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Examining the status of improved air quality due to COVID-19 lockdown and an
associated reduction in anthropogenic emissions

Abstract

Clean air is a fundamental necessity for human health and well-being. The COVID-19
lockdown worldwide resulted in controls on anthropogenic emission that have a significant
synergistic effect on air quality ecosystem services (ESs). This study utilised both satellite and
surface monitored measurements to estimate air pollution for 20 cities across the world.
Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI) data were used for
evaluating tropospheric air quality status during the lockdown period. Surface measurement
data were retrieved from the Environmental Protection Agency (EPA, USA) for a more explicit
assessment of air quality ESs. Google Earth Engine TROPOMI application was utilised for a
time series assessment of air pollution during the lockdown (1 Feb to 11 May 2020) compared
with the lockdown equivalent periods (1 Feb to 11 May 2019). The economic valuation for air
pollution reduction services was measured using two approaches: (1) median externality value
coefficient approach; and (2) public health burden approach. Human mobility data from Apple
(for city-scale) and Google (for country scale) was used for examining the connection between
human interferences on air quality ESs. Using satellite data, the spatial and temporal
concentration of four major pollutants such as nitrogen dioxide (NO2), sulfur dioxide (SO2),
carbon monoxide (CO) and the aerosol index (Al) were measured. For NOz2, the highest
reduction was found in Paris (46%), followed by Detroit (40%), Milan (37%), Turin (37%),
Frankfurt (36%), Philadelphia (34%), London (34%), and Madrid (34%), respectively. At the
same time, a comparably lower reduction of NO2 is observed in Los Angeles (11%), Sao Paulo
(17%), Antwerp (24%), Tehran (25%), and Rotterdam (27%), during the lockdown period.
Using the adjusted value coefficients, the economic value of the air quality ESs was calculated
for different pollutants. Using the public health burden valuation method, the highest economic
benefits due to the reduced anthropogenic emission (for NO2) was estimated in US$ for New
York (501M $), followed by London (375M $), Chicago (137M $), Paris (124M $), Madrid
(90M $), Philadelphia (89M $), Milan (78M $), Cologne (67M $), Los Angeles (67M $),
Frankfurt (52M $), Turin (45M $), Detroit (43M $), Barcelona (41M $), Sao Paulo (40M $),
Tehran (37M $), Denver (30M $), Antwerp (16M $), Utrecht (14 million $), Brussels (9 million
$), Rotterdam (9 million $), respectively. In this study, the public health burden and median
externality valuation approaches were adopted for the economic valuation and subsequent
interpretation. This one dimension and linear valuation may not be able to track the overall
economic impact of air pollution on human welfare. Therefore, research that broadens the
scope of valuation in environmental capitals needs to be initiated for exploring the importance
of proper monetary valuation in natural capital accounting.

Keywords: Air pollution; Google Earth Engine; Ecosystem services; COVID-19; lockdown;
Human mobility; Natural capital; TROPOMI
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1. Introduction

As per the Ecosystem Services (ESs) definition of Millennium Ecosystem Assessment
(MA, 2005), provision of clean air is one of the fundamental needs of human lives, which
mainly comes from natural vegetation and appropriates by human interferences (Schirpke et
al., 2014; Ash et al., 2010; Charles et al., 2020; Baro et al., 2014). The accelerated increases of
air pollution across the world that mainly comes from transport emissions, industrial emission,
domestic emission, and waste incineration is the primary reason for the degrading status of air
quality ecosystem services. The high concentration of air pollutants, including nitrogen dioxide
(NO2), carbon monoxide (CO), particulate matter (PMz.s and PMuo), sulfur dioxide (SO2),
which goes beyond the normal absorption capacity by the green canopy, leading to a paramount
impact on the quality of human life (Nowak, 1994; Escobedo et al., 2008; De Carvalho and
Szlafsztein, 2019; Gémez-Baggethun and Barton, 2013). The COVID-19 pandemic and its
associated restriction on human activities cut down the pollution level drastically across the
scale (Kumar et al., 2020a,b; Mahato et al., 2020). Many scholarly works appear on time to
discuss the positive effect of COVID-19 lockdown on air quality (Venter et al., 2020, Kumar
et al., 2020a; Ogen, 2020; Sasidharan et al., 2020; Sharma et al., 2020). However, a thorough
evaluation is needed to measure the synergistic effects of these interventions on air quality
ecosystem services.

Air pollution has been reduced drastically due to COVID-19 led lockdown and its
resultant restrictions on human activities. Veneter et al. (2020) had examined both tropospheric
and ground air pollution levels using satellite data and a network of >10,000 air quality stations
across the world and found that 29% reduction of NO2 (with 95% confidence interval -44% to
-13%), 11% reduction of Ozone (Os), and 9% reduction of PMzs during the first two weeks of
lockdown (Venter et al., 2020). Kerimray et al. (2020) study at Almaty, Kazakhstan, found that
the effect of city-scale lockdown, which was effective on March 19, 2020, has resulted in 21%
reduction of PM2.s with spatial variation of 6 — 34%. The CO (49% reduction) and NO2 (35%
reduction) concentration has also been reduced substantially. In the same period, an increase
(15%) in Os levels is also observed in Almaty, Kazakhstan (Kerimray et al., 2020). Mahato et
al. (2020) had reported a sharp reduction in air pollution in Delhi, one of the most polluted
cities in the world. The author found that the concentration of PMio and PMzs in Delhi was
reduced to 60% and 39%, compared to the air pollution levels in 2019 (considered the
lockdown period only). The concentration of other pollutants, such as NO2z (—52.68%) and CO
(—30.35%), have also been reduced substantially during the lockdown period. In addition to
this, Mahato et al. study has observed a 40% to 50% improvement in air quality in Delhi within
the first week of lockdown. Bao and Zhang, (2020) study combined air pollution and Intracity
Migration Index (IMI) data for 44 cities in northern China and found that restriction on human
mobility is strongly associated with the reduction of air pollution in these cities. The author
found that the air quality index (AQI) in these cities is decreased by 7.80%, as the concentration
of five key air pollutants, i.e., SOz, PM2s, PM1o, NO2, and CO have decreased by 6.76%,
5.93%, 13.66%, 24.67%, and 4.58%, respectively. Sicard et al., (2020) had observed that due
to lockdown and resulted in the restriction on human activities, NO2 mean concentrations were
reduced substantially in all European cities, which was ~53% at urban stations. During the
same period, the mean concentrations of Oswas reported to be increased at the urban stations
in Europe, i.e., 24% increases in Nice, 14% increases in Rome, 27% increases in Turin, 2.4%
increases in Valencia and 36% in increases in Wuhan (China). Otmani et al., (2020) study at
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86  Morocco using three-dimensional air mass backward trajectories and HYSPLIT model found
87  that PMao, SOz, and NO:2 are reduced up to 75%, 49%, and 96% during the lockdown period.
88 In the southeast Asian (SEA) countries, (Kanniah et al., 2020) study found that PM1o, PM2s,
89  NOg, SOz, and CO concentrations have been decreased by 26-31%, 23-32%, 63-64%, 9—20%,
90 and 25-31% during the lockdown period in Malaysia. Kumar et al., (2020a) examined the
91 impacts of COVID-19 mitigation measures on the reduction of PMzs in five Indian cities
92  (Chennai, Delhi, Hyderabad, Kolkata, and Mumbai), using in-situ measurements from 2015 to
93  2020. Kumar et al. study found that during the lockdown period (25 March to 11 May), the
94  PMa2s concentration in the selected cities has been reduced by 19 to 43% (Chennai), 41-53%
95  (Delhi), 26-54% (Hyderabad), 24-36% (Kolkata), and 10-39% (Mumbai), respectively. This
96 study also found that cities with higher traffic volume exhibited a greater reduction of PMzs.

97 The level of air pollution has a severe impact on human health and overall well-being.

98  Air pollution is responsible for nearly 5 million deaths each year globally (IHME, 2020). In

99 2017, air pollution had contributed to 9% of deaths, ranges from 2% in the high developed
100 country to a maximum 15% in low-developed countries, especially in South and East Asia
101 (IHME, 2020). Based on Disability-Adjusted Life Years (DALYS) statistics, which
102  demonstrate of losing one year of good health due to either premature mortality or disability
103 caused by any factors, it has been estimated that air pollution is the 5" largest contributor to
104  overall disease burden, only after high blood pressure, smoking, high blood sugar, and obesity,
105  respectively. The adverse impact of air pollution on human health is not only limited to
106  (low)developing countries. In the European regions, nearly 193,000 deaths in 2012 were
107  attributed to airborne particulate matter (Ortiz et al., 2017). In addition, it has been found that
108  air pollution in China is accountable for 4000 deaths each day, i.e., 1.6 million casualties in
109 2016 (Rohde and Muller, 2015; Wang and Hao, 2012). By looking at the adverse effects of air
110  pollution on COVID-19 counts, Chen et al., (2020) found that reduction in PM2.s during the
111 lockdown period helped to avoid a total of 3214 PM2:s related deaths (95% CI 2340-4087).
112 Chen et al., (2020) also estimated that COVID-19 lockdown and resulted cut down of air
113 pollution brought multi-faceted health benefits to non-COVID mortalities. Several research
114  studies (He et al., 2020; L. et al., 2015; Dutheil et al., 2020a) have echoed the surmountable
115  effects of air pollutants on human lives and found that an increase in 10pug m= of NO: per day
116 will be responsible for a 0.13% increases of all-cause mortality (He et al., 2020). The mortality
117  rate would be around 2% when the 5-day NOz level would reach 10ug m=(Monicaetal., 2011).
118  In addition to this, L. et al. (2015) estimated that the increase in 8.1 ppb in NO: is attributed to
119  1.052 increases in global hazard ratio related to air pollution.

120 Ecosystem Services (ESs) are the supports and benefits (provisioning, such as food and
121 water; regulating such as management of floods, drought, land degradation, and disease;
122 supporting such as soil formation and nutrient cycling; and cultural such as recreational,
123 spiritual, religious and other non-material) that humans have free access from natural
124  environment and ecosystems, which adds to human well-being (Fisher et al., 2009; Costanza
125 etal.,, 1997; Braat and de Groot, 2012; Sannigrahi et al., 2018; Sannigrahi et al., 2019). The
126 ecosystem service value (ESV) is a comprehensive assessment and has proven to be an
127  alternative appraisal between environment and human development for sustainable natural
128  resource management (Braat and de Groot, 2012; Potschin and Haines-Young, 2013; Pandeya
129 et al., 2016; Sannigrahi et al., 2020c; Sannigrahi et al., 2020b; Adekola et al., 2015). The
130  growing importance of ESs helps in adjusting the cost-benefit analysis by evaluating both the
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131  negative and positive effects of human interferences on the natural environment and
132 ecosystems. Considering the plausible application of ecosystem service valuation in different
133 strata of planning, priorities should be given to developing a suitable valuation framework for
134  estimating the biophysical and economic values of the key ESs (Bastian et al., 2013; Burkhard
135  etal.,, 2014; Spangenberg et al., 2014; Affek and Kowalska, 2017; Sannigrahi et al., 2019). Due
136  to unawareness about the importance of ESs on natural capital formation and human well-
137  Dbeing, the ecosystem service valuation research was neglected for an extended period (Jack et
138 al., 2008). To overcome this, several national and international valuation framework were
139  formed, including The Economics of Ecosystems and Biodiversity (TEEB), The Inter-
140  governmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES),
141 Millennium Ecosystem Assessment (MA 2005), Ecosystem Service Partnership (ESP) to name
142 afew (Burkhard et al., 2009; Costanza et al., 2014; Comberti et al., 2015).

143 It is now well-established by many data-driven experiments that the accelerated rate of
144  air pollution can have a substantial impact on overall human well-being. Due to this pandemic,
145  the world witnessed an extraordinary transformation in all strata of lives, such as adopting
146  digital alternatives to carry out the routine life and imposing national scale lockdown to restrict
147  human mobility and social activity, to prevent the spread of infection. Additionally, as it is
148  observed by many studies across the scale, the long term restriction on human mobility resulted
149  in the reduction of road traffic, which improved the air quality status of a region. The
150  importance of this human-induced reduction of air pollution needs to be evaluated in a way so
151  that the same could be used as a reference for future decision making and policy formation.
152  The present research thus made an effort to investigate the human impact on the natural
153 environment by taking COVID-19 lockdown and its resultant effects of air pollution as a case
154  for the experiment. The economic valuation was carried out to assess the synergistic effect of
155  this pandemic on air pollutions at 20 cities across the world. The main objectives of this study
156  are: (1) to estimate the spatiotemporal changes in air pollution during 1 February to 11 May in
157 2019 and 2020 using both satellite and ground monitoring data; (2) to estimate the air quality
158  ecosystem service using multiple economic valuation approaches; (3) to evaluate the
159  association between human mobility and reduction of air pollution.

160

161 2. Materials and methods
162 2.1 Data source and data preparation

163 A total of 20 cities have been selected for evaluating the effect of lockdown on air
164 quality ESs. These cities are Antwerp, Barcelona, Brussels, Chicago, Cologne, Denver,
165  Frankfurt, London, Los Angeles, Madrid, Milan, New York, Paris, Philadelphia, Rotterdam,
166  Sao Paulo, Tehran, Turin, and Utrecht. These cities have been considered based on two criteria:
167  high air pollution and high COVID-19 casualties. Most of the cities listed here are from
168  European and American countries. These countries reported more COVID-19 casualties
169  compared with the Asian and Latin American countries (as of 11 May 2020) (WHO, 2020;
170  Sannigrahi et al., 2020a). Sentinel 5P time series pollution data were also used to identify the
171 most polluted cities. Both satellite and ground air pollution data were utilised for evaluating
172 the positive effects of lockdown on the air quality index of these cities. For comparison, the
173 satellite-based air pollution was measured from 01 February to 11 May for both 2019


https://doi.org/10.1101/2020.08.20.20177949
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.08.20.20177949; this version posted August 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

174  (lockdown equivalent period) and 2020 (lockdown period). The concentration of four key air
175  pollutants, nitrogen dioxide (NO2), sulfur dioxide (SOz), carbon monoxide (CO), and aerosol
176  index (Al) concentration, was computed for both 2019 and 2020 using Sentinel 5P data. For
177  sixcities, i.e., Chicago, Denver, Detroit, Los Angeles, New York, and Philadelphia, the ground
178  monitored air pollution data was collected for a more explicit assessment of air quality ESs.
179  However, the ground monitored data was not adequate for the spatial evaluation for most of
180 the cities considered in this study. Therefore, the in-situ data was only used for time series
181  assessment of air pollutions, and the satellite measured pollution estimates were utilised for the
182  spatially explicit appraisal and economic valuation. Human mobility data, including driving
183  and transit for the selected cities, were collected from Apple (for city-scale) and Google (for
184  country scale) mobility reports. In addition to this, the gridded human settlement data and
185  population density data (pixel format) were collected from the Socio-Economic Data
186  Application Center, National Aeronautics and Space Application data center (SEDAC,
187  NASA). For evaluating the total air pollution reduction of these 20 cities in a more accurate
188  way, the Geographical Information System (GIS) enabled city boundary (shapefile format) was
189  extracted from the OpenStreetMap (OSM) application. Two consecutive steps were followed
190  to get the boundary of these cities. First, the OSM relation identifier number (OSM id) was
191  generated for all the 20 cities using Nominatim, a search engine for OpenStreetMap data. Then,
192 the OSM relation id of each city was ingested in the OSM polygon creation application
193  interface, which generates the geometry (both actual and simplified) of the relation id in poly,
194  GeoJSON, WKT or image formats. The formatted image geometry of the cities was then
195 imported in ArcGIS Pro software, and the city boundary was extracted using an automatic
196  digitisation function.

197

198 2.3 Estimation of air pollution

199  2.3.1 Sentinel 5P TROPOMI data and TROPOMI Explorer Application

200 The ESA (European Space Agency) Sentinel-5 Precursor (S 5P) is an example of low
201 earth Sun-synchronous Orbit (SSO) polar satellite that provides information of tropospheric air
202 quality, climate dynamics and ozone layer concentration for the time period 2015-2022
203  (Veefkind et al., 2012). The ESA led S 5P mission is one of the few missions that is intended
204  to measure air and climatic variability from the space-borne application. The S 5P mission is
205  associated with the Global Monitoring of the Environment and Security (GMES) space
206  programme. The TROPOspheric Monitoring Instrument (TROPOMI) payload of S 5P mission
207  was designed to measure the tropospheric concentration of few key air pollutants, i.e., ozone
208  (03), NO2, SOz, CO, CH4, CH20 and aerosol properties in line with Ozone Monitoring
209  Instrument (OMI) and SCanning Imaging Absorption spectroMeter for Atmospheric
210  CartograpHY (SCIAMACHY) programme (Veefkind et al., 2012). TROPOMI measures the
211 concentration of key tropospheric constituents at 7 x 7 km? spatial unit. This default spatial
212 scale was downscaled into 1km x 1km scale for city-scale analysis and subsequent
213 interpretation. In this study, the spatial and temporal variability of four key air pollutants was
214  extracted and mapped from the TROPOMI measurements using the Google Earth Engine cloud
215  platform. For this purpose, an interactive application called TROPOMI Explorer App,
216  developed by Google developers teams (Google, 2020; Braaten, 2020), was utilised to facilitate
217  quick and easy S5P data exploration and to examine the changes in air pollution in both cross-
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218  sectional and longitudinal way. Spatial visualisation and time series charts for the selected air
219  pollutants were also prepared with the help of this TROPOMI Explorer application. The other
220  accessories of this application, such as NO2 time series inspector, NO2 temporal comparison,
221 NO2 time-series animation, were also utilised for different computational purposes.

222  2.3.2 Ground pollution data

223 Ground monitored air quality data was available only for a few cities considered in the
224  study, including Chicago, Denver, Detroit, Los Angeles, New York, and Philadelphia. Thus,
225  these cities were selected for the ground data-driven analysis. Ground monitored data for these
226  cities were collected from the U.S. Environmental Protection Agency (US EPA). This data is
227 available for a daily scale and for six key pollutants, such as CO, NOz, O3, PMz.5, PM1o, and
228  SOg, respectively. The in-situ air pollution concentration at a daily scale was considered only
229  for the time series assessment of pollution concentration. Additionally, the said in-situ data had
230 not been used for any validation and calibration of satellite pollution estimates. The time series
231 (2000-2020) air quality index (AQI) of these selected cities were also generated using the
232 multilayer time plot function. The overall AQI values were sub-divided into six groups, i.e.,
233 good, moderate, unhealthy for sensitive population groups, unhealthy, very unhealthy, and
234 hazardous, respectively. In addition to this, the single year AQI data was also extracted for the
235  selected cities from the EPA. The number of unhealthy days for each pollutant was measured
236  using the EPA AQI plot function. The combination of two different pollutants, such as CO and
237  NO2, PM1o and PM2s, was permuted to assess the yearly AQI status of the cities. As several
238  studies reported the increment of O3 due to the reduction of GHG emissions, this study also
239  evaluated the O3 exceedances for the current year compared to the average O3 concentration
240 of the last 5 and 20 years. This particular task was implemented using the EPA Ozone
241  exceedances plot function (EPA, 2020). Table. S1 provides the criteria of categorisation for
242 each index.

243

244 2.4 Environmental significance of improving air quality status

245 The accelerating increases of air pollution in cities is a major concern across the world
246 (Chan and Yao, 2008; Kim Oanh et al., 2006; Mayer, 1999; Guttikunda et al., 2014; Abhijith
247 et al., 2017; Rai et al.,, 2017; Pilla and Broderick, 2015). Various policies have been
248 implemented for managing the city-based air pollution that mainly originated from
249  anthropogenic activities from specific sources and sectors (Kumar et al., 2015; Kumar et al.,
250 2016; Bar¢ et al., 2014; Feng and Liao, 2016; Zhang et al., 2016). These include the Directive
251 2010/75/EU on industrial emissions, initiated by European Commission to define ‘‘Euro
252  standards’®> for measuring the road vehicle emissions and the Directive 94/63/EC for
253  calculating volatile organic compounds emissions from petrol storage (Baro et al., 2014). The
254  reduction of these gaseous pollutants by green canopy has significant economic importance
255  (Kumar et al., 2019). Two main ecosystem services, such as air quality regulation and
256  climate/gas regulation, are mainly associated with air quality ecosystem services. Several
257  studies have calculated the economic values of NO2, SOz, CO reductions using various
258  valuation approaches such as carbon tax, the social cost of carbon, shadow price method,
259  marginal cost method, etc. (Guerriero et al., 2016; Castro et al., 2017; Jeanjean et al., 2017;
260  Bherwani et al., 2020). In this study, multiple relevant approaches were adopted for calculating


https://doi.org/10.1101/2020.08.20.20177949
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.08.20.20177949; this version posted August 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

261  the economic values of the NO2, SOz, CO, aerosol reduction to gauge the economic benefits of
262  these functions. Since this study has considered the air pollution reduction at the city scale, the
263  public health burden and mean externality valuation approaches were utilised for estimating
264  economic damage due to air pollution and to calculate the economic values of air quality
265  services (Baro et al., 2014; Matthews and Lave, 2000). Unit social damage price due to air
266  pollution was estimated for 2020 using the U.S consumer price index (CPI) inflation calculator
267  (U.S Bureau of Labor Statistics, 2020). Additionally, using the most updated price conversion
268  factors, the mean externality values for the key pollutants was estimated as: CO = 956 $ t,
269 NOx=5149 $ t, SO2 = 3678 $ t*, PM1o = 7907 $ t2.

270 The public health burden valuation approach has also been utilised for economic
271 valuation of air quality ESs (Kumar et al., 2020a, Etchie et al. 2018; Hu et al., 2015; Sharma et
272 al., 2020; Sahu and Kota, 2017; COMEAP, 2009). The calculation of public health burden and
273 the associated economic burden was conducted by three subsequent steps: first, estimation of
274  population-weighted average concentration; second, estimation of health burden or a number
275  of premature mortality attributable to air pollution; and third, the economic burden due to
276  excess air pollution and economic benefits subject to the reduction of air pollution levels during
277  the lockdown period. The population-weighted average concentration (PWAC) was measured
278  as follows:

279 PWAC =~

280  Where Pop, is the population count of a pixel, C, is the average pollution concentration (1 Feb
281  to 11 May 2020), ZPopX is the total population count of the city, PWAC is the population-

282  weighted average concentration. The PWAC was estimated using ArcPy Python module.
283  Gridded population data from SEDAC, NASA, was utilised for this task. Pollution and gridded
284  population data for the same time period were used for estimations of PWAC.

285 Following, the health burden (HB), which refers premature deaths attributable to short-
286  term exposure to air pollutants was estimated for the study period (1 February to 11 May 2020).
287  The reduction in health burden (AHB) was also measured by calculating the difference between
288  the previous and later HB estimates.

289 HB, = AF xB, x>_ Pop, 1)

290 AF = RR L 2)
RR,

291 AHB = HB,,, — HB,,, 3)

292 RR =e[ £(C,-C,,)].C, >0 (4)

293 ER=RR-1 (5)

294
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295  Where HB,is the health burden of city x, AF is the attributable fraction associated with the
296 relative risk of each pollutant, RR. is the relative risk of pollutant i, B, is baseline cause-specific
297  mortality rate per 100,000 population. For calculating B,, country-wise cardiovascular and

298  chronic respiratory baseline mortality rate was collected from Global Burden of Disease study
299  of 2017 (IHME, 2020). Pop, is the population of city x derived from the SEDAC, NASA

300 gridded population count data. AHB is the difference in health burden (or avoidance of
301 premature death due to the reduction of air pollution) from 1% February to 11" May 2020
302  compared to the same period in 2019. HB,,,and HB,,, is the health burden estimates in 2019

303 and 2020 (estimated for 1 February to 11 May time period). g is the exposure-response

304 relationship coefficient, indicates the excess risk of health burden (such as mortality) per unit
305 increase of pollutants. gis calculated 0.038%, 0.032%, 0.081%, 0.13%, and 0.048% per 1

306 g/ m’increases of PMzs, PMio, SO2, NOz, and Os, respectively (Hu et al., 2015; Sharma et
307 al., 2020, Kumar et al., 2020a; Chen et al., 2020). S is calculated 3.7% per 1 mg/m? increases
308 of CO. C;is the concentration of pollutant i, C, ,is the threshold concentration, below which

309 the pollutant exhibits no obvious adverse health effects (i.e., RR = 1).

310 The economic burden (EB) and economic benefits of the reduced air pollution
311  concentration were estimated using the value of statistical life (VSL) approach (Etchie et al.
312 2018; Hu et al., 2015). The VSL represents an individual's willingness to pay for a marginal
313 reduction in risk of dying. The VSL method has been utilised as a standard approach for
314  ecosystem service valuation of non-marketable commaodities and is often used for cost-benefit
315 analysis (OECD, 2014; WHO, 2015), ecosystem service studies (Zhang et al., 2018, 2020).
316  The economic benefits due to avoided premature mortality were estimated as follows:

317 EB, = HB, xVSL, (6)

318  Where EB, is the economic benefit attributed to the reduction of air pollution and resulted in
319  estimates of avoidable mortality HB,, health burden estimates of city x, VSL, is the value of

320 statistical life of the country x that corresponds to the city. Using the value transfer method,
321  OECD (2016a) estimated the VVSL for the entire world, after incorporating income elasticity
322  beta of 1. Since this study considers cities that cover many diversified economic setup and
323  development background, a uniform income elastic global VSL estimates measured by Viscusi
324 et a., (2017) was considered for the economic valuation and subsequent analysis. As city-
325  specific VSL data is not available for many cities, the VSL estimates for the corresponding
326 countries were taken for the analysis. The 2017 VSL values were converted to 2020 unit price
327  for adjusting price fluctuation. The income adjusted VSL was estimated as Belgium (8 $
328  millions, used this value for Antwerp and Brussels city), Spain (5 $ millions, this value was
329  used for Barcelona, Madrid), USA (10 $ millions, this value was used for Chicago, Denver,
330 Detroit, Los Angeles, New York, and Philadelphia), Germany (8 $ millions, this was used value
331 for Cologne, Frankfurt), UK (8 $ millions, this value was used for London), Italy (6 $ millions,
332 this value was used for Milan and Turin), France (7 $ millions, this value was used for Paris),
333  Netherlands (9 $ millions, this value was used for Rotterdam and Utrecht), Brazil (2 $ millions,
334 this value was used for Sao Paulo), and Iran (1 $ millions, this value was used for Tehran),
335  respectively (Viscusi et a., 2017) (Table S5).
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336 25 Examining human mobility and its connections with air pollution status

337 Due to the emergence of COVID-19 pandemic, countries across the world imposed
338  mandatory lockdowns to restrict human-mobility. This reduced motorised traffic, which is one
339  of the key sources of urban air pollution (Chinazzi et al., 2020; De Brouwer et al., 2020).
340  Human mobility could accelerate the transmission of contagious diseases, especially when a
341 larger section of daily commuter uses public transport to maintain their essential daily journey
342  (Sasidharan et al., 2020). Joy et al. and Lara et al. research highlighted a statistically significant
343  association between human mobility that is mainly attributed to public transport and
344  transmissions of acute respiratory infections (ARI) (Troko et al., 2011; Goscé and Johansson,
345  2018). Joy et al. (2011) also found that the use of public transport during a pandemic outbreak
346 in the UK has increased the risk of ARI infection by six-times. To evaluate the effects of
347  reduced human mobility on air pollution, this study utilised the human mobility data provided
348 by Apple and Google. Apple mobility data includes three mobility components, i.e., driving,
349  walking, and transit (public transport), respectively. The reduction of human mobility during
350 the lockdown period was calculated from the baseline (13 January). Both positive and negative
351  changes in human mobility were recorded in percentage form to eliminate calculation bias and
352 easy comparability across the cities/countries in the world. Among the three mobility
353  components, driving and transit was considered for the evaluation, and walking was discarded
354  from the analysis. Google mobility data was also used in this study which has six components
355  (retail and recreation, grocery and pharmacy, parks, transits, workplace, and residential). This
356  data is available from 15 February 2020 to recent date. Since Google mobility data is not
357 available for city scale, the smallest scale (county/state) was taken for the analysis for which
358 the mobility counts are available. This data is also prepared in percentage format to handle the
359 calculation bias and better understanding of the data.

360
361 3. Results
362 3.1 Spatial changes in air pollution in different cities due to lockdown

363 Spatial distribution of four key air pollutants, i.e., NO2z (Fig. 1) SOz (Fig. S1), CO (Fig.
364  S2), and aerosol concentration (Fig. S3) is analysed for 20 cities across the world. The spatial
365 distribution of these pollutants was measured from 1 February to May 11 in 2019 and 2020. A
366  sharp reduction in NO2z and CO emission is observed for all the cities. This could be due to the
367 lockdown and resultant reduction of transportation and industrial emission. Among the 20
368 cities, the maximum decrease of NO2 concentration is recorded for the European cities, such
369 as Paris, Milan, Madrid, Turin, London, Frankfurt, Cologne, and American cities, such as New
370  York, Philadelphia, etc. (Fig. 1). Moreover, among the 20 cities, the highest NO2 reduction is
371 recorded in Tehran, and the lowest reduction is found in Los Angeles and Sao Paulo (based on
372 1%t Feb to 11" May pollution data). The SOz emission is evaluated and presented in Fig. S1.
373 Anincremental trend of SO2 emission is observed during the study period. For most cities, SO2
374  concentration was increased during the study period. However, for exceptions, a slight decrease
375 in SOz emission is observed in Rotterdam, Frankfurt, London, and Detroit cities (Fig. S1). The
376  spatial distribution of CO is also evaluated using GEE cloud application and Sentinel 5P data
377  and presented in Fig. S2. The CO emission is reduced significantly in all the 20 cities. The
378  highest reduction is recorded in Detroit, followed by Barcelona, London, Los Angeles, New
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379  York, Philadelphia, Milan, Madrid, etc. (Fig. 2). At the same time, CO emission was increased
380 in Cologne, Denver (Fig. S2). The spatial distribution of aerosol concentration is also
381 calculated and presented in Fig. S3. Aerosol concentration is also found to be decreased during
382  the COVID lockdown with restricted human activities.

383 3.2 Temporal changes in air pollution due to lockdown

384 Fig. 2 and Table. 1 shows the average NO2, SO2, CO, and aerosol concentration from
385  1tFebto 11" May in 2019 and 2020. Among the 20 cities, the average NO2 concentration was
386  found highest in Tehran ( 747.1umol in 2019 and 563.77umol in 2020), followed by Milan
387  (257.34pumol in 2019 and 162.52umol in 2020), New York (242.2umol in 2019 and
388 172.31umol in 2020), Paris (205.95umol in 2019 and 111.33umol in 2020), Turin
389  (204.94umol in 2019 and 129.46pmol in 2020), Chicago (199.21umol in 2019 and 139.27umol
390 in 2020), Cologne (194.25umol in 2019 and 132.53umol in 2020), Philadelphia (187.81umol
391  in 2019 and 123.11umol in 2020), etc. Lowest NO2 concentration was observed in Sao Paulo
392 (119.88umol in 2019 and 99.3umol in 2020), Brussels (160.95umol in 2019 and 115.96umol
393  in 2020), Denver (161.01pumol in 2019 and 107.19umol in 2020), respectively. Among the 20
394  cities, the SO2 concentration was found maximum in Chicago (528.26pmol in 2019 and
395  785.46umol in 2020), followed by Detroit (465.96umol in 2019 and 508.61umol in 2020),
396  Barcelona (429.21umol in 2019 and 444.19umol in 2020), Paris (427.99umol in 2019 and
397  484.62umol in 2020), Philadelphia (422.32umol in 2019 and 552.96umol in 2020), London
398  (415.89umol in 2019 and 461.82umol in 2020), etc. While the low SO2 emission was
399  documented in Sao Paulo (19.34pumol in 2019 and 105.23umol in 2020), Denver (128.75umol
400 in 2019 and 249.18umol in 2020), Brussels (227.32umol in 2019 and 347.9umol in 2020),
401  Tehran (258.35umol in 2019 and 258.3umol in 2020), Los Angeles (264.3umol in 2019 and
402 397.61pmol in 2020) (Fig. 2 and Table. 1). The average concentration of CO in different cities
403  isalso evaluated and presented in Fig. 2 and Table. 1. During the study period, the highest CO
404  concentration is recorded in American cities, i.e., New York, Philadelphia, Detroit, Chicago,
405  Los Angeles, while a comparably low CO concentration is documented for Sao Paulo, Denver,
406  Madrid, Barcelona, and Brussels (Fig. 2). Except for a few cities, the concentration of NO2,
407  CO, and aerosol has been reduced substantially (Fig. 3 and Table. 1, Table. 2). For NO2, the
408  highest reduction was detected in Paris (45.94%), followed by Detroit (40.29%), Milan
409  (36.85%), Turin (36.83%), Frankfurt (36.36%), Philadelphia (34.45%), London (34.15%), and
410 Madrid (34.03%), respectively. At the same time, comparably lower reduction of NO2 is
411  observed in Los Angeles (10.54%), Sao Paulo (17.17%), Antwerp (24.14%), Tehran (24.54%),
412  and Rotterdam (26.72%), respectively (Fig. 3 and Table. 2). For CO, the maximum reduction
413  was recorded for New York (4.24%), followed by Detroit (4.09%), Sao Paulo (3.88%),
414  Philadelphia (3.45%), Milan (3.17%), Barcelona (2.86%), respectively. At the same time, a
415  positive (increase) changes in CO were observed in Denver (1.92%), Cologne (0.49%), and
416  Rotterdam (0.01%) (Fig. 3 and Table. 2). The temporal variability of NO2, SO2, CO, and
417  aerosol concentration is shown in Fig. 4, Fig. 5, Fig. S4, Fig. S5, Fig.S6, Fig. S7, Fig. S8. Both
418 median and interquartile range (IQR) values in Fig. 4 and Fig. 5 suggest that NO2
419  concentration was decreased substantially. A similar declining pattern is observed for CO for
420 all the 20 cities considered in this study (Fig. S4, Fig. S5). However, for SO2, an incremental
421  trend was observed for most of the cities (Fig. S6).

10


https://doi.org/10.1101/2020.08.20.20177949
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.08.20.20177949; this version posted August 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

422 Using the ground monitored data, the daily air quality index (AQI), and a cumulative
423 number of good AQI days for the six American cities was computed and presented in Fig. 6.
424  The ground monitored data for these six cities have been considered only for time series
425  assessment and subsequent interpretation. In all cases, it has been found that AQI is reduced
426  significantly due to lockdown led reduction in human mobility and traffic emission. In the left
427  panel, the grey color indicates the five years average AQI and light blue shade demonstrating
428  the average AQI range in the last 20 years. Based on the AQI ranges, four AQI classes were
429  characterised, such as good, moderate, unhealthy for sensitive groups, and unhealthy (Fig. 6).
430 A comparably higher cumulative number of good AQI days is recorded during the lockdown
431  period for all five cities, except Chicago (Fig. 6). Using the EPA AQI interactive plot function
432 application, the daily AQI of the US cities were analysed and presented in Fig. 7, Fig. S9, Fig.
433 S10. The daily NO2 and SO2 AQI suggest that all the cities are benefitted by having good
434  quality air due to anthropogenic pollution switch-off and restricted human mobility that
435  collectively improved the air quality ecosystem services in these cities. The multi-year daily
436  time series plot (Fig. 8, Fig. 9, Fig. 10) is also indicating the improving status of air quality in
437  the US cities due to the reduced level of traffic emission. Six distinct color grade is used to
438  demonstrate the AQI categories. Six different AQI classes, i.e., good, moderate, unhealthy for
439  sensitive groups, unhealthy, very unhealthy, and hazardous, etc. are also defined to evaluate
440  the time series AQI status of these cities during the pre-COVID (2000 — 2019) and lockdown
441  (Jan to May 2020) period. Fig. 8 shows that in all cities, the NO2 AQI status is mostly good
442  during the lockdown period compared to the long-term average AQI in these cities. Fig. 9
443  shows the PM2s AQI status, which also found improving during the lockdown period. The
444  higher proportions of good AQI values in all the cities are suggesting improving air quality
445  (PMz2s) status in Chicago, Denver, Detroit, Los Angeles, New York, and Philadelphia. The
446 multi-year time series plot was prepared after combining all the pollutants that suggest that the
447  air quality is improved substantially, which is supported by the lower AQI recorded during the
448  lockdown period compared to the long-term AQI recorded in these cities. Among the six cities,
449  the hazardous to very unhealthy air quality is common in Los Angeles, compared to the other
450  five US cities considered in this study.

451 3.3 Human mobility and its paramount effect in lowering the pollution levels

452 Using both Google and Apple human mobility information, the effect of lockdown and
453 its striking impact on human outdoor activities is measured and presented in Fig. 11, Fig. S12,
454  Fig. S13, Fig. S14, Fig. S15. The driving and transit mobility was calculated using the Apple
455  mobility data. Mobility on January 13 was taken as a baseline, and further changes in human
456 mobility during the lockdown period was calculated from the baseline mobility. The driving
457  counts reduced most significantly in Paris, followed by Madrid, London, Antwerp, and
458  Brussels (Fig. 11). Whereas, such changes were comparably lower in Chicago, Cologne,
459  Denver, Los Angeles, New York (Fig. 11). Transit counts also reduced significantly in Paris,
460  followed by Utrecht, Sao Paulo, New York, Milan, Chicago, Antwerp, and Brussels (Fig. 11).
461  Using the Google human mobility records, the changes in different mobility such as retail and
462  recreation, grocery and pharmacy stores, transit, parks and outdoor, workplace visitor, and time
463  spent at home were measured. Transport related mobilities were reduced most significantly in
464  the Latin American countries, followed by a few Middle East and Southeast Asian countries,
465 and American countries (Fig. S13). Parks and outdoor activities were found to be reduced
466  maximum in the Latin American countries and South Asian countries. At the same time,
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467  outdoor activities are seen to be increased in a few European countries as well (Fig. S13). The
468  highest reduction in retail and recreation is found in India, Turkey, UK, and few Latin
469  American countries due to lockdown and associated restrictive measures. (Fig. S14).
470  Considering grocery and pharmacy-related mobilities, the highest reduction is being observed
471 in the Latin American countries and a few European countries. Whereas grocery related
472 mobility was found to be increased in the USA, few African and European countries (Fig. S14).
473 Workplace related mobility is reduced significantly in Peru, Bolivia, India, Spain, Turkey,
474  Saudi Arabia, USA, and Canada (Fig. S15). While such changes were positive in a few African
475  countries (Mali, Niger, Mozambique, Zambia), Venezuela, and a few island countries (Fig.
476  S15). Finally, using the Google real-time mobility information, another mobility component,
477  i.e., time spent at home, was calculated (Fig. S15). As expected, due to lockdown and
478  mandatory restrictive measures on human activities, people tend to spend more time at home,
479  which also suggests that at most of the countries have taken timely decisions to control the
480  pandemic. Except for a few European countries, peoples around the world limited their outdoor
481  activities, which is supported by the results shown in Fig. S15.

482 3.4 Improving the status of air quality ecosystem services

483 Using both public health and externality valuation approaches, the positive association
484  between lockdown led the reduction of anthropogenic emissions, and air quality ecosystem
485  services are analysed and presented in Table. 3, Table. 4, Table. 5, Table. S5. Before
486  economic valuation, the original externality values for different air pollutants were adjusted
487  using the latest price inflation conversion factor (Table. 3). These adjusted value coefficients
488  were later used to calculate the economic value of the air quality ecosystem services for the 20
489  cities across the world. For the public health valuation method, the estimated economic burden
490  and economic benefits were also adjusted for eliminating the influence of price inflation in the
491  valuation. Overall, the per-unit EV was calculated maximum for Sao Paulo (49716 $), New
492  York (49453 $), Tehran (43624 $), London (38930 $), Detroit (22588 $), Los Angeles (20242
493  $), Philadelphia (19190 $), Madrid (16413 $), Chicago (13222 $), Milan (10035 $), Frankfurt
494 (5854 $), Turin (5749 $), Antwerp (5039 $), Paris (4971 $), Barcelona (4117 $), Cologne (3914
495 %), Rotterdam (3400 $), Brussels (1876 $), and Utrecht (1675 $). At the same time, the
496  economic burden (both NO2 and CO emission is found higher than the previous year, 2019)
497  due to NO2 and CO emission was calculated for Denver (-1077 $) (Table. 4).

498 The population-weighted average concentration (PWAC, umol m) was estimated for
499  each city and presented in Fig. 12. The highest PWAC values (in 2019) were estimated for
500 Tehran (512), followed by Milan (183), New York (139), Chicago (139), Turin (139),
501  Philadelphia (134), Los Angeles (133), Madrid (133), Paris (133), Detroit (127), Cologne
502  (126), London (125), Frankfurt (122), respectively. Using the public health burden valuation
503  approach, the highest economic values (derived from public health burden valuation approach
504  and estimated for 101 days) was estimated for New York (501M $), followed by London (375
505 M $), Chicago (137M $), Paris (124M $), Madrid (90M $), Philadelphia (89M $), Milan (78
506 M $), Cologne (67M $), Los Angeles (67M $), Frankfurt (52M $), Turin (45M $), Detroit (43
507 M $), Barcelona (41M $), Sao Paulo (40M $), Tehran (37M $), Denver (30M $), Antwerp (16
508 M $), Utrecht (14M $), Brussels (9M $), and Rotterdam (9M $), respectively (Table. 5). It is
509 also evident from the economic valuation that due to the temporary reduction of air pollution
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510 levels, the economic cost attributed to air pollution led health burdens was reduced significantly
511 (Table. S5).

512 4. Discussion
513 4.1 Relevance of satellite remote sensing in air pollution mapping

514 Using the ESA Sentinel 5P TROPOMI air real-time pollution data, the spatiotemporal
515  concentration of different air pollutants, i.e., NO2z, SO2, CO, Aerosol, has been evaluated to
516  examine the positive effects of COVID-19 lockdown on air quality across the world. Sentinel
517 5P satellite mission is one of the finest space-borne applications that provide the crucial key
518 information of air quality, ozone, ultra-violate radiation, and climate monitoring and
519  forecasting (ESA, 2020). TROPOMI widens the application of the satellite air pollution
520  observation and works in line with other global missions, i.e., SCIAMACHY (2002-2012),
521  GOME-2 (since 2007), and OMI (since 2004) (Lorente et al., 2019). This data has been used
522  for many purposes, including air pollution measurement (Zheng et al., 2019; Borsdorff et al.,
523  2018; Shikwambana et al., 2020), epidemiological studies (Chen et al., 2020; Dutheil et al.,
524  2020b; Gautam, 2020; Muhammad et al., 2020; Ogen, 2020; Shehzad et al., 2020); monitoring
525 global volcano (Valade et al., 2019), demographic analysis (Kaplan and Yigit, 2020),
526  evaluating sun-induced chlorophyll fluorescence (SIF) (Guanter et al., 2015), estimation of
527  volcanic sulfur dioxide emission (Theys et al., 2019), etc. In addition, the advent of Google
528  Earth Engine cloud-based suitability in handling the large volume of spatial data facilitates the
529 application of satellite images for timely decision making and offering cost-benefit solutions
530 to many environmental problems. Furthermore, most of the fine to medium scale satellite data
531  products are free and open access in nature (Woodcock et al., 2008). This suggests that
532  transferring ideas from place to place would be easy, which eventually establishes more trust
533  and transparency in applying the scientific findings to solve real-life problems. Evaluating the
534  reliability of remote sensing data is always a matter of concern. Since this study has evaluated
535 the air pollution in cities, which itself is very sensitive in nature, proper and careful evaluation
536 is required to verify the accuracy of satellite estimates to draw a data-driven conclusion that
537  may use further as a reference in future studies. Many studies across the world have evaluated
538 the reliability of Sentinel 5P pollution data with ground monitored measurements. Lorente et
539 al. (2019) have examined the reliability of Sentinel TROPOMI tropospheric column NO2
540  density with ground monitored (ground monitored NO2 boundary layer height over the Eiffel
541  Tower was used in this purpose) data and found a very good agreement (R? = 0.88) between
542  the two estimates. Griffin et al., (2019) study on validating TROPOMI data with aircraft and
543  surface in situ NO2 observations over the Canadian oil sands found that the TROPOMI vertical
544  NO2 column densities are strongly correlated (R? = 0.86) with the aircraft and ground in situ
545  NO:2 observations with a low bias (15-30 %).

546 4.2 Anthropogenic emission and ecosystem services

547 In this study, the spatial and temporal distribution and changes in different air pollution
548  were measured for different cities across the world. A fixed timeframe (1% February to 11%
549  May) was considered for the spatial and temporal analysis and subsequent interpretation. For
550 all the 20 cities, NO2 concentration was found to be decreased with mixed intensities. Due to
551  the imposition of worldwide lockdown and resulted in anthropogenic emission switch-off, air
552  pollution across the world has been reduced significantly. Among the countries, the highest
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553  NO:2 reduction was observed for Netherlands (70%), Japan (64%), Macao (60%), Lebanon
554  (55%), Italy (54%), India (54%), Monaco (54%), North Korea (51%), Hungary (50%), and
555  Kuwait (50%), respectively. While an incremental trend of NO2 emission was found in the
556 Island countries, i.e., Kiribati (213%), Howland Island (136%), Jarvis Island (129%), Nauru
557  (93%), Pacific Islands (Palau) (81%) along with other countries such as Indonesia (74%), Nepal
558  (57%), Mozambique (56%), Norfolk Island (55%), and Jan Mayen (52%), where COVID1-9
559  lockdown has not implemented or followed strictly (Fig. S11, Table. S2, Table. S3). For CO,
560 the maximum reduction was observed in Ecuador (6%), Colombia (6%), Venezuela (4%),
561  Macau (4%), South Korea (4%), North Korea (4%), Byelarus (3%), Singapore (3%), Estonia
562  (3%), and Latvia (3%), respectively. While, during the lockdown period, an increasing trend
563  of CO emission was documented for some countries, such as Sao Tome and Principe (14%),
564  Equatorial Guinea (14%), Gabon (13%), Argentina (13%), Falkland Islands (13%), Uruguay
565  (12%), Congo (12%), Bouvet Island (11%), and Cameroon (11%), respectively. For both NO2
566 and CO, the maximum reduction is recorded for the countries which have been strongly
567 affected by the COVID pandemic. The economic loss due to this exceeding level of air
568  pollution has also been evaluated in this study. However, in this study, only the median
569  externality values of the air pollutants are considered for the valuation and subsequent
570 interpretation. This one dimension and linear valuation approach will not be able to track down
571  the overall economic impact of air pollution on human life. Therefore, research that broadens
572  the scope of valuation needs to be initiated for exploring the importance of proper monetary
573  valuation in environmental studies.

574 4.3 Human mobility and its association with air pollution

575 The connection between human mobility and air pollution levels in selected cities were
576  also examined in this research. Both Apple and Google mobility data were used for this
577  purpose. Results derived from both the report suggest that due to the mandatory lockdown and
578  resulted in limited outdoor human activities, mobility has been reduced significantly across the
579  world. This drastic reduction of human mobility could contribute to the reduced level of air
580  pollution observed in the last few months. For most of the cities considered in this study, human
581  mobility has been reduced up to 80% from the baseline mobility. The highest reduction in
582  mobility was found in the European cities. To prevent infection, the authorities in these cities
583 implemented preventive measures, which included partial lockdown in different sectors,
584 including restricted outdoor social activities. This mandatory imposition of lockdown has
585  resulted inareduced level of traffic volume in cities (Fig. 11, Table. S6). The mobility analysis
586  thus suggests that by introducing sustainable transport plans and policies, air pollution in the
587  urban regions can be minimised to a certain extent. The periodic and temporary lockdown can
588  also be adopted in the highly polluted cities if no other alternatives are feasible at the place. A
589  similar strategy has already been adopted by New Delhi Government by introducing
590 “odd/even” transport scheme where private vehicles with odd digit (1, 3, 5, 7, 9) registration
591  numbers will be allowed on roads on odd dates and vehicles with even digit (0, 2, 4, 6, 8)
592  registration numbers can use the vehicles on even dates. In addition, the Mahato et al. study
593  has observed a 40% to 50% improvement in air quality in Delhi within the first week of
594  lockdown. He et al. (2020) study on short-term impacts of COVID-19 lockdown on urban air
595  pollution has found that within a week, the AQI in the locked-down cities in China has been
596  reduced by 19.84 points (PM2s goes down by 14.07 ug m™3) compared to the cities where
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lockdown has not been implemented strictly. The findings suggest an increased clean air
ecosystem services in cities under the cessation of human activities.

5. Conclusion

This study has evaluated the effect of COVID-19 lockdown on air quality ecosystem
services across the world. A total of 20 major cities were considered for the analysis and
subsequent interpretation. Both satellite and ground air pollution data were utilised for
examining the association between COVID pandemic led lockdown and improving status of
air quality ecosystem services across the cities. The major findings of this research are:

1) Among the 20 cities, the average NO2 concentration (1 Feb to 11 May) was found
highest in Tehran, followed by Milan, New York, Paris, Turin, Chicago, Cologne, and
Philadelphia.

2) The lowest NO2 concentration (1 Feb to 11 May) was observed in Sao Paulo, Brussels,
and Denver.

3) For NOg, the highest reduction was detected in Paris (45.94%), followed by Detroit
(40.29%), Milan (36.85%), Turin (36.83%), Frankfurt (36.36%), Philadelphia
(34.45%), London (34.15%), and Madrid (34.03%), respectively.

4) While, a comparably lower reduction of NO2 is observed in Los Angeles (10.54%), Sao
Paulo (17.17%), Antwerp (24.14%), Tehran (24.54%), and Rotterdam (26.72%), during
the lockdown period.

5) For CO, the maximum reduction was recorded for New York (4.24%), followed by
Detroit (4.09%), Sao Paulo (3.88%), Philadelphia (3.45%), Milan (3.17%), Barcelona
(2.86%), respectively.

6) The daily NO2 and SO2 AQI during the lockdown period suggest that all the cities are
benefitted by having good quality air due to anthropogenic pollution switch-off and
restricted human interventions.

7) Among the cities, the highest economic values (derived from public health burden
valuation approach) was estimates for New York (501 million US$), followed by
London (375 million US$), Chicago (137 million US$), Paris (124 million US$),
Madrid (90 million US$), Philadelphia (89 million US$), Milan (78 million US$),
Cologne (67 million US$), Los Angeles (67 million US$), Frankfurt (52 million US$),
Turin (45 million US$), Detroit (43 million US$), Barcelona (41 million US$), Sao
Paulo (40 million US$), Tehran (37 million US$), Denver (30 million US$), Antwerp
(16 million US$), Utrecht (14 million US$), Brussels (9 million US$), and Rotterdam
(9 million US$), respectively.

8) For NO2, the economic significance of reduced anthropogenic emission is found
maximum in Tehran (31700 $), followed by London (21887 $), New York (12975 $),
and Madrid (9072 $).

9) For CO, the maximum ecosystem service value was calculated maximum for Sao Paulo
(42302 $), followed by New York (36478 $), London (17043 $), Detroit (16038 $), and
Los Angeles (14472 $).

10) Among the countries, the highest NO2 reduction was observed for Netherlands (70%),
Japan (64%), Macao (60%), Lebanon (55%), Italy (54%), India (54%), Monaco (54%),
North Korea (51%), Hungary (50%), and Kuwait (50%).
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11) For CO, the maximum reduction was observed in Ecuador (6%), Colombia (6%),
Venezuela (4%), Macau (4%), South Korea (4%), North Korea (4%), Byelarus (3%),
Singapore (3%), Estonia (3%), and Latvia (3%).

The present research has made an effort to investigate the human impact on the natural
environment by taking COVID-19 lockdown and its resultant reduction of air pollution. Both
physical and monetary valuation was carried out to assess the synergic effect of this pandemic
led lockdown on air pollutions at 20 cities across the world. A strong connection between
human interventions and accelerating levels of air pollution was observed in most of these
cities. Both satellite and ground-based estimates are suggesting the positive effect of the limited
human interference on natural environments. Further research in this direction is needed to
explore this synergic association more explicitly.
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Fig. 4 Monthly variation of NO, (umol m) concentration in the selected cities from August 2018 to May 2020

derived from Sentinel 5P TROPOMI observation.
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Fig. 5 Yearly variation of NO, (umol m2) concentration in the selected cities in 2018, 2019, and 2020 derived from
Sentinel 5P TROPOMI observation.
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reduction of air pollution, air quality status is improved in all the selected
cities in USA.
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Fig. S1 Spatial distribution of SO, (umol m ) in the selected cities in 2019 and 2020 (from Feb to May). Spatial maps in third panel
shows the spatial difference in SO, concentration between 2019 and 2020.
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Fig. S2 Spatial distribution of CO (umol m2) in the selected cities in 2019 and 2020 (from Feb to May). Spatial maps in third panel shows the
spatial difference in CO concentration between 2019 and 2020.
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Fig. S3 Spatial distribution of Aerosol index in the selected cities in 2019 and 2020 (from Feb to May). Spatial maps in
third panel shows the spatial difference in aerosol concentration between 2019 and 2020.
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Fig. S4 Temporal variation of CO (umol m™) concentration in the selected cities from August 2018 to May 2020
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Fig. S5 Temporal variation of CO (umol m) concentration in the selected cities in 2018, 2019, and 2020 derived
from Sentinel 5P TROPOMI data.


https://doi.org/10.1101/2020.08.20.20177949
http://creativecommons.org/licenses/by/4.0/

$02 (pmol/m?)

S02 (umolim?)

$02 (umol/m?)

502 (mol/m?)

502 (umolim?)

$02 (umolim?)

$02 (umol/m?)

502 (umolim?)

502 (pmol/im?)

S0z (umol/m?)

Year-over-year

Antwerp

Year-over-year

1,500 2020 1,000 Barcelona 2020
— 2019
1,250 — 2019
— 2018 800 — 2018
1,000 600
750 -
£ 400
3
250 \ 8 0 /N /\V/\\/
: Ve NV AVAIR \/
250 -400
500 -600
0 100 200 300 0 100 200 300
Day-of-year Day-of-year
Year-over-year Brussels Year-over-year Ch ica 0
2000 2020 1750 g 2020
— 2019 1,500 — 2019
— — 2018
1,500 e 1,250
= 1,000
1,000 H
£ 750
500 3 500
/\/\ /\ /\/\ /\ J 250
0
VARG : ,
-250
-500
0 100 200 300 0 100 200 300
Day-of-year Day-of-year
Year-over-year
Year-over-year C l
1,200
800 ologne ’ 2020
g — - Denver o
— 2018
600 — 2018 800
400 T 600
3
E 400
200 rt
/L o /\/\/\
0 V \V 0 /\\/
S
200 200
-400
_400 0 100 200 300
0 100 200 300
Day-of-year
Day-of-year
Year-over-year
Year-over-year
1,200 2020
1,500
; o 2020 — 2019
1250 Detroit — 2019 1,000 — 2018
— 2018 o Frankfurt
1,000
g
750 < 600
H
500 8 400
3
/\/\A /\, /\f\ AN,
’ 0 VA\,J =
-250 -200
0 100 200 300
-500
0 100 200 300 byt
ay-of-year
Day-of-year
Year-over-year Year-over-year
1,750 2020 1,400 2020
- Los Angel — o
— 2018 —
1250 London 1,000 0s Angeles
1,000 B 800
3
750 E 600
.
o
. . 4
50 medRxiv preprint doi: https://doi.org/10.1101/2 this version posted Aifgust 24)2020. The copyright holder f rithis
20 preprint (which wag not\certified by peer y der, who has grantecmedRxiv alicense tg'd h
0 BY 4.0 International license .
250 200
o 100 200 300 0 100 200 300
Day-ofyear Day-of-year
Year-over-year Year-over-year
1,500 2020 1,500 2020
— 2019 1,250 2019
1,250 ; .
; — 0 Milan —
1,000 Madrid 1,000
750 £ 750
£
500 /\/\% g 500
3 250 /\
250 /\ /\
0 M ,\/\ A~ /'\ /\ , . - aN -
SR/ VY N
-250 -250
-500
-500 0 100 200 300
0 100 200 300
Day-of-year
Day-of-year
Year-over-year
1,000 2020 Year-over-year
.
New York — 2019 1200 Paris 2020
800 — 2018 1000 — 2019
' — 2018
600 800
= 600
400 £
£ 400
200 A/\A 8 200
0 \ 0 \CAN g A J
v Y v \/ \/ \/
200
-200
0 100 200 300 400
0 100 200 300
Day-of-year byt
ay-of-year
Year-over-year
1000 Year-over-year
! . o 2020
Philadelphia — 2010 e Rotterdam
800 — 2018 1,500 o
— 2018
600 1,250
400 B 1,000
E
o
N N \ 2 500
VAR —
-200 . ~ N \r
400 250
0 100 200 300 0 100 200 300
Day-of-year Day-ctyear
Year-over-year Sao Paulo Year-over-year
1000 200 1200 Tehran .
— 2019
800 — 2019
— 2018 1,000 — 2018
600 800
400 E 600
s
200 A £ 400
=
0 /\ N \// 3 200
200 0 AV
-400 200
-600 400
0 100 200 300 0 100 200 300
Day-of-year Day-of-year
Year-over-year
Year-over-year
1,500 2020 500
2020
. — 2019
1250 Turin - 00 Utrecht — 2018
— 2018
1,000 00
750 _ -
B 200
500 g o - pay
250 f/\ 3 200 \/ \/ \/ \/
0 A\ \/\/\/ \V4 -400
-250 \/ 600
-500 -800
0 100 200 300 o 100 200 300

Day-of-year

Fig. S6 Temporal variation of SO, (umol m=) concentration
derived from Sentinel 5P TROPOMI data.

Day-of-year

in the selected cities from August 2018 to May 2020
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Fig. S7 Temporal variation of aerosol concentration in the selected cities from August 2018 to May 2020

derived from Sentinel 5P TROPOMI observation.
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Fig. S9 Shows the ground monitored air quality index (based on PM, s and PM,,) in 2019 and 2020
in the selected cities.
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Fig. S10 Shows the ground monitored air quality index (based on CO and O3) in 2019 and 2020 in

the selected cities.
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Fig. S11 Changes in NO, and CO concentration during the study period (1st Feb to 11th May
in 2019 and 2020). NO2 changes are maximum in few Asian countries and European countries.

Whereas, CO chnages are promnent in China, USA, and few European countries.
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Fig. S12 Changes in human mobility observed during the lock down period. Six mobility factors, i.e.., retial
and recreation, grocery and pharmacy, transit, parks and outdoor, workplace visitors, and time spent at home is
evaluated in this study.
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Fig. S13 Spatial variability of public transport and parks/outdoor mobility during the
lockdown period.
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Fig. S14 Spatial variability of retail/recreation and grocery/pharmacy mobility during
the lock-down period.
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Fig. S15 Spatial variability of workplace and residential mobility during the lockdown
period.
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Table. 1 Summary statistics of mean NO,, SO,, CO, and Aerosol concentration during 2019 and 2020 (Feb to May).

City NO: SO: CO Aerosol
2019 2020 Difference 2019 2020 Difference 2019 2020 Difference 2019 2020 Difference

Antwerp 183.46 139.18 -44.28 388.11  464.75 76.64 37692.53 37163.86 -528.67 -0.93 -1.22 -0.29
Barcelona 175.67 123.86 -51.81 42921  444.19 14.98 36769.83 35719.16  -1050.67 -0.96 -1.2 -0.24
Brussels 160.95 115.96 -44.99 227.32 347.9 120.58 37139.19 37103.17 -36.02 -0.95 -1.23 -0.28
Chicago 199.21 139.27 -59.94 528.26  785.46 257.2 3870592 384214 -284.52 -0.76 -1.04 -0.28
Cologne 19425 132.53 -61.72 3204 514.36 193.96 37571.52  37756.77 185.25 -0.96 -1.27 -0.31
Denver 161.01 107.19 -53.82 128.75  249.18 120.43 29961.93  30538.35 576.42 -0.77 -0.99 -0.22
Detroit 18543 110.72 -74.71 465.96  508.61 42.65 39559.85 37941.21  -1618.64 -0.91 -1.11 -0.2
Frankfurt 187.38 119.25 -68.13 401.17  437.41 36.24 3787536  37597.53 -277.83 -0.98 -1.29 -0.31
London 172.1 11332 -58.78 415.89  461.82 4593 37370.07 36965.12 -404.95 -0.94 -1.22 -0.28
Los Angeles 177.45 158.74 -18.71 264.3 397.61 133.31 38555.63 38140.47 -415.16 -0.7 -0.99 -0.29
Madrid 186.24 122.86 -63.38 276.41  348.12 71.71 32831.26  32377.51 -453.75 -0.77 -1.12 -0.35
Milan 257.34 162.52 -94.82 361.54 414.17 52.63 38548.29 3732544  -1222.85 -0.92 -1.28 -0.36
New York 2422 17231 -69.89 38249  602.49 220 40985.22 3924691  -1738.31 -0.95 -1.15 -0.2
Paris 205.95 111.33 -94.62 427.99  484.62 56.63 37984.51 37060.08 -924.43 -0.85 -1.09 -0.24
Philadelphia  187.81 123.11 -64.7 42232 55296 130.64 40035.09 38654.45  -1380.64 -0.93 -1.15 -0.22
Rotterdam 166.64 122.11 -44.53 36343  311.56 -51.87 37520.03 37524.14 4.11 -0.93 -1.18 -0.25
Sao Paulo 119.88 993 -20.58 19.34 105.23 85.89 26755.54 25716.73  -1038.81 -1.07 -1.28 -0.21
Tehran 747.1  563.77 -183.33 258.35 2583 -0.05 38460.98 37850.83 -610.15 -1.04 -1.3 -0.26
Turin 204.94 129.46 -75.48 3225 548.34 225.84 37338.8  36357.31 -981.49 -1.05 -1.4 -0.35
Utrecht 161.5 107.07 -54.43 352.77 520.7 167.93 37702.9  37553.67 -149.23 -0.92 -1.3 -0.38
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Table. 2 Concentration (ton) of different air pollutants in 2019 and 2020 derived from

Sentinel TROPOMI satellite data.

City NO: SO: CO
2019 2020 Difference 2019 2020 Difference 2019 2020 Difference
(%) (%) (%)
Antwerp 1.73 1.31 -24.14 5.08 6.09 19.75 215.83 212.80 -1.40
Barcelona 0.82 0.58 -29.49 2.80 2.90 3.49 104.91 101.91 -2.86
Brussels 1.20 0.86 -27.95 2.35 3.60 53.04 167.84 167.68 -0.10
Chicago 5.55 3.88 -30.09 20.51  30.50 48.69 656.87 652.04 -0.74
Cologne 3.62 247 -31.77 8.32 13.35 60.54 426.27 428.37 0.49
Denver 2.97 1.98 -33.43 3.31 6.40 93.54 336.58 343.06 1.92
Detroit 3.16 1.89 -40.29 11.05  12.06 9.15 409.95 393.18 -4.09
Frankfurt 2.14 1.36 -36.36 6.38 6.96 9.03 263.32 261.39 -0.73
London 12.45 8.20 -34.15 41.88  46.51 11.04 1644.88  1627.06 -1.08
Los Angeles 10.63 9.51 -10.54 22.05  33.17 50.44 1405.58  1390.45 -1.08
Madrid 5.18 342 -34.03 10.70  13.48 25.94 555.52 547.84 -1.38
Milan 2.15 1.36 -36.85 4.21 4.82 14.56 196.23 190.00 -3.17
New York 8.73 6.21 -28.86 19.21  30.25 57.52 899.48 861.33 -4.24
Paris 1.00 0.54 -45.94 2.89 3.27 13.23 112.10 109.37 -2.43
Philadelphia 3.17 2.08 -34.45 9.93 13.00 30.93 411.40 397.21 -3.45
Rotterdam 2.50 1.83 -26.72 7.59 6.50 -14.27 342.27 34231 0.01
Sao Paulo 8.39 6.95 -17.17 1.88 10.25 444.11 1139.46  1095.22 -3.88
Tehran 25.09 18.93 -24.54 12.08 12.08 -0.02 786.14 773.67 -1.59
Turin 1.23 0.78 -36.83 2.69 4.57 70.03 136.12 132.54 -2.63
Utrecht 0.74 0.49 -33.70 2.24 3.31 47.60 104.73 104.32 -0.40
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Table. 3 Per unit ecosystem service equivalent value of different

pollutants.
Pollutants Min Median Mean Max
co $1.84 $956.17 $956.17 $1,930.72
NOx $404.53 $1,949.11 $5,148.58 $17,468.41
SO: $1,415.86 $3,309.80 $3,677.56 $8,642.27
PMaio $1,746.84 $5,148.58 $7,906.76 $29,788.24

Table. 4 Economic benefits due to the reduction of anthropogenic
emission estimated for different cities estimated using median

externality valuation method.

City NO: CcO Overall
ESV (USD) ESV (USD) ESV (USD)

Antwerp 2145 2894 5039
Barcelona 1251 2866 4117
Brussels 1720 156 1876
Chicago 8605 4617 13222
Cologne 5924 -2010 3914
Denver 5114 -6191 -1077
Detroit 6549 16038 22588
Frankfurt 4007 1847 5854
London 21887 17043 38930
Los Angeles 5770 14472 20242
Madrid 9072 7341 16413
Milan 4083 5952 10035
New York 12975 36478 49453
Paris 2362 2609 4971
Philadelphia 5624 13566 19190
Rotterdam 3436 -36 3401
Sao Paulo 7414 42302 49716
Tehran 31700 11925 43624
Turin 2328 3421 5749

Utrecht 1279 396 1675
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Table. 5 Summary estimates of economic benefits (Million US$) derived
from health burden approach. EB = Economic Burden (Million US$)

City EB 2019 EB 2020 Economic Benefit
Antwerp 67 51 16
Barcelona 138 97 41
Brussels 31 22 9
Chicago 456 320 137
Cologne 213 145 67
Denver 89 59 30
Detroit 106 64 43
Frankfurt 144 92 52
London 1102 727 375
Los Angeles 634 568 67
Madrid 267 176 90
Milan 211 134 78
New York 1744 1243 501
Paris 270 146 124
Philadelphia 258 169 89
Rotterdam 35 26 9
Sao Paulo 234 194 40
Tehran 152 115 37
Turin 123 78 45

Utrecht 41 27 14
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Table. S1 AQI categorization for different air pollutants.
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AQI NO, CO 0s PMo PM, 5 SO,
(ppb) (ppm) (ppm/hr) (ng m?) (ng m?) (ppb)
Good <=53 <=4.4 <=0.054 <=54 <12 <=35
Moderate 54-100 4.5-9.4 0.055-0.070 55-154 12.1-35.4 36-75
Unhealthy 101-360 9.5-12.4 0.071-0.085 155-254 35.5-55.4 76-185
Unhealthy 361-649 12.5-15.4  0.086-0.105 255-354 55.5-150.4 186-304
Very 650-1,249  15.5-304  0.106-0.200 355-424 150.5-250.4  305-604
Hazardous  >=1,250 >=30.5 >=0.405 >=425 >=250.5 >=605
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Table. S2 Change statistics of NO2 during the study period (Feb 1 to May
11). Minus and plus signs are indicating reduction and increases of NO2.

Country ANO2 Country ANO2
Netherlands -70.29 Kiribati 213.30
Japan -63.99 Howland Island 135.82
Macau -59.68 Jarvis Island 128.79
Man, Isle of -57.54 Nauru 93.02
Lebanon -54.75 Pacific Islands (Palau) 80.82
Italy -54.41 Indonesia 74.39
India -53.68 Nepal 56.72
Monaco -53.63 Mozambique 56.19
North Korea -50.84 Norfolk Island 54.61
Hungary -50.49 Jan Mayen 52.15
Kuwait -49.97 Mayotte 48.85
Pakistan -42.58 New Caledonia 41.76
Kazakhstan -41.84 Papua New Guinea 40.68
Oman -41.42 Iceland 37.63
Jordan -40.51 Juan De Nova Island 37.59
Macedonia -37.29 Niue 29.18
Namibia -35.05 Mali 28.36
Liechtenstein -33.81 Latvia 28.05
Morocco -33.57 Midway Islands 25.03
Myanmar (Burma) -32.59 Maldives 22.78
Nigeria -32.39 Libya 21.53
Montenegro -31.59 Ireland 17.43
Singapore -29.89 Kyrgyzstan 16.11
Germany -29.82 Montserrat 15.18
Denmark -29.35 Marshall Islands 14.28
Panama -27.38 Liberia 13.72
Laos -27.14 Paraguay 9.26
Iraq -26.96 Uruguay 8.80
New Zealand -26.94 Niger 8.67

Jersey -26.14 Pitcairn Islands 8.42
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Table. S3 Change statistics of CO during the study period (Feb 1 to May 11).
Minus and plus signs are indicating reduction and increases of CO.

Country ACO Country ACO
Ecuador -6.40 Sao Tome and Principe 13.86
Colombia -5.90 Equatorial Guinea 13.68
Venezuela -4.32 South Georgia 13.53
Macau -4.09 Gabon 13.27
South Korea -3.71 Argentina 13.05
North Korea -3.70 Falkland Islands (Islas Malvinas) 12.64
Byelarus -3.27 Uruguay 12.15
Singapore -3.10 Congo 11.88
Estonia -3.06 Bouvet Island 11.36
Latvia -2.93 Heard Island & McDonald Islands 11.25
Malta -2.84 Cameroon 10.56
Lithuania -2.77 Honduras 9.70
Aruba -2.74 French Southern & Antarctic Lands 9.53
Man, Isle of -2.57 Guatemala 9.30
Nepal -2.53 Zaire 9.22
Armenia -2.46 Thailand 9.04
Portugal -2.30 Zambia 8.66
Tunisia -2.22 Angola 8.57
Jersey -2.21 Zimbabwe 8.53
Andorra -2.20 Chile 8.39
Japan -2.15 Glorioso Islands 8.39
St. Pierre and Miquelon ~ -2.07 Norfolk Island 8.08
Finland -2.06 New Zealand 7.94
Syria -2.05 Myanmar (Burma) 7.81
Spain -2.03 Belize 7.80
Sierra Leone -1.99 Reunion 7.64
Norway -1.98 Mauritius 7.35
Poland -1.98 Central African Republic 7.22
Jan Mayen -1.91 Guadeloupe 6.98

Iraq -1.85 Laos 6.93
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Table. S4 Summary statistics of relative risk (RR) and attributable fraction (AF) in 2019 and 2020.

City RR 2019 RR 2020 AF 2019 AF 2020
Antwerp 1.0047644 1.0036144 0.004742 0.003601
Barcelona 1.0045621 1.0032165 0.004541 0.003206
Brussels 1.0041798 1.0030114 0.004162 0.003002
Chicago 1.0051734 1.0036168 0.005147 0.003604
Cologne 1.0050446 1.0034417 0.005019 0.003430
Denver 1.0041814 1.0027837 0.004164 0.002776
Detroit 1.0048155 1.0028753 0.004792 0.002867
Frankfurt 1.0048662 1.0030969 0.004843 0.003087
London 1.0044694 1.0029429 0.004449 0.002934
Los Angeles 1.0046083 1.0041224 0.004587 0.004105
Madrid 1.0048366 1.0031906 0.004813 0.003180
Milan 1.006683 1.0042206 0.006639 0.00420
New York 1.0062898 1.0044748 0.006251 0.004455
Paris 1.0053484 1.0028911 0.00532 0.002883
Philadelphia 1.0048773 1.0031971 0.004854 0.003187
Rotterdam 1.0043276 1.0031711 0.004309 0.003161
Sao Paulo 1.0031132 1.0025788 0.003104 0.002572
Tehran 1.0194018 1.0146408 0.019033 0.014430
Turin 1.0053222 1.0033620 0.005294 0.003351

Utrecht 1.0041941 1.0027806 0.004177 0.002773
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Table. S5 Summary statistics of health burden and economic burden of 20 major cities. CV HB =
Cardiovascular health burden, CRD GB = Chronic respiratory disease health burden, THB = total health
burden, VSL = value of statistical life (million US$), EB = economic burden (million USS).

City CYHB CRDHB THB CVHB CRDHB THB VSL EB EB
2019 2019 2019 2020 2020 2020 2019 2020
Antwerp 7 1 8 5 1 6 8 67 51
Barcelona 21 6 27 15 4 19 5 138 97
Brussels 3 1 4 2 0 3 8 31 22
Chicago 37 8 45 26 6 31 10 456 320
Cologne 22 3 25 15 2 17 8 213 145
Denver 7 2 9 1 6 10 89 59
Detroit 9 2 10 5 1 6 10 106 64
Frankfurt 15 2 17 10 1 11 8 144 92
London 110 29 139 72 19 92 8 1102 727
Los Angeles 51 11 62 46 10 56 10 634 568
Madrid 40 11 51 27 7 34 5 267 176
Milan 31 4 35 20 3 22 6 211 134
New York 140 31 171 100 22 122 10 1744 1243
Paris 32 4 36 17 2 20 7 270 146
Philadelphia 21 5 25 14 3 17 10 258 169
Rotterdam 3 1 4 2 1 3 9 35 26
Sao Paulo 103 28 130 85 23 108 2 234 194
Tehran 117 11 127 88 8 97 1 152 115
Turin 18 2 20 11 2 13 6 123 78
Utrecht 4 1 5 2 1 3 9 41 27



https://doi.org/10.1101/2020.08.20.20177949
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.08.20.20177949; this version posted August 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

Table. S6 Changes in human mobility (%) from the baseline (mobility on 13" January) during the lockdown period (1%
February to 11" May 2020).

City Jan (From 13 Feb Mar April May (up to 11)
Driving Transit Driving Transit Driving Transit Driving Transit Driving Transit
Antwerp 14.00 4.39 20.80 23.94 -31.05 -35.98 -58.79  -75.84 4734  -66.90
Barcelona 8.60 4.47 18.15 63.81 -4491 4.86 -85.04  -88.10 -74.71 -79.85
Brussels 9.49 14.53 15.07 32.10 -37.64  -39.03 -65.32  -81.19 -52.91 -73.32
Chicago 5.61 -0.53 12.73 4.47 -18.38  -39.60  -41.98 -77.776 2397  -74.56
Cologne -4.19 -4.63 -1.08 43.30 -3746  -17.98 -51.98 -55.32 -35.83 -50.94
Denver 5.34 -1.19 6.72 0.61 -24.10  -36.10  -48.45 -70.08 -2847  -64.71
Frankfurt 428 - 572 - -30.92 - -44.89 - -32.83 -
London 10.85 11.89 14.61 17.76 -26.71 -38.02 -67.16  -86.27 -60.17  -82.80
Los Angeles 12.41 3.30 17.30 7.81 -22.80  -39.09  -51.15 -76.52 -34.31 -72.70
Madrid 9.60 9.69 16.22 14.44 -52.45 -58.34  -84.25 -93.47 -72.18 -88.56
Milan = - 996 - 6.1 e -70.30  —-—-em- -82.30 - -65.81
New York 4.17 -2.28 8.47 1.30 -26.78  -48.74  -5487 -86.43 -38.78 -83.47
Paris -8.05 0.83 -15.30 11.26 -57.52  -49.32 -82.96  -89.61 -75.31 -83.91
Philadelphia 4.19 -6.64 9.98 -4.16 -20.88  -38.65 -43.17  -71.29 -23.61 -69.32
Rotterdam 6.34 4.90 4.70 8.20 -30.60  -40.12 -4429  -67.66  -33.26 -61.54
Sao Paulo 4.51 -0.97 12.51 4.88 -28.66  -3599  -61.68 -81.04  -57.29  -80.84

Utrecht 0.44 -1.09 -0.58 6.40 -3594 4548  -51.19  -72.12  -41.26  -66.09
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