 376 

and presented in Fig. S2. The CO emission is reduced significantly in all the 20 cities. The 377 

highest reduction is recorded in Detroit, followed by Barcelona, London, Los Angeles, New 378 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.20.20177949doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20177949
http://creativecommons.org/licenses/by/4.0/


 

10 
 

York, Philadelphia, Milan, Madrid, etc. (Fig. 2). At the same time, CO emission was increased 379 

in Cologne, Denver (Fig. S2). The spatial distribution of aerosol concentration is also 380 

calculated and presented in Fig. S3. Aerosol concentration is also found to be decreased during 381 

the COVID lockdown with restricted human activities.           382 

3.2 Temporal changes in air pollution due to lockdown 383 

Fig. 2 and Table. 1 shows the average NO2, SO2, CO, and aerosol concentration from 384 

1st Feb to 11th May in 2019 and 2020. Among the 20 cities, the average NO2 concentration was 385 

found highest in  Tehran ( 747.1µmol in 2019 and 563.77µmol in 2020), followed by Milan 386 

(257.34µmol in 2019 and 162.52µmol in 2020), New York (242.2µmol in 2019 and 387 

172.31µmol in 2020), Paris (205.95µmol in 2019 and 111.33µmol in 2020), Turin 388 

(204.94µmol in 2019 and 129.46µmol in 2020), Chicago (199.21µmol in 2019 and 139.27µmol 389 

in 2020), Cologne (194.25µmol in 2019 and 132.53µmol in 2020), Philadelphia (187.81µmol 390 

in 2019 and 123.11µmol in 2020), etc. Lowest NO2 concentration was observed in Sao Paulo 391 

(119.88µmol in 2019 and 99.3µmol in 2020), Brussels (160.95µmol in 2019 and 115.96µmol 392 

in 2020), Denver (161.01µmol in 2019 and 107.19µmol in 2020), respectively. Among the 20 393 

cities, the SO2 concentration was found maximum in Chicago (528.26µmol in 2019 and 394 

785.46µmol in 2020), followed by Detroit (465.96µmol in 2019 and 508.61µmol in 2020), 395 

Barcelona (429.21µmol in 2019 and 444.19µmol in 2020), Paris (427.99µmol in 2019 and 396 

484.62µmol in 2020), Philadelphia (422.32µmol in 2019 and 552.96µmol in 2020), London 397 

(415.89µmol in 2019 and 461.82µmol in 2020), etc. While the low SO2 emission was 398 

documented in Sao Paulo (19.34µmol in 2019 and 105.23µmol in 2020), Denver (128.75µmol 399 

in 2019 and 249.18µmol in 2020), Brussels (227.32µmol in 2019 and 347.9µmol in 2020), 400 

Tehran (258.35µmol in 2019 and 258.3µmol in 2020), Los Angeles (264.3µmol in 2019 and 401 

397.61µmol in 2020) (Fig. 2 and Table. 1). The average concentration of CO in different cities 402 

is also evaluated and presented in Fig. 2 and Table. 1. During the study period, the highest CO 403 

concentration is recorded in American cities, i.e., New York, Philadelphia, Detroit, Chicago, 404 

Los Angeles, while a comparably low CO concentration is documented for Sao Paulo, Denver, 405 

Madrid, Barcelona, and Brussels (Fig. 2). Except for a few cities, the concentration of NO2, 406 

CO, and aerosol has been reduced substantially (Fig. 3 and Table. 1, Table. 2). For NO2, the 407 

highest reduction was detected in Paris (45.94%), followed by Detroit (40.29%), Milan 408 

(36.85%), Turin (36.83%), Frankfurt (36.36%), Philadelphia (34.45%), London (34.15%), and 409 

Madrid (34.03%), respectively. At the same time, comparably lower reduction of NO2 is 410 

observed in Los Angeles (10.54%), Sao Paulo (17.17%), Antwerp (24.14%), Tehran (24.54%), 411 

and Rotterdam (26.72%), respectively (Fig. 3 and Table. 2). For CO, the maximum reduction 412 

was recorded for New York (4.24%), followed by Detroit (4.09%), Sao Paulo (3.88%), 413 

Philadelphia (3.45%), Milan (3.17%), Barcelona (2.86%), respectively. At the same time, a 414 

positive (increase) changes in CO were observed in Denver (1.92%), Cologne (0.49%), and 415 

Rotterdam (0.01%) (Fig. 3 and Table. 2). The temporal variability of NO2, SO2, CO, and 416 

aerosol concentration is shown in Fig. 4, Fig. 5, Fig. S4, Fig. S5, Fig.S6, Fig. S7, Fig. S8. Both 417 

median and interquartile range (IQR) values in Fig. 4 and Fig. 5 suggest that NO2 418 

concentration was decreased substantially. A similar declining pattern is observed for CO for 419 

all the 20 cities considered in this study (Fig. S4, Fig. S5).  However, for SO2, an incremental 420 

trend was observed for most of the cities (Fig. S6).  421 
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Using the ground monitored data, the daily air quality index (AQI), and a cumulative 422 

number of good AQI days for the six American cities was computed and presented in Fig. 6. 423 

The ground monitored data for these six cities have been considered only for time series 424 

assessment and subsequent interpretation. In all cases, it has been found that AQI is reduced 425 

significantly due to lockdown led reduction in human mobility and traffic emission. In the left 426 

panel, the grey color indicates the five years average AQI and light blue shade demonstrating 427 

the average AQI range in the last 20 years. Based on the AQI ranges, four AQI classes were 428 

characterised, such as good, moderate, unhealthy for sensitive groups, and unhealthy (Fig. 6). 429 

A comparably higher cumulative number of good AQI days is recorded during the lockdown 430 

period for all five cities, except Chicago (Fig. 6). Using the EPA AQI interactive plot function 431 

application, the daily AQI of the US cities were analysed and presented in Fig. 7, Fig. S9, Fig. 432 

S10. The daily NO2 and SO2 AQI suggest that all the cities are benefitted by having good 433 

quality air due to anthropogenic pollution switch-off and restricted human mobility that 434 

collectively improved the air quality ecosystem services in these cities. The multi-year daily 435 

time series plot (Fig. 8, Fig. 9, Fig. 10) is also indicating the improving status of air quality in 436 

the US cities due to the reduced level of traffic emission. Six distinct color grade is used to 437 

demonstrate the AQI categories. Six different AQI classes, i.e., good, moderate, unhealthy for 438 

sensitive groups, unhealthy, very unhealthy, and hazardous, etc. are also defined to evaluate 439 

the time series AQI status of these cities during the pre-COVID (2000 – 2019) and lockdown 440 

(Jan to May 2020) period. Fig. 8 shows that in all cities, the NO2 AQI status is mostly good 441 

during the lockdown period compared to the long-term average AQI in these cities. Fig. 9 442 

shows the PM2.5 AQI status, which also found improving during the lockdown period. The 443 

higher proportions of good AQI values in all the cities are suggesting improving air quality 444 

(PM2.5) status in Chicago, Denver, Detroit, Los Angeles, New York, and Philadelphia. The 445 

multi-year time series plot was prepared after combining all the pollutants that suggest that the 446 

air quality is improved substantially, which is supported by the lower AQI recorded during the 447 

lockdown period compared to the long-term AQI recorded in these cities. Among the six cities, 448 

the hazardous to very unhealthy air quality is common in Los Angeles, compared to the other 449 

five US cities considered in this study.                                                  450 

3.3 Human mobility and its paramount effect in lowering the pollution levels  451 

Using both Google and Apple human mobility information, the effect of lockdown and 452 

its striking impact on human outdoor activities is measured and presented in Fig. 11, Fig. S12, 453 

Fig. S13, Fig. S14, Fig. S15. The driving and transit mobility was calculated using the Apple 454 

mobility data. Mobility on January 13 was taken as a baseline, and further changes in human 455 

mobility during the lockdown period was calculated from the baseline mobility. The driving 456 

counts reduced most significantly in Paris, followed by Madrid, London, Antwerp, and 457 

Brussels (Fig. 11). Whereas, such changes were comparably lower in Chicago, Cologne, 458 

Denver, Los Angeles, New York (Fig. 11). Transit counts also reduced significantly in Paris, 459 

followed by Utrecht, Sao Paulo, New York, Milan, Chicago, Antwerp, and Brussels (Fig. 11). 460 

Using the Google human mobility records, the changes in different mobility such as retail and 461 

recreation, grocery and pharmacy stores, transit, parks and outdoor, workplace visitor, and time 462 

spent at home were measured. Transport related mobilities were reduced most significantly in 463 

the Latin American countries, followed by a few Middle East and Southeast Asian countries, 464 

and American countries (Fig. S13). Parks and outdoor activities were found to be reduced 465 

maximum in the Latin American countries and South Asian countries. At the same time, 466 
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outdoor activities are seen to be increased in a few European countries as well (Fig. S13). The 467 

highest reduction in retail and recreation is found in India, Turkey, UK, and few Latin 468 

American countries due to lockdown and associated restrictive measures. (Fig. S14). 469 

Considering grocery and pharmacy-related mobilities, the highest reduction is being observed 470 

in the Latin American countries and a few European countries. Whereas grocery related 471 

mobility was found to be increased in the USA, few African and European countries (Fig. S14). 472 

Workplace related mobility is reduced significantly in Peru, Bolivia, India, Spain, Turkey, 473 

Saudi Arabia, USA, and Canada (Fig. S15). While such changes were positive in a few African 474 

countries (Mali, Niger, Mozambique, Zambia), Venezuela, and a few island countries (Fig. 475 

S15). Finally, using the Google real-time mobility information, another mobility component, 476 

i.e., time spent at home, was calculated (Fig. S15). As expected, due to lockdown and 477 

mandatory restrictive measures on human activities, people tend to spend more time at home, 478 

which also suggests that at most of the countries have taken timely decisions to control the 479 

pandemic. Except for a few European countries, peoples around the world limited their outdoor 480 

activities, which is supported by the results shown in Fig. S15.                           481 

3.4 Improving the status of air quality ecosystem services  482 

Using both public health and externality valuation approaches, the positive association 483 

between lockdown led the reduction of anthropogenic emissions, and air quality ecosystem 484 

services are analysed and presented in Table. 3, Table. 4, Table. 5, Table. S5. Before 485 

economic valuation, the original externality values for different air pollutants were adjusted 486 

using the latest price inflation conversion factor (Table. 3). These adjusted value coefficients 487 

were later used to calculate the economic value of the air quality ecosystem services for the 20 488 

cities across the world. For the public health valuation method, the estimated economic burden 489 

and economic benefits were also adjusted for eliminating the influence of price inflation in the 490 

valuation. Overall, the per-unit EV was calculated maximum for Sao Paulo (49716 $), New 491 

York (49453 $), Tehran (43624 $), London (38930 $), Detroit (22588 $), Los Angeles (20242 492 

$), Philadelphia (19190 $), Madrid (16413 $), Chicago (13222 $), Milan (10035 $), Frankfurt 493 

(5854 $), Turin (5749 $), Antwerp (5039 $), Paris (4971 $), Barcelona (4117 $), Cologne (3914 494 

$), Rotterdam (3400 $), Brussels (1876 $), and Utrecht (1675 $). At the same time, the 495 

economic burden (both NO2 and CO emission is found higher than the previous year, 2019) 496 

due to NO2 and CO emission was calculated for Denver (-1077 $) (Table. 4).  497 

The population-weighted average concentration (PWAC, µmol m-2) was estimated for 498 

each city and presented in Fig. 12. The highest PWAC values (in 2019) were estimated for 499 

Tehran (512), followed by Milan (183), New York (139), Chicago (139), Turin (139), 500 

Philadelphia (134), Los Angeles (133), Madrid (133), Paris (133), Detroit (127), Cologne 501 

(126), London (125), Frankfurt (122), respectively. Using the public health burden valuation 502 

approach, the highest economic values (derived from public health burden valuation approach 503 

and estimated for 101 days) was estimated for New York (501M $), followed by London (375 504 

M $), Chicago (137M $), Paris (124M $), Madrid (90M $), Philadelphia (89M $), Milan (78 505 

M $), Cologne (67M $), Los Angeles (67M $), Frankfurt (52M $), Turin (45M $), Detroit (43 506 

M $), Barcelona (41M $), Sao Paulo (40M $), Tehran (37M $), Denver (30M $), Antwerp (16 507 

M $), Utrecht (14M $), Brussels (9M $), and Rotterdam (9M $), respectively (Table. 5). It is 508 

also evident from the economic valuation that due to the temporary reduction of air pollution 509 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.20.20177949doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20177949
http://creativecommons.org/licenses/by/4.0/


 

13 
 

levels, the economic cost attributed to air pollution led health burdens was reduced significantly 510 

(Table. S5).  511 

4. Discussion 512 

4.1 Relevance of satellite remote sensing in air pollution mapping 513 

Using the ESA Sentinel 5P TROPOMI air real-time pollution data, the spatiotemporal 514 

concentration of different air pollutants, i.e., NO2, SO2, CO, Aerosol, has been evaluated to 515 

examine the positive effects of COVID-19 lockdown on air quality across the world. Sentinel 516 

5P satellite mission is one of the finest space-borne applications that provide the crucial key 517 

information of air quality, ozone, ultra-violate radiation, and climate monitoring and 518 

forecasting (ESA, 2020). TROPOMI widens the application of the satellite air pollution 519 

observation and works in line with other global missions, i.e., SCIAMACHY (2002–2012), 520 

GOME-2 (since 2007), and OMI (since 2004) (Lorente et al., 2019). This data has been used 521 

for many purposes, including air pollution measurement (Zheng et al., 2019; Borsdorff et al., 522 

2018; Shikwambana et al., 2020), epidemiological studies (Chen et al., 2020; Dutheil et al., 523 

2020b; Gautam, 2020; Muhammad et al., 2020; Ogen, 2020; Shehzad et al., 2020); monitoring 524 

global volcano (Valade et al., 2019), demographic analysis (Kaplan and Yigit, 2020), 525 

evaluating sun-induced chlorophyll fluorescence (SIF) (Guanter et al., 2015),  estimation of 526 

volcanic sulfur dioxide emission (Theys et al., 2019), etc. In addition, the advent of Google 527 

Earth Engine cloud-based suitability in handling the large volume of spatial data facilitates the 528 

application of satellite images for timely decision making and offering cost-benefit solutions 529 

to many environmental problems. Furthermore, most of the fine to medium scale satellite data 530 

products are free and open access in nature (Woodcock et al., 2008). This suggests that 531 

transferring ideas from place to place would be easy, which eventually establishes more trust 532 

and transparency in applying the scientific findings to solve real-life problems. Evaluating the 533 

reliability of remote sensing data is always a matter of concern. Since this study has evaluated 534 

the air pollution in cities, which itself is very sensitive in nature, proper and careful evaluation 535 

is required to verify the accuracy of satellite estimates to draw a data-driven conclusion that 536 

may use further as a reference in future studies. Many studies across the world have evaluated 537 

the reliability of Sentinel 5P pollution data with ground monitored measurements. Lorente et 538 

al. (2019) have examined the reliability of Sentinel TROPOMI tropospheric column NO2 539 

density with ground monitored (ground monitored NO2 boundary layer height over the Eiffel 540 

Tower was used in this purpose) data and found a very good agreement (R2 = 0.88) between 541 

the two estimates. Griffin et al., (2019) study on validating TROPOMI data with aircraft and 542 

surface in situ NO2 observations over the Canadian oil sands found that the TROPOMI vertical 543 

NO2 column densities are strongly correlated (R2 = 0.86) with the aircraft and ground in situ 544 

NO2 observations with a low bias (15–30 %).  545 

4.2 Anthropogenic emission and ecosystem services  546 

In this study, the spatial and temporal distribution and changes in different air pollution 547 

were measured for different cities across the world. A fixed timeframe (1st February to 11th 548 

May) was considered for the spatial and temporal analysis and subsequent interpretation. For 549 

all the 20 cities, NO2 concentration was found to be decreased with mixed intensities. Due to 550 

the imposition of worldwide lockdown and resulted in anthropogenic emission switch-off, air 551 

pollution across the world has been reduced significantly. Among the countries, the highest 552 
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NO2 reduction was observed for Netherlands (70%), Japan (64%), Macao (60%), Lebanon 553 

(55%), Italy (54%), India (54%), Monaco (54%), North Korea (51%), Hungary (50%), and 554 

Kuwait (50%), respectively. While an incremental trend of NO2 emission was found in the 555 

Island countries, i.e., Kiribati (213%), Howland Island (136%), Jarvis Island (129%), Nauru 556 

(93%), Pacific Islands (Palau) (81%) along with other countries such as Indonesia (74%), Nepal 557 

(57%), Mozambique (56%), Norfolk Island (55%), and Jan Mayen (52%), where COVID1-9 558 

lockdown has not implemented or followed strictly (Fig. S11, Table. S2, Table. S3). For CO, 559 

the maximum reduction was observed in Ecuador (6%), Colombia (6%), Venezuela (4%), 560 

Macau (4%), South Korea (4%), North Korea (4%), Byelarus (3%),  Singapore (3%), Estonia 561 

(3%), and Latvia (3%), respectively. While, during the lockdown period, an increasing trend 562 

of CO emission was documented for some countries, such as Sao Tome and Principe (14%),  563 

Equatorial Guinea (14%), Gabon (13%), Argentina (13%),  Falkland Islands (13%), Uruguay 564 

(12%), Congo (12%), Bouvet Island (11%), and Cameroon (11%), respectively. For both NO2 565 

and CO, the maximum reduction is recorded for the countries which have been strongly 566 

affected by the COVID pandemic. The economic loss due to this exceeding level of air 567 

pollution has also been evaluated in this study. However, in this study, only the median 568 

externality values of the air pollutants are considered for the valuation and subsequent 569 

interpretation. This one dimension and linear valuation approach will not be able to track down 570 

the overall economic impact of air pollution on human life. Therefore, research that broadens 571 

the scope of valuation needs to be initiated for exploring the importance of proper monetary 572 

valuation in environmental studies. 573 

4.3 Human mobility and its association with air pollution 574 

The connection between human mobility and air pollution levels in selected cities were 575 

also examined in this research. Both Apple and Google mobility data were used for this 576 

purpose. Results derived from both the report suggest that due to the mandatory lockdown and 577 

resulted in limited outdoor human activities, mobility has been reduced significantly across the 578 

world. This drastic reduction of human mobility could contribute to the reduced level of air 579 

pollution observed in the last few months. For most of the cities considered in this study, human 580 

mobility has been reduced up to 80% from the baseline mobility. The highest reduction in 581 

mobility was found in the European cities. To prevent infection, the authorities in these cities 582 

implemented preventive measures, which included partial lockdown in different sectors, 583 

including restricted outdoor social activities. This mandatory imposition of lockdown has 584 

resulted in a reduced level of traffic volume in cities (Fig. 11, Table. S6). The mobility analysis 585 

thus suggests that by introducing sustainable transport plans and policies, air pollution in the 586 

urban regions can be minimised to a certain extent. The periodic and temporary lockdown can 587 

also be adopted in the highly polluted cities if no other alternatives are feasible at the place. A 588 

similar strategy has already been adopted by New Delhi Government by introducing 589 

“odd/even” transport scheme where private vehicles with odd digit (1, 3, 5, 7, 9) registration 590 

numbers will be allowed on roads on odd dates and vehicles with even digit (0, 2, 4, 6, 8) 591 

registration numbers can use the vehicles on even dates. In addition, the Mahato et al. study 592 

has observed a 40% to 50% improvement in air quality in Delhi within the first week of 593 

lockdown. He et al. (2020) study on short-term impacts of COVID-19 lockdown on urban air 594 

pollution has found that within a week, the AQI in the locked-down cities in China has been 595 

reduced by 19.84 points (PM2.5 goes down by 14.07 µg m−3) compared to the cities where 596 
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lockdown has not been implemented strictly. The findings suggest an increased clean air 597 

ecosystem services in cities under the cessation of human activities.    598 

 599 

5. Conclusion 600 

This study has evaluated the effect of COVID-19 lockdown on air quality ecosystem 601 

services across the world. A total of 20 major cities were considered for the analysis and 602 

subsequent interpretation. Both satellite and ground air pollution data were utilised for 603 

examining the association between COVID pandemic led lockdown and improving status of 604 

air quality ecosystem services across the cities. The major findings of this research are:  605 

1) Among the 20 cities, the average NO2 concentration (1 Feb to 11 May) was found 606 

highest in Tehran, followed by Milan, New York, Paris, Turin, Chicago, Cologne, and 607 

Philadelphia.  608 

2) The lowest NO2 concentration (1 Feb to 11 May) was observed in Sao Paulo, Brussels, 609 

and Denver.  610 

3) For NO2, the highest reduction was detected in Paris (45.94%), followed by Detroit 611 

(40.29%), Milan (36.85%), Turin (36.83%), Frankfurt (36.36%), Philadelphia 612 

(34.45%), London (34.15%), and Madrid (34.03%), respectively.  613 

4) While, a comparably lower reduction of NO2 is observed in Los Angeles (10.54%), Sao 614 

Paulo (17.17%), Antwerp (24.14%), Tehran (24.54%), and Rotterdam (26.72%), during 615 

the lockdown period.  616 

5) For CO, the maximum reduction was recorded for New York (4.24%), followed by 617 

Detroit (4.09%), Sao Paulo (3.88%), Philadelphia (3.45%), Milan (3.17%), Barcelona 618 

(2.86%), respectively.  619 

6) The daily NO2 and SO2 AQI during the lockdown period suggest that all the cities are 620 

benefitted by having good quality air due to anthropogenic pollution switch-off and 621 

restricted human interventions.  622 

7) Among the cities, the highest economic values (derived from public health burden 623 

valuation approach) was estimates for New York (501 million US$), followed by 624 

London (375 million US$), Chicago (137 million US$), Paris (124 million US$), 625 

Madrid (90 million US$), Philadelphia (89 million US$), Milan (78 million US$), 626 

Cologne (67 million US$), Los Angeles (67 million US$), Frankfurt (52 million US$), 627 

Turin (45 million US$), Detroit (43 million US$), Barcelona (41 million US$), Sao 628 

Paulo (40 million US$), Tehran (37 million US$), Denver (30 million US$), Antwerp 629 

(16 million US$), Utrecht (14 million US$), Brussels (9 million US$), and Rotterdam 630 

(9 million US$), respectively.   631 

8) For NO2, the economic significance of reduced anthropogenic emission is found 632 

maximum in Tehran (31700 $), followed by London (21887 $), New York (12975 $), 633 

and Madrid (9072 $).  634 

9) For CO, the maximum ecosystem service value was calculated maximum for Sao Paulo 635 

(42302 $), followed by New York (36478 $), London (17043 $), Detroit (16038 $), and 636 

Los Angeles (14472 $).  637 

10) Among the countries, the highest NO2 reduction was observed for Netherlands (70%), 638 

Japan (64%), Macao (60%), Lebanon (55%), Italy (54%), India (54%), Monaco (54%), 639 

North Korea (51%), Hungary (50%), and Kuwait (50%).  640 
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11) For CO, the maximum reduction was observed in Ecuador (6%), Colombia (6%), 641 

Venezuela (4%), Macau (4%), South Korea (4%), North Korea (4%), Byelarus (3%),  642 

Singapore (3%), Estonia (3%), and Latvia (3%).  643 

The present research has made an effort to investigate the human impact on the natural 644 

environment by taking COVID-19 lockdown and its resultant reduction of air pollution. Both 645 

physical and monetary valuation was carried out to assess the synergic effect of this pandemic 646 

led lockdown on air pollutions at 20 cities across the world. A strong connection between 647 

human interventions and accelerating levels of air pollution was observed in most of these 648 

cities. Both satellite and ground-based estimates are suggesting the positive effect of the limited 649 

human interference on natural environments. Further research in this direction is needed to 650 

explore this synergic association more explicitly.        651 

 652 

 653 

  654 
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Fig.1 Spatial distribution and changes in NO2 concentration (µmol/m2) derived from Sentinel 5P 
TROPOMI data.  
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Fig. 2 Concentration (µmol/m2) of air pollutants 
during the study period (1st Feb to 11th May) in 2019 
and 2020. 
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Fig. 3 Changes (%) in air pollution during 
the study period.  
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Fig. 4 Monthly variation of NO2 (μmol m-2) concentration in the selected cities from August 2018 to May 2020 
derived from Sentinel 5P TROPOMI observation.  
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Fig. 5 Yearly variation of NO2 (μmol m-2) concentration in the selected cities in 2018, 2019, and 2020 derived from 
Sentinel 5P TROPOMI observation.  
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Daily Air Quality Index values - PM2.5 Cumulative Number of good PM2.5 AQI days  
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Fig. 6 Shows the ground data based PM2.5 air quality index values for the selected cities. Figures in left panel shows the 20 years (2000 - 2019) air 
quality index values, 5 years average (2015 - 2019) and most recent PM2.5 air quality index values of the selected cities. The maps on the right panel 
shows recent (green color) and 5 years average (gray color) cumulative number of good PM2.5 air quality index days for the selected cities. Maps in both 
panel are indicating the improving status of air quality in the selected cities.   
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Daily NO2 and SO2 values in 2019 Daily NO2 and SO2 values in 2020 
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Fig. 7 Shows the ground monitored air quality index values of NO2 and SO2 in 2019 and 2020 in the selected 
cities. In most cases, air quality has been improved substantially during the lock down period.  
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Fig. 8 Multi-year daily time series plot shows the variation of air quality  
status (NO2) from 2000 to 2020. Due to lock down and associated 
reduction of air pollution, air quality status is improved in all the selected 
cities in USA. 
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Fig. 9 Multi-year daily time series plot shows the variation of air quality  status 
(PM2.5) from 2000 to 2020. Due to lock down and associated reduction of air pollution, 
air quality status is improved in all the selected cities in USA. 
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Fig. 10 Multi-year daily time series plot shows the variation of air 
quality  status (after considered all pollutants) from 2000 to 2020. Due 
to lock down and associated reduction of air pollution, air quality 
status is improved in all the selected cities in USA. 
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Fig. 11 Changes in mobility due to  lock down led restriction in the selected cities.   
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Fig. 12 Pollution weighted average concentration of the major 
cities in 2019 and 2020 (during Feb 1 to May 11).  
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Fig. S1 Spatial distribution of SO2 (μmol m-2 ) in the selected cities in 2019 and 2020 (from Feb to May). Spatial maps in third panel 
shows the spatial difference in SO2 concentration between 2019 and 2020. 

.
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Fig. S2 Spatial distribution of CO (μmol m-2 ) in the selected cities in 2019 and 2020 (from Feb to May). Spatial maps in third panel shows the 
spatial difference in CO concentration between 2019 and 2020. 
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Fig. S3 Spatial distribution of Aerosol index in the selected cities in 2019 and 2020 (from Feb  to May). Spatial maps in 
third panel shows the spatial difference in aerosol concentration between 2019 and 2020. 
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Fig. S4 Temporal variation of CO (μmol m-2) concentration in the selected cities from August 2018 to May 2020 
derived from Sentinel 5P TROPOMI data.  
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Fig. S5 Temporal variation of CO (μmol m-2) concentration in the selected cities in 2018, 2019, and 2020 derived 
from Sentinel 5P TROPOMI data.  
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Fig. S6 Temporal variation of SO2 (μmol m-2) concentration in the selected cities from August 2018 to May 2020 
derived from Sentinel 5P TROPOMI data.  
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Fig. S7 Temporal variation of aerosol concentration in the selected cities from August 2018 to May 2020 
derived from Sentinel 5P TROPOMI observation.  
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Fig. S8 Temporal variation of aerosol concentration in the selected cities in 2018, 2019, and 2020 derived from 
Sentinel 5P TROPOMI observation.  
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Daily PM2.5 and PM10 values in 2019 
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Fig. S9 Shows the ground monitored air quality index (based on PM2.5 and PM10) in 2019 and 2020 
in the selected cities. 
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Daily CO and O3 values in 2019 Daily CO and O3 values in 2020 
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Denver 

New York 

Philadelphia 

Fig. S10 Shows the ground monitored air quality index (based on CO and O3) in 2019 and 2020 in 
the selected cities. 
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(a)

(b)

Fig. S11 Changes in NO2 and CO concentration during the study period (1st Feb to 11th May  
in 2019 and 2020). NO2 changes are maximum in few Asian countries and European countries. 
Whereas, CO chnages are promnent in China, USA, and few European countries.  
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Fig. S12 Changes in human mobility observed during the lock down period. Six mobility factors, i.e.., retial 
and recreation, grocery and pharmacy, transit, parks and outdoor, workplace visitors, and time spent at home is 
evaluated in this study.     
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Fig. S13 Spatial variability of public transport and parks/outdoor mobility during the 
lockdown period. 
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Fig. S14 Spatial variability of retail/recreation and grocery/pharmacy mobility during 
the lock-down period. 
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Fig. S15 Spatial variability of workplace and residential mobility during the lockdown 
period. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 24, 2020. ; https://doi.org/10.1101/2020.08.20.20177949doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.20.20177949
http://creativecommons.org/licenses/by/4.0/


City NO2 SO2 CO Aerosol 

2019 2020 Difference 2019 2020 Difference 2019 2020 Difference 2019 2020 Difference 

Antwerp 183.46 139.18 -44.28 388.11 464.75 76.64 37692.53 37163.86 -528.67 -0.93 -1.22 -0.29 
Barcelona 175.67 123.86 -51.81 429.21 444.19 14.98 36769.83 35719.16 -1050.67 -0.96 -1.2 -0.24 
Brussels 160.95 115.96 -44.99 227.32 347.9 120.58 37139.19 37103.17 -36.02 -0.95 -1.23 -0.28 
Chicago 199.21 139.27 -59.94 528.26 785.46 257.2 38705.92 38421.4 -284.52 -0.76 -1.04 -0.28 
Cologne 194.25 132.53 -61.72 320.4 514.36 193.96 37571.52 37756.77 185.25 -0.96 -1.27 -0.31 
Denver 161.01 107.19 -53.82 128.75 249.18 120.43 29961.93 30538.35 576.42 -0.77 -0.99 -0.22 
Detroit 185.43 110.72 -74.71 465.96 508.61 42.65 39559.85 37941.21 -1618.64 -0.91 -1.11 -0.2 
Frankfurt 187.38 119.25 -68.13 401.17 437.41 36.24 37875.36 37597.53 -277.83 -0.98 -1.29 -0.31 
London 172.1 113.32 -58.78 415.89 461.82 45.93 37370.07 36965.12 -404.95 -0.94 -1.22 -0.28 
Los Angeles 177.45 158.74 -18.71 264.3 397.61 133.31 38555.63 38140.47 -415.16 -0.7 -0.99 -0.29 
Madrid 186.24 122.86 -63.38 276.41 348.12 71.71 32831.26 32377.51 -453.75 -0.77 -1.12 -0.35 
Milan 257.34 162.52 -94.82 361.54 414.17 52.63 38548.29 37325.44 -1222.85 -0.92 -1.28 -0.36 
New York 242.2 172.31 -69.89 382.49 602.49 220 40985.22 39246.91 -1738.31 -0.95 -1.15 -0.2 
Paris 205.95 111.33 -94.62 427.99 484.62 56.63 37984.51 37060.08 -924.43 -0.85 -1.09 -0.24 
Philadelphia 187.81 123.11 -64.7 422.32 552.96 130.64 40035.09 38654.45 -1380.64 -0.93 -1.15 -0.22 
Rotterdam 166.64 122.11 -44.53 363.43 311.56 -51.87 37520.03 37524.14 4.11 -0.93 -1.18 -0.25 
Sao Paulo 119.88 99.3 -20.58 19.34 105.23 85.89 26755.54 25716.73 -1038.81 -1.07 -1.28 -0.21 
Tehran 747.1 563.77 -183.33 258.35 258.3 -0.05 38460.98 37850.83 -610.15 -1.04 -1.3 -0.26 
Turin 204.94 129.46 -75.48 322.5 548.34 225.84 37338.8 36357.31 -981.49 -1.05 -1.4 -0.35 
Utrecht 161.5 107.07 -54.43 352.77 520.7 167.93 37702.9 37553.67 -149.23 -0.92 -1.3 -0.38 

 

 

 

 

 

 

 

 

 

 

Table. 1 Summary statistics of mean NO2, SO2, CO, and Aerosol concentration during 2019 and 2020 (Feb to May).  
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Table. 2 Concentration (ton) of different air pollutants in 2019 and 2020 derived from 
Sentinel TROPOMI satellite data.  

 

 

City NO2 SO2 CO 

2019 2020 Difference 

(%) 

2019 2020 Difference 

(%) 

2019 2020 Difference 

(%) 

Antwerp 1.73 1.31 -24.14 5.08 6.09 19.75 215.83 212.80 -1.40 

Barcelona 0.82 0.58 -29.49 2.80 2.90 3.49 104.91 101.91 -2.86 

Brussels 1.20 0.86 -27.95 2.35 3.60 53.04 167.84 167.68 -0.10 

Chicago 5.55 3.88 -30.09 20.51 30.50 48.69 656.87 652.04 -0.74 

Cologne 3.62 2.47 -31.77 8.32 13.35 60.54 426.27 428.37 0.49 

Denver 2.97 1.98 -33.43 3.31 6.40 93.54 336.58 343.06 1.92 

Detroit 3.16 1.89 -40.29 11.05 12.06 9.15 409.95 393.18 -4.09 

Frankfurt 2.14 1.36 -36.36 6.38 6.96 9.03 263.32 261.39 -0.73 

London 12.45 8.20 -34.15 41.88 46.51 11.04 1644.88 1627.06 -1.08 

Los Angeles 10.63 9.51 -10.54 22.05 33.17 50.44 1405.58 1390.45 -1.08 

Madrid 5.18 3.42 -34.03 10.70 13.48 25.94 555.52 547.84 -1.38 

Milan 2.15 1.36 -36.85 4.21 4.82 14.56 196.23 190.00 -3.17 

New York 8.73 6.21 -28.86 19.21 30.25 57.52 899.48 861.33 -4.24 

Paris 1.00 0.54 -45.94 2.89 3.27 13.23 112.10 109.37 -2.43 

Philadelphia 3.17 2.08 -34.45 9.93 13.00 30.93 411.40 397.21 -3.45 

Rotterdam 2.50 1.83 -26.72 7.59 6.50 -14.27 342.27 342.31 0.01 

Sao Paulo 8.39 6.95 -17.17 1.88 10.25 444.11 1139.46 1095.22 -3.88 

Tehran 25.09 18.93 -24.54 12.08 12.08 -0.02 786.14 773.67 -1.59 

Turin 1.23 0.78 -36.83 2.69 4.57 70.03 136.12 132.54 -2.63 

Utrecht 0.74 0.49 -33.70 2.24 3.31 47.60 104.73 104.32 -0.40 
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                   Table. 3 Per unit ecosystem service equivalent value of different  

                   pollutants. 

 

 

 

 

 

 

 

 

 

                   Table. 4 Economic benefits due to the reduction of   anthropogenic 

                   emission estimated for different cities estimated using median 

                   externality valuation method.    

                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pollutants Min Median Mean Max 

CO $1.84 $956.17 $956.17 $1,930.72 

NOX $404.53 $1,949.11 $5,148.58 $17,468.41 

SO2 $1,415.86 $3,309.80 $3,677.56 $8,642.27 

PM10 $1,746.84 $5,148.58 $7,906.76 $29,788.24 

City NO2 CO Overall 
ESV (USD) ESV (USD) ESV (USD) 

Antwerp 2145 2894 5039 
Barcelona 1251 2866 4117 
Brussels 1720 156 1876 
Chicago 8605 4617 13222 
Cologne 5924 -2010 3914 
Denver 5114 -6191 -1077 
Detroit 6549 16038 22588 
Frankfurt 4007 1847 5854 
London 21887 17043 38930 
Los Angeles 5770 14472 20242 
Madrid 9072 7341 16413 
Milan 4083 5952 10035 
New York 12975 36478 49453 
Paris 2362 2609 4971 
Philadelphia 5624 13566 19190 
Rotterdam 3436 -36 3401 
Sao Paulo 7414 42302 49716 
Tehran 31700 11925 43624 
Turin 2328 3421 5749 
Utrecht 1279 396 1675 
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 Table. 5 Summary estimates of economic benefits (Million US$) derived 
from health burden approach. EB = Economic Burden (Million US$) 

 

 

City EB 2019 EB 2020 Economic Benefit 
Antwerp 67 51 16 
Barcelona 138 97 41 
Brussels 31 22 9 
Chicago 456 320 137 
Cologne 213 145 67 
Denver 89 59 30 
Detroit 106 64 43 
Frankfurt 144 92 52 
London 1102 727 375 
Los Angeles 634 568 67 
Madrid 267 176 90 
Milan 211 134 78 
New York 1744 1243 501 
Paris 270 146 124 
Philadelphia 258 169 89 
Rotterdam 35 26 9 
Sao Paulo 234 194 40 
Tehran 152 115 37 
Turin 123 78 45 
Utrecht 41 27 14 
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Table. S1 AQI categorization for different air pollutants.  

 

 

 

 

 

 

 

 

 

 

 

AQI NO2  

(ppb) 

CO  

(ppm) 

O3  

(ppm/hr) 

PM10  

(µg m-3) 

PM2.5  

(µg m-3) 

SO2  

(ppb) 

Good <=53 <=4.4 <=0.054 <=54 <=12 <=35 

Moderate 54-100 4.5-9.4 0.055-0.070 55-154 12.1-35.4 36-75 

Unhealthy 
   

101-360 9.5-12.4 0.071-0.085 155-254 35.5-55.4 76-185 

Unhealthy 361-649 12.5-15.4 0.086-0.105 255-354 55.5-150.4 186-304 

Very 
 

650-1,249 15.5-30.4 0.106-0.200 355-424 150.5-250.4 305-604 

Hazardous >=1,250 >=30.5 >=0.405 >=425 >=250.5 >=605 
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Table. S2 Change statistics of NO2 during the study period (Feb 1 to May 
11). Minus and plus  signs are indicating reduction and increases of NO2.          

 

 

 

 

 

 

 

 

 

Country ΔNO2 Country Δ NO2 
Netherlands -70.29 Kiribati 213.30 
Japan -63.99 Howland Island 135.82 
Macau -59.68 Jarvis Island 128.79 
Man, Isle of -57.54 Nauru 93.02 
Lebanon -54.75 Pacific Islands (Palau) 80.82 
Italy -54.41 Indonesia 74.39 
India -53.68 Nepal 56.72 
Monaco -53.63 Mozambique 56.19 
North Korea -50.84 Norfolk Island 54.61 
Hungary -50.49 Jan Mayen 52.15 
Kuwait -49.97 Mayotte 48.85 
Pakistan -42.58 New Caledonia 41.76 
Kazakhstan -41.84 Papua New Guinea 40.68 
Oman -41.42 Iceland 37.63 
Jordan -40.51 Juan De Nova Island 37.59 
Macedonia -37.29 Niue 29.18 
Namibia -35.05 Mali 28.36 
Liechtenstein -33.81 Latvia 28.05 
Morocco -33.57 Midway Islands 25.03 
Myanmar (Burma) -32.59 Maldives 22.78 
Nigeria -32.39 Libya 21.53 
Montenegro -31.59 Ireland 17.43 
Singapore -29.89 Kyrgyzstan 16.11 
Germany -29.82 Montserrat 15.18 
Denmark -29.35 Marshall Islands 14.28 
Panama -27.38 Liberia 13.72 
Laos -27.14 Paraguay 9.26 
Iraq -26.96 Uruguay 8.80 
New Zealand -26.94 Niger 8.67 
Jersey -26.14 Pitcairn Islands 8.42 
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Table. S3 Change statistics of CO during the study period (Feb 1 to May 11). 
Minus and plus  signs are indicating reduction and increases of CO.          

Country ΔCO Country ΔCO 
Ecuador -6.40 Sao Tome and Principe 13.86 
Colombia -5.90 Equatorial Guinea 13.68 
Venezuela -4.32 South Georgia 13.53 
Macau -4.09 Gabon 13.27 
South Korea -3.71 Argentina 13.05 
North Korea -3.70 Falkland Islands (Islas Malvinas) 12.64 
Byelarus -3.27 Uruguay 12.15 
Singapore -3.10 Congo 11.88 
Estonia -3.06 Bouvet Island 11.36 
Latvia -2.93 Heard Island & McDonald Islands 11.25 
Malta -2.84 Cameroon 10.56 
Lithuania -2.77 Honduras 9.70 
Aruba -2.74 French Southern & Antarctic Lands 9.53 
Man, Isle of -2.57 Guatemala 9.30 
Nepal -2.53 Zaire 9.22 
Armenia -2.46 Thailand 9.04 
Portugal -2.30 Zambia 8.66 
Tunisia -2.22 Angola 8.57 
Jersey -2.21 Zimbabwe 8.53 
Andorra -2.20 Chile 8.39 
Japan -2.15 Glorioso Islands 8.39 
St. Pierre and Miquelon -2.07 Norfolk Island 8.08 
Finland -2.06 New Zealand 7.94 
Syria -2.05 Myanmar (Burma) 7.81 
Spain -2.03 Belize 7.80 
Sierra Leone -1.99 Reunion 7.64 
Norway -1.98 Mauritius 7.35 
Poland -1.98 Central African Republic 7.22 
Jan Mayen -1.91 Guadeloupe 6.98 
Iraq -1.85 Laos 6.93 
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     Table. S4 Summary statistics of relative risk (RR) and attributable fraction (AF) in 2019 and 2020.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

City RR 2019 RR 2020 AF 2019 AF 2020 
Antwerp 1.0047644 1.0036144 0.004742 0.003601 
Barcelona 1.0045621 1.0032165 0.004541 0.003206 
Brussels 1.0041798 1.0030114 0.004162 0.003002 
Chicago 1.0051734 1.0036168 0.005147 0.003604 
Cologne 1.0050446 1.0034417 0.005019 0.003430 
Denver 1.0041814 1.0027837 0.004164 0.002776 
Detroit 1.0048155 1.0028753 0.004792 0.002867 
Frankfurt 1.0048662 1.0030969 0.004843 0.003087 
London 1.0044694 1.0029429 0.004449 0.002934 
Los Angeles 1.0046083 1.0041224 0.004587 0.004105 
Madrid 1.0048366 1.0031906 0.004813 0.003180 
Milan 1.006683 1.0042206 0.006639 0.00420 
New York 1.0062898 1.0044748 0.006251 0.004455 
Paris 1.0053484 1.0028911 0.00532 0.002883 
Philadelphia 1.0048773 1.0031971 0.004854 0.003187 
Rotterdam 1.0043276 1.0031711 0.004309 0.003161 
Sao Paulo 1.0031132 1.0025788 0.003104 0.002572 
Tehran 1.0194018 1.0146408 0.019033 0.014430 
Turin 1.0053222 1.0033620 0.005294 0.003351 
Utrecht 1.0041941 1.0027806 0.004177 0.002773 
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Table. S5 Summary statistics of health burden and economic burden of 20 major cities. CV HB = 
Cardiovascular health burden, CRD GB = Chronic respiratory disease health burden, THB = total health 
burden, VSL = value of statistical life (million US$), EB = economic burden (million US$).  

 

 

 

 

City CV HB 
2019 

CRD HB 
2019 

THB 
2019 

CV HB 
2020 

CRD HB 
2020 

THB 
2020 

VSL EB 
2019 

EB 
2020 

Antwerp 7 1 8 5 1 6 8 67 51 
Barcelona 21 6 27 15 4 19 5 138 97 
Brussels 3 1 4 2 0 3 8 31 22 
Chicago 37 8 45 26 6 31 10 456 320 
Cologne 22 3 25 15 2 17 8 213 145 
Denver 7 2 9 5 1 6 10 89 59 
Detroit 9 2 10 5 1 6 10 106 64 
Frankfurt 15 2 17 10 1 11 8 144 92 
London 110 29 139 72 19 92 8 1102 727 
Los Angeles 51 11 62 46 10 56 10 634 568 
Madrid 40 11 51 27 7 34 5 267 176 
Milan 31 4 35 20 3 22 6 211 134 
New York 140 31 171 100 22 122 10 1744 1243 
Paris 32 4 36 17 2 20 7 270 146 
Philadelphia 21 5 25 14 3 17 10 258 169 
Rotterdam 3 1 4 2 1 3 9 35 26 
Sao Paulo 103 28 130 85 23 108 2 234 194 
Tehran 117 11 127 88 8 97 1 152 115 
Turin 18 2 20 11 2 13 6 123 78 
Utrecht 4 1 5 2 1 3 9 41 27 
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              Table. S6 Changes in human mobility (%) from the baseline (mobility on 13th January) during the lockdown period (1st   

               February to 11th May 2020).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

City Jan (From 13th) Feb Mar April May (up to 11) 
Driving Transit Driving Transit Driving Transit Driving Transit Driving Transit 

Antwerp 14.00 4.39 20.80 23.94 -31.05 -35.98 -58.79 -75.84 -47.34 -66.90 
Barcelona 8.60 4.47 18.15 63.81 -44.91 4.86 -85.04 -88.10 -74.71 -79.85 
Brussels 9.49 14.53 15.07 32.10 -37.64 -39.03 -65.32 -81.19 -52.91 -73.32 
Chicago 5.61 -0.53 12.73 4.47 -18.38 -39.60 -41.98 -77.76 -23.97 -74.56 
Cologne -4.19 -4.63 -1.08 43.30 -37.46 -17.98 -51.98 -55.32 -35.83 -50.94 
Denver 5.34 -1.19 6.72 0.61 -24.10 -36.10 -48.45 -70.08 -28.47 -64.71 
Frankfurt 4.28 ------ 5.72 ------- -30.92 ------- -44.89 ------ -32.83 ------ 
London 10.85 11.89 14.61 17.76 -26.71 -38.02 -67.16 -86.27 -60.17 -82.80 
Los Angeles 12.41 3.30 17.30 7.81 -22.80 -39.09 -51.15 -76.52 -34.31 -72.70 
Madrid 9.60 9.69 16.22 14.44 -52.45 -58.34 -84.25 -93.47 -72.18 -88.56 
Milan -------- 9.96 -------- 6.19 -------- -70.30 ------- -82.30 -------- -65.81 
New York  4.17 -2.28 8.47 1.30 -26.78 -48.74 -54.87 -86.43 -38.78 -83.47 
Paris -8.05 0.83 -15.30 11.26 -57.52 -49.32 -82.96 -89.61 -75.31 -83.91 
Philadelphia 4.19 -6.64 9.98 -4.16 -20.88 -38.65 -43.17 -71.29 -23.61 -69.32 
Rotterdam 6.34 4.90 4.70 8.20 -30.60 -40.12 -44.29 -67.66 -33.26 -61.54 
Sao Paulo 4.51 -0.97 12.51 4.88 -28.66 -35.99 -61.68 -81.04 -57.29 -80.84 
Utrecht 0.44 -1.09 -0.58 6.40 -35.94 -45.48 -51.19 -72.12 -41.26 -66.09 
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