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Abstract 13 

In HIV prevention trials, precise identification of infection time is critical to quantify drug efficacy but 14 
difficult to estimate as trials may have relatively sparse visit schedules. The last negative visit does not 15 
guarantee a boundary on infection time because viral nucleic acid is not present in the blood during 16 
early infection. Here, we developed a framework that combines stochastic and deterministic within-host 17 
mathematical modeling of viral dynamics accounting for the early unobservable viral load phase until it 18 
reaches a high chronic set point. The infection time estimation is based on a population non-linear 19 
mixed effects (pNLME) framework that includes the with-in host modeling. We applied this framework 20 
to viral load data from the RV217 trial and found a parsimonious model capable of recapitulating the 21 
viral loads. When adding the stochastic and deterministic portion of the best model, the estimated 22 
infection time for the RV217 data had an average of 2 weeks between infecting exposure and first 23 
positive. We assessed the sensitivity of the infection time estimation by conducting in silico studies with 24 
varying viral load sampling schemes before and after infection. pNLME accurately estimates infection 25 
times for a daily sampling scheme and is fairly robust to sparser schemes. For a monthly sampling 26 
scheme before and after first positive bias increases to -7 days. For pragmatic trial design, we found 27 
sampling weekly before and monthly after first positive allows accurate pNLME estimation. Our 28 
estimates can be used in parallel with other approaches that rely on viral sequencing, and because the 29 
model is mechanistic, it is primed for future application to infection timing for specific interventions. 30 

Introduction 31 

A key challenge for HIV prevention trials is to identify the timing of the exposure that ultimately led to 32 
breakthrough infection. Estimation of infection time subsequently allows inference of the concentration 33 
of the protective agent at exposure, which is critical to understanding why HIV acquisition was not 34 
prevented. Early infection is difficult to study in practice; even if prospective sampling were available, 35 
HIV RNA is not detectable in blood during early HIV infection and participants cannot necessarily point 36 
to potential recent exposure events with accuracy. Therefore, to estimate time of infection, a model or 37 
inference technique is required.  38 
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Estimation techniques have been described previously. Several use viral sequence data and evolutionary 39 
models to trace time back to the founder sequence1–3. Others use viral load data prior to viral peak and 40 
retrace using log-linear regression (average or maximum upslope)3. Others apply diagnostic ‘window 41 
times’ that leverage Fiebig staging4 and prior knowledge of eclipse phase duration5,6, where eclipse 42 
phase is defined as the period of time between HIV acquisition and first detectable viral load. Finally, 43 
combinations of these approaches have been organized into a statistical framework7. 44 

Here, we introduce an approach applying such viral dynamics models with statistical inference on viral 45 
load data. Model development was achieved through fitting to longitudinally sampled viral loads from 46 
46 participants in the RV217 study8. Population nonlinear mixed-effects (pNLME) modeling was used to 47 
determine the optimal model parameters for each individual, given a population distribution. We tested 48 
30 candidate models informed by previous viral load modeling, and the best model was selected by 49 
parsimony. The very early moments of HIV infection are thought to be stochastic9, and have been 50 
modeled with stochastic viral dynamics10,11. Therefore, we used our best model in a stochastic 51 
formulation to simulate early HIV dynamics, allowing for fluctuations and extinction by chance. 52 
Together, the stochastic and deterministic models provide an estimate and associated uncertainty 53 
interval for the infection time of each individual in the study. 54 

The pNLME modeling approach provides several advantages. By using a population model, it is possible 55 
to estimate infection times in individuals with sparse viral load data, including those without any 56 
measurements during viral upslope. Viral dynamics are not as sensitive to multiple founder infections as 57 
evolutionary methods. And finally, mechanistic models have been used to describe viral dynamics during 58 
broadly neutralizing antibodies therapies12, suggesting our methodology might be applicable to infection 59 
time estimation from emerging trial data including a therapeutic prevention modality. 60 

Results 61 

A framework for estimating infection time using viral dynamics. Using experimental data and 62 
modeling, we set out to develop a framework for estimating HIV infection time from viral load data. 63 
Using observed first positive viral load, we worked backwards toward infection time and defined several 64 
precise moments during HIV primary infection for modeling (Fig 1). HIV infection begins with an 65 
infecting exposure, the target time of estimation. Starting with this exposure event, there is a brief 66 
“black-box” phase encompassing biology not captured with past viral dynamic models. For example, the 67 
virus may need to diffuse or clear mucosal and anatomical barriers before beginning viral replication as 68 
described by mechanistic models. Animal challenge studies and human cases where infecting exposure 69 
is almost certainly known suggest this period is brief, from a few hours to 1 day9,13,14, but given the lack 70 
of information we note it here as a fundamental uncertainty and potential bias in our estimates. 71 

Next, we assumed that viral kinetics can be described by a dynamic model unifying observable and 72 
unobservable viral loads. At this point, we assumed bottlenecking has resulted in at most a few infected 73 
cells starting a productive infection in the human body. Viral expansion from these few cells begins a 74 
stochastic phase lasting a duration defined as the stochastic phase, 𝑡"#$. The stochastic phase likely 75 
encompasses the initial viral replication at the infection foci and the transition from a localized infection 76 
to an infection that has reached germinal centers. The stochastic phase ends when the viral load crosses 77 
a deterministic threshold. We estimated this threshold through repeated stochastic simulations finding 78 
the minimum viral load where the 1) the slope of stochastic viral loads were nearly log-linear and 2) 79 
there was effectively no chance of stochastic burn out. We determined that a value of 0.01 copy/mL 80 
sufficiently satisfied both criteria. The time between viral load crossing the deterministic threshold and 81 
reaching the first positive viral load observation was defined as the deterministic phase 𝑡%&# . Finally, the 82 
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time between infecting exposure and first positive viral load, comprising these three phases, we 83 
cumulatively refer to as 𝑡'. This time interval has been referred to as the eclipse phase5.  84 

 85 

 86 
Fig 1. Cartoon schematic of modeling definitions. The time between infecting exposure and first positive 87 
viral load can be described in 3 phases. First, we recognize the possibility of an unknown but likely brief 88 
“black-box” period describing localized biology that exists immediately following infecting exposure. We 89 
assume this period is short compared to the following phases. Second, a stochastic process governs early 90 
viral expansion, starting with one or a few infected cells initiating systemic infection in the new host – 91 
and concluding when viral load reaches the deterministic expansion threshold (𝑡"#$). Third, a 92 
deterministic model (𝑡%&#) proceeds, describing the observed viral dynamics. By combining estimates for 93 
these phases, we finalize our estimate of 𝑡', the time between infecting exposure and first positive viral 94 
load, sometimes referred to as the eclipse period.  95 

Experimental data for model development. We used viral load observations from the RV217 study8 96 
including 46 individuals out of 155 total diagnosed acute HIV-1 infections in the study. Individuals had 97 
twice-weekly HIV tests before diagnosis using the APTIMA HIV-1 RNA Qualitative Assay (Hologic)—a 98 
fingerstick device testing small blood collection (0.5 mL). Once diagnosed (2 APTIMA positive visits), 99 
quantitative PCR was used to quantitate HIV RNA twice weekly in these individuals, who did not initiate 100 
antiretroviral treatment (ART) and had ~10 study visits in the first month after diagnosis. From this 101 
cohort, we assembled viral loads from Thai and Ugandan men, women and transgender individuals. Only 102 
individuals with more than 3 detectable longitudinal viral load observations were included. We found 103 
that in very early infection, APTIMA and viral load were strongly correlated (Fig 2A) and APTIMA 104 
measurements could be used to impute viral load at diagnosis times for individuals without measured 105 
viral loads (Fig 2B). Using this relationship, we imputed viral load at APTIMA diagnosis for 28 106 
participants, which adjusted the first positive viral load by a few days. Several individuals were not 107 
diagnosed until later acute infection, meaning that peak and upslope of viral load are not obviously 108 
detected. We do not exclude these individuals, instead relying on our population modeling approach 109 
and borrowing strength across the cohort to make estimates. These estimates are particularly useful 110 
because such data sets provide significant challenges with other modalities. 111 

 112 
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 113 
Fig 2. Correlation plot between APTIMA measurements and viral load. A) A strong linear correlation 114 
(Pearson r =0.83) is found between APTIMA and log viral load at the first positive viral load (black dots). 115 
If positive samples beyond the first positive (gray dots) are included, and at higher measurements of 116 
either outcome, APTIMA is less correlated to viral load. B) We used diagnostic APTIMA measurements 117 
prior to first positive viral load to impute additional viral load values. Here the closed circles indicate 118 
observed viral load measurements, the ‘x’ the last negative measurement, and the open circle indicates 119 
an APTIMA imputed value. 120 

Inference of 𝑡%&#  from a parsimonious model to the RV217 cohort data. The first step in estimating 𝑡%&#  121 
was developing a model that best-described the observed data. Thus, we selected four distinct and 122 
previously applied mechanistic models of HIV primary infection and varied their population 123 
parameterizations (the number and type of parameters estimated). This resulted in a total of 30 models 124 
(see Supplementary Table 1). The four mechanistic models included the canonical viral dynamics 125 
model15, two models recently fit to SHIV/SIV viral dynamics16,17, and our own simplified model based 126 
upon Ref18. We found that the most parsimonious model to the RV217 cohort data (Supplementary 127 
figure 1 and Table 1) includes susceptible target cells (𝑆) that are born and die naturally and virus (𝑉) 128 
that infects these cells and creates productively infected cells that produce viable virus (𝐼). Infected cell 129 
death rate depends on their own density powered by an exponent (ℎ). This term semi-mechanistically 130 
encapsulates natural cytopathic cell death during viral production, as well as innate or acquired 131 
immunity against HIV infected cells that escalates as the number of infected cells increases (Fig 3A, see 132 
also Methods Eq. 1). In this way, an explicit immune effector compartment is not needed, and the 133 
model is simplified substantially.  134 

The model output is congruent with previous data for other model compartments. For example, it 135 
predicts a susceptible cell drop between 40—80%19 (which may relate to the CD4+ T cell depletion 136 
during peak viremia20) and allows for the large observed inter-participant variation of viral peak 137 
(Supplementary figure 2A).  138 

The best fit model for each individual is displayed in Fig 3B. We used population nonlinear mixed-effects 139 
(pNLME) modeling to estimate parameters, such that each individual has their own estimated 140 
parameters, but these estimates are constrained to be drawn from population distributions of each 141 
parameter; the population distribution is simultaneously estimated. All distributions of parameter 142 
estimates are shown in Fig 3C and values are quoted for each individual in Supplementary Table 2.  143 
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From this model, the estimated time between deterministic threshold and first positive viral load, 𝑡%&# , 144 
(Fig 1) ranged from 2.5—32.6 days across the 46 participants with a median of 10.1 days. We also 145 
verified that models with comparable AIC (<10 difference from the best model AIC score) predict similar 146 
individual values for 𝑡%&# . Summary statistics of viral load (peak and set point) were not correlated with 147 
deterministic time 𝑡%&#; rather they were strongly correlated with estimated infectivity (𝛽), viral 148 
production rate (𝜋) and the nonlinear death exponent (ℎ) (Supplementary figure 2B). The magnitude of 149 
the first positive viral load was significantly, but not strongly, correlated with 𝑡%&#	(Supplementary figure 150 
3). These results suggest other estimated parameters are mostly independent of infection timing and 151 
that the model predictions are informative beyond upslope regression–i.e. nonlinear estimation 152 
enhances our predictive power.  153 

 154 

 155 
Fig 3. The optimal mathematical model recapitulating RV217 viral load kinetics. A) By comparison of 156 
four structurally distinct models and many distinct statistical population models for each, we effectively 157 
tested 30 models for the data and arrived at an optimally parsimonious model, schematized here. The 158 
model is identical to the canonical viral dynamics model except infected cells have a nonlinear death rate 159 
(see Eq 1). B) This model recapitulates diverse viral load kinetics in the RV217 human study. In each 160 
panel, viral data are gray dots and best individual fit is a blue line. By borrowing strength through the 161 
population fitting approach, the model infers peak and upslope even when those data are missing (see 162 
40139, or 40700 for example). Last negative visits are shown as viral loads at the limit of detection (20 163 
copies/mL) and were included as censored data for fitting. Only 1 individual (last panel, 40737) had a 164 
first positive viral load that would be shifted substantially given the APTIMA imputation. C) 6 parameters 165 
were estimated including the deterministic infection time, the crucial variable for timing infection. 166 
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Stochastic simulations until the deterministic threshold. Evidence from modeling other viruses suggests 167 
that early stochastic events are linked to later deterministic kinetics21. For example, for cytomegalovirus 168 
(CMV) infection, extinction probabilities, duration, and magnitude of transient stochastic infections are 169 
consistent with primary infection mathematical model parameters22. Therefore, based on the individual 170 
best fit parameter sets, we performed stochastic simulations to determine the time-window between 171 
the introduction of a single infected cell and the deterministic threshold (𝑡"#$ in Fig 1). Simulations were 172 
initialized with a single infected cell per µL 𝐼(0) = 1 and at the viral free equilibrium between 173 
susceptible cell birth and death 𝑆(0) = 𝑣𝑜𝑙 × 𝛼9/𝛿9. Scaling up to realistic volumes allows for a 174 
discretized stochastic simulation; 𝑣𝑜𝑙 was chosen to be 5 x 108 µL, or 5 L of blood (typical for adult 175 
human) at approximately 100-fold concentration based on the finding that the majority of lymphocytes 176 
reside in lymphoid tissues where infection is assumed to initiate before spilling over into blood9,23.  177 

 178 
Fig 4.  Stochastic simulations using best-fit parameter estimates from deterministic model. Viral load 179 
kinetics until deterministic threshold (0.01 copy/mL). A) A single stochastic realization for all 46 individual 180 
parameter sets from Fig 3 with associated boxplot of the distribution of times (of these 46 simulations) 181 
to reach the deterministic threshold. The slopes are different across individuals owing to the different 182 
parameter estimates from the deterministic models. B) 10 replicate stochastic realizations for a single 183 
individual until deterministic threshold with associated boxplot of the distribution of times (of these 10 184 
simulations) to reach the deterministic threshold. Here slopes are nearly identical, but due to the 185 
stochasticity of the simulation, the time to reach the deterministic threshold varies between 3-5 days. 186 
Note discontinuities in lines are artifacts of downsampling for file size considerations. 187 

For each individual, the best fit parameters of the deterministic model were used to conduct 10 188 
stochastic simulations via the tau-leap method24. Because HIV transmission is a rare per coital event25 189 
and we are interested in infection time estimation, we conditioned upon successful infection10 by only 190 
using simulations from stochastic runs that did not go extinct. The simulations were halted when viral 191 
load crossed the deterministic threshold (0.01 copies/mL) and the time to reach that viral level (𝑡"#$) 192 
was recorded. Simulated viral loads from a single stochastic simulation of each individual are shown in 193 
Fig 4A. The distribution of stochastic times (𝑡"#$) is vizualized above the viral load panel, indicating a 194 
slightly asymmetric time to crossing the deterministic threshold with median ~5 days in this single 195 
stochastic simulation. There is substantial variability in the slope of these viral load trajectories based on 196 
the range of parameters inferred from the deterministic model for each individual. We also performed 197 
replicate simulations for single individuals (10 replicates for participant 10428 are shown in Fig 4B). In 198 
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this case, viral load slopes are nearly identical by the time the deterministic threshold is crossed, but the 199 
early stochastic events introduce some variability in 𝑡"#$. For this individual, the median time between 200 
infection and deterministic threshold was 5 days, with total range between 3-5 days in these 10 201 
simulations. In summary, viral load upslope varies highly across subjects but minimally within-subjects. 202 
Variability introduced by the stochastic phase is predominantly a shift, rather than a scaling of infection 203 
time. This agrees with modeling of barcoded virus data early in infection (recently reported by Docken et 204 
al. during Dynamics & Evolution of HIV and Other Viruses 2020). 205 

An important parameter for these simulations is the initial number of infected cells. We show estimates 206 
of 𝑡"#$ are inversely correlated with 𝐼(0). For example, as  𝐼(0) was increased from 1, 10, 100, to 1000, 207 
the median estimate of 𝑡"#$ across individuals decreased 5-1 days (Supplementary figure 4). As a result, 208 
this difficult-to-measure biological parameter only adjusts estimates by a few days. 209 

Combining the stochastic and deterministic phases to estimate infection time. Next, we integrated the 210 
stochastic and deterministic timing estimates to complete the estimation of 𝑡', the time between 211 
infecting exposure and first positive viral load, or the eclipse phase (Fig 1). Here as an example, we 212 
present this procedure for individual 10066 (Fig 5). First, we used the best fit parameters and performed 213 
100 replicate stochastic simulations to estimate a distribution of 𝑡"#$; the mean was approximately 6 214 
days, and the distribution was skewed, with 95% uncertainty interval ranging between 4-9 days. Second, 215 
we drew values of 𝑡%&#  from a constructed conditional distribution using Markov-Chain Monte-Carlo 216 
given the population and random effect estimates of	𝑡%&#  (mean 10, 95% uncertainty interval between 217 
7-13 days). The infection time,  𝑡', was then calculated by drawing and summing 𝑡"#$ and 𝑡%&#  from their 218 
respective distributions. This was repeated 10000 times to generate an average 𝑡' with associated 95% 219 
uncertainty interval (see estimates of 𝑡"#$, 𝑡%&# ,	and 𝑡' for this individual in Fig 5).  We estimated that 220 
this individual’s infection occurred 16 days prior to first positive viral load with 95% uncertainty interval 221 
ranging between 12 and 20 days. This procedure was performed for all individuals. 222 

 223 
Fig 5.  Individual estimate example. Bootstrap combination of the deterministic and stochastic 224 
estimates provides an estimate for an individual’s (10066) time of infection. The stochastic time interval 225 
(𝑡"#$) between 1 infected cell and the deterministic threshold (0.01 copies/mL) was determined by 100 226 
replicate stochastic simulation for that individual. Here the mean estimate of  𝑡"#$ was 6 days (dot) with 227 
95% uncertainty interval (lines) ranging between 4-9 days. The entire probability distribution is shown to 228 
illustrate skew. The time interval between the deterministic threshold and the first positive viral load was 229 
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determined by the best estimate of  𝑡%&#  using population nonlinear mixed effects modeling (see Fig 3). 230 
Here the mean (dot, ~10 days) and 95% uncertainty interval (lines, ranging between 7-13 days) from the 231 
MCMC estimate are shown with the derived distribution. Finally, the time between infection and first 232 
positive viral load (𝑡') is calculated by 10000 random combinations of  𝑡%&#  and  𝑡"#$ drawn from these 233 
distributions. Our best estimate suggests this individual was infected 16 days prior to first positive with 234 
95% uncertainty interval ranging from 12-20 days. 235 

Direct comparison to previously applied infection timing estimation tools. Rolland et al. used several 236 
viral load and phylogenetic inference techniques to estimate infection times using the RV217 data3. 237 
These methods are the maximum slope of any two points on the upslope (max_slope), the best log-238 
linear regression slope (linear_model), self-reported entries from trial participants (self_report), 239 
Bayesian phylogenetic inference of median time to most-recent common ancestor (BEAST)26, and 240 
Poisson fitter27 diversity estimator based on envelope sequences sampled at three time points in the 241 
first six months of infection. We compared our viral dynamics population non-linear mixed effects 242 
(pNLME) modeling approach estimations directly against all methods in Fig 6. In general, our 243 
deterministic estimates were in the same relative range of the other estimates. However, concordance 244 
correlation coefficients (CCC), which score how close data lie to the line y=x, are in general fairly weak 245 
(CCC<0.4) between pNLME and other methods (Fig 6A). This is driven by the fact that the complete 246 
estimator finds infection time earlier than most other methods, perhaps due to the additional stochastic 247 
phase. Adjusting the initial number of infected cells from 1 to 1000 (see Supplementary figure 4), or 248 
removing the stochastic phase decreases the average eclipse time, closer to previous estimates. 249 
However, we show correlation between pNLME with and without the stochastic component (final panel 250 
in Fig 6A) to illustrate this relationship is not necessarily linear.  251 

We also compared all previous point estimates to one another (Fig 6B). No approaches were very 252 
strongly correlated by CCC. Hierarchical clustering of previous methods shows there are two distinct 253 
groups that include genetic estimators (BEAST, PFitter) and viral dynamic estimators (max-slope, 254 
linear_model). Self-report diary entries and our method (pNLME) fall roughly in between. 255 

Wide applicability of pNLME to sparse data. The pNLME approach is widely applicable to data that 256 
challenge other methods. It can provide estimates for individuals for whom viral upslope is completely 257 
undetected. It also does not produce large outliers and never estimated the time of infection to be after 258 
first positive, as Max-slope, BEAST, and PFitter do in a few cases. pNLME also does not appear to be 259 
sensitive to multiple founder infections (which are particularly difficult for genetic estimators). For 260 
example, Rolland et al. identified some individuals in this cohort infected with multiple founder viruses 261 
based on the sequence analysis; for these infections, estimates of time to most recent common ancestor 262 
often gave estimates preceding the date of last negative test by many months (reflecting divergence in 263 
the transmitting partner rather than divergence after transmission)3. Infection with multiple founders 264 
has been associated with higher set-point viral loads28. Therefore, we tested to see if our model 265 
parameter estimates were different in single versus multi-founder infections (as differentiated by 266 
Rolland et al., see Supplementary figure 5). We observed no obvious patterns distinguishing single and 267 
multi-founder participants and found no significant differences among our parameters (Mann-Whitney 268 
p>0.1) but note the limited sample size with these data (n=9 multiple founders in this set). While beyond 269 
the scope of this paper, applying multi-founder status as a pNLME model covariate might admit more 270 
power given the small sample size. Importantly, the estimate of the time of theoretically crossing the 271 
detection limit was not affected by the distinction of multiple founders, meaning our estimates are 272 
robust to this challenge for phylogenetic inference. 273 
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 274 
Fig 6. Comparisons of the population non-linear mixed model estimation (pNLME) approach for 275 
infection timing versus 5 other methods. Methods include the maximum slope of any two points on the 276 
upslope, the best log-linear regression slope (linear_model), self-reported entries from trial participants, 277 
Bayesian phylogenetic inference of median time to most-recent common ancestor (BEAST), Poisson fitter 278 
diversity-based estimator, and our own approach using only the deterministic component. A) Best 279 
estimate of each available individual from each method expressed as predicted infection time relative to 280 
first positive (all estimates are tabulated in Supplementary Table 2.) An estimate above 0 (see dashed 281 
lines), indicates unrealistic estimates of infection after first positive. While our method can be used on all 282 
46 individuals, other approaches are constrained by features of the data (e.g. detection of upslope, 283 
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sequencing characteristics). Thus, comparison size n is denoted above each panel. Concordance 284 
correlation coefficients show individual agreement is generally weak: CCC = 1 when all data lie on the 285 
line y = x (shown as a dashed line). B) Hierarchical clustering using concordance correlation coefficients 286 
indicate which methods give most similar estimates. Sequence based methods and viral dynamic 287 
methods fall into 2 main clusters, with self-report falling in the middle of these. pNLME agrees more 288 
strongly with other viral dynamic methods. 289 

Proof of concept study on synthetic data with realistic study protocols. To assess the accuracy of 290 
pNLME estimates, we performed a simulation study using several different sampling schemes. We 291 
simulated viral loads from 20 randomly chosen RV217 participants and sampled these viral loads with 5 292 
different theoretical protocols. The first we refer to as “gold” meaning daily sampling before and after 293 
first positive. We refer to tight as weekly sampling visits, and sparse as monthly sampling visits (every 4 294 
weeks). Infection was assumed to occur uniformly between study visits. If viral load was above 20 295 
copies/mL at a visit that sample was called first positive (or diagnosis, dx), and measurements occurred 296 
subsequently. In Fig 7A we illustrate an example infection (red x), viral load (blue line) and observations 297 
(orange circles) for each protocol: “tight pre / tight post”, “tight pre / sparse post”, “sparse pre / tight 298 
post”, “sparse pre / sparse post”, and “gold”. We took these synthetic data observations and estimated 299 
𝑡' with pNLME. In this step, we used the RV217-trained model, meaning that we fixed the population 300 
distributions (as we would with new test data), and arrived at a new conditional distribution of 301 
individual parameters for each synthetic data set. We applied those parameters to the stochastic 302 
modeling step, completing the estimate of 𝑡' on each synthetic data set. 303 

Fig 7B shows the absolute error (days difference between truth from the synthetic data and inferred 𝑡' 304 
from pNLME applied to those data) and the % error: (true-inferred)/true x 100%. Gold standard and 305 
tight/tight predictably admitted the lowest errors. Very few individuals were overestimated, meaning 306 
that when inference was incorrect, their infection time was usually closer to first positive than inferred. 307 
The exception to this occurred for some individuals with sparse post sampling. 308 

All schemes other than gold had an obvious bias. Absolute and percent error was higher in individuals 309 
for whom true infection time was earlier. This means that uncertainty rises with estimation time farther 310 
from first positive. Put another way, our confidence decreases as the estimator projects farther into the 311 
past– an intuitively satisfying, albeit challenging finding. That this effect was fairly linear hints that it 312 
might be corrected. However, this may be an artifact of our synthetic data exercise, so we opted not to 313 
follow through with any correction. Rather, we focus on individuals who appear to have been infected 314 
within 20 days since first positive. For all sampling schemes, error on these estimates has a median of 315 
+/-10 days. A corollary of this finding is that sparse sampling after diagnosis was less detrimental than 316 
sparse sampling before diagnosis, because of the growing uncertainty with time and the likelihood of 317 
missing upslope, peak, and downslope. 318 

This exercise illustrates one of the most practical applications for this method: estimating infection time 319 
in clinical trials of HIV pre-exposure prophylaxis agents. The “sparse/sparse” case represents a protocol 320 
comparable to that of the AMP (antibody mediated prevention) studies. In that study, visits occur every 321 
4 weeks, and after first positive (week 0) visits occur at week 2, 4, 8, 12, and 24 weeks12,29,30. Thus, given 322 
the data generation distribution produced under our modeling assumptions, and the additional 323 
assumption that HIV dynamics in participants in the AMP study are comparable to participants in RV217, 324 
we expect our approach would provide reasonably accurate estimates for individuals who appear to 325 
have been infected within 20 days of first positive visit (95% uncertainty interval ~5 days), and less 326 
confident estimates for others.  A secondary result of our modeling is that more sensitive detection 327 
could be crucial to avoiding the ultimately challenging case of individuals infected >4 weeks before first 328 
positive visit. APTIMA testing and viral load prediction as in Fig 2 would help this substantially. 329 
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 330 

 331 
Fig 7. Accuracy of timing tested on simulated viral load data with sparse and tight study sampling. We 332 
simulated viral loads using individual parameter sets and sampled according to 4 different theoretical 333 
study protocols. We refer to tight as weekly, and sparse as monthly (every 4 weeks). We simulated data 334 
assuming infection occurred uniformly throughout observations periods. If viral load was above the study 335 
assay detection limit at an observation (20 copies/mL), that was called first positive (or diagnosis, dx), 336 
and measurements occurred subsequently. A) 4 examples of each study protocol: combinations of tight 337 
and sparse, pre and post diagnosis (dx). True infection is denoted with the red x, simulated viral load with 338 
the blue line, and observations given the protocol with the orange squares. B) 20 individuals were 339 
simulated with each protocol, and pNLME inference was performed on those data. The accuracy of the 340 
estimated 𝑡' compared to the true infection time is shown as error in days (difference between pNLME 341 
estimated and true time) and percent error (error relative to true time x 100%) for each sampling 342 
protocol. Low error therefore indicates estimates that agree, and percent error illustrates how estimates 343 
get more biased (relatively to other estimates) as the time between detection and true infection time 344 
increases. 345 
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Discussion 346 
 347 
Estimating infection time is especially critical in HIV prevention trials. If drug levels at the precise time of 348 
infection can also be estimated then required drug levels for protection may be identified. Here, we 349 
have demonstrated estimation of HIV infection time using non-linear viral dynamics. Specifically, we 350 
assess the viral load trajectory, an established endpoint for HIV trials.  We developed a two-step 351 
procedure: 1) using population non-linear mixed effects (pNLME) modeling to estimate parameters for 352 
individuals who were infected with HIV and then 2) using these same parameters to repeatedly simulate 353 
stochastic infections. In step one, we estimate the time between first detected positive viral load and 354 
the viral load reaching some level theoretically considered deterministic. In step two, we quantify the 355 
time of stochastic viral growth until the deterministic threshold. Combining steps 1 and 2 completes the 356 
estimate of the time between exposure/acquisition and viral load detectability, sometimes called the 357 
“eclipse time”. 358 

We applied our method to data from the RV217 observational cohort, an acute HIV infection study with 359 
highly granular measures of viral load early during infection. For the first step we performed extensive 360 
model selection and found a mechanistic model that recapitulates viral loads in the RV217 trial from first 361 
positive until viral set point. A trained pNLME model using data from multiple individuals that includes 362 
observations during several stages of viral infection (e.g. expansion, peak and set point) allows 363 
confidence in parameter estimation from individuals who may not have data from all stages. 364 

We compared our technique to other techniques that were applied to the same data set. We find that 365 
the individual level estimates are not concordant. On the population level, average values of our 366 
deterministic model agree with average values from other approaches. The additional stochastic phase 367 
in our model drives our estimates slightly farther from time of first positive, extending the range of the 368 
eclipse time. Concordance of our model is strongest (CCC=0.2-0.4) with other approaches that use viral 369 
load dynamics. Sequence-based approaches are the least concordant, and self-report diaries are 370 
somewhat middling. We note that the study group remains was too small to evaluate certain variables 371 
that differed across individuals, such as viral subtype, sex, age or ethnicity. In cases where viral dynamics 372 
and sequencing data exist, it may be optimal to try all approaches and developing uncertainty intervals 373 
extending across all methods. A future solution would be to include evolution into our mechanistic 374 
model and fit to both types of data. 375 

Compared to other methods, our approach has several advantages. It allows estimation of infection 376 
time in individuals without well resolved viral upslope or even viral peaks. Specifically, without 377 
incorporating the population data, it is not possible to estimate infection time when viral upslope is 378 
missed. It is also relatively insensitive to founder multiplicity, a challenge for phylogenetic methods that 379 
sometimes results in unrealistic infection time estimates after the first positive viral load. The RV217 380 
study is unlikely to be repeated. Thus, our model can be considered a trained model for future trials. 381 
Moreover, our synthetic data sampling study illustrates what such trials might look like. 382 

While the true time of infection cannot be known other than in challenge experiments. We verified that 383 
our RV217-trained pNLME model works on simulated data (from the same mechanistic model). Even 384 
given a sparse sampling scheme (0,2,4,8,12,24 weeks after first positive) as in the antibody mediated 385 
prevention (AMP) studies, the approach generally works well for individuals for whom infection 386 
estimates are less than 20 days before first positive. This means that protocols sampling with ~2-3 week 387 
intervals typically have <20% error, or at worst 7 days off. However, our uncertainty grows for infections 388 
occurring further before first positive. This reflects the challenge of estimating data such as 389 
sparse/sparse in Fig 7A. Collecting only setpoint, or partial downslope means the estimate relies heavily 390 
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on the population model, and with the heterogeneity of individuals, can be relatively error prone. 391 
Tighter sampling after first positive does not drastically improve accuracy. Indeed, for trial design, 392 
accuracy is better-enhanced by tighter sampling prior to diagnosis. 393 

The largest challenge for the approach occurs when individuals are infected at a study visit (these occur 394 
every 4 weeks) but are not diagnosed because their viral loads are below detection, meaning that the 395 
first positive viral load will be not detected until >4 weeks after infection. This challenge is not unique to 396 
our approach, and we stress diagnostic-focused assays such as APTIMA to make diagnoses as soon as 397 
possible in situations where infection timing is crucial. Thus, we have shown that 1) it is possible to 398 
leverage and impute viral loads based on the finding that early APTIMA measurements are correlated to 399 
qPCR measurements, and 2) that borrowing strength using population modeling may be the best option 400 
to overcome sparse sampling.   401 

There are several limitations to our study. It remains unknown, and will be extremely hard to test, 402 
whether early HIV dynamics can be described by the same mechanistic model as deterministic viral 403 
dynamics. However, in CMV transmission the probability of infection has been related to post-infection 404 
viral kinetics, suggesting stochastic behaviors may be linked to subsequent deterministic kinetics22. We 405 
speculate an early lag period in HIV infection that could be described by localized exposure and viral 406 
escape from anatomical barriers before initiating systemic infection. The duration of this period is 407 
unknown and we effectively assumed that it is negligible compared to the stochastic and deterministic 408 
phases, and compared to our window of estimation (i.e., less than a day). To account for this lag period, 409 
a further non-mechanistic window might also be added to reconcile wider estimates of eclipse time 410 
found in some studies6. Of note, it is not clear if any timing method can directly account for this period; 411 
for example, the founder sequence may describe the virion that escapes the early barriers in our 412 
schematic. 413 

Our choice of the initial simulation conditions 𝐼(0) inversely correlates with time of infection. That is, if 414 
we assume viral infection begins at a lower level, our estimates are further back in time. However, in 415 
what we consider to be a plausible range of initial conditions (ranging from 1 to 1000 infected cells 416 
initiating infection), the estimation varies by ~5 days. Interestingly, Rolland et al. found that if using a 417 
log-linear upslope modeling approach, a viral load of 1 copy/mL gave the best estimates in non-human 418 
primate infection where the date of infection was known perfectly3. One might therefore choose this 419 
value for the deterministic threshold, but the translation of this estimate is limited by the NHP 420 
experimental model, challenge virus species, and differences from viral load exposures in human 421 
transmission. 422 

This approach should be generally applicable to other viruses. For example in Hepatitis C mechanistic 423 
models have been developed and some prior parameter estimates have been recorded31. Recently a 424 
similar method was applied to estimate the time of SARS-COV-2 infection32.  425 

In future work, we plan to explore modifications due to preventative interventions, such that timing 426 
estimation, and therefore drug efficacy can be better estimated in upcoming clinical trials using broadly 427 
neutralizing antibodies. 428 
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Methods 433 
Most parsimonious mathematical model. The set of ordinary differential equations for the model that 434 
is selected for this approach can be written as 435 

𝜕#𝑆 = 𝛼9 − 𝛿9𝑆 − 𝛽𝑆𝑉  436 

𝜕#𝐼 = 𝛽𝑆𝑉 − 𝜅𝐼@AB        Eq. 1 437 

𝜕#𝑉 = 𝜋𝐼 − 𝛾𝑉 − 𝛽𝑆𝑉.  438 

The selected model contains 8 free parameters  𝜃 = (𝛼9, 𝛿9, 𝛽, 𝑘, ℎ, 𝜋, 𝛾, 𝑡%&#). The model we ultimately 439 
select is a slightly modified basic viral dynamics model that incorporates a nonlinear death term. The 440 
model tracks the concentration [cells mL-1] of HIV-susceptible cells 𝑆, infected cells 𝐼, and plasma viral 441 
load 𝑉 [viral RNA copies mL-1]. The deterministic system is expressed (using the partial 𝜕# to denote 442 
derivative in time) with 𝛼9 [cells μL-1 day-1] the constant growth rate of susceptible cells, 𝛿9 [day−1] the 443 
death rate of susceptible cells, and 𝛽 [μL virus-1 day-1] a mass-action viral infectivity. The viral production 444 
rate is 𝜋 [virions cells-1 day-1], and 𝛾 [day-1] is the clearance rate of virus. The death and killing of infected 445 
cells is governed by the rate of 𝜅 [cells-h day-1], with the exponential factor ℎ adjusting the nonlinear 446 
density dependent death rate. This approach coarsely approximates adaptive immunity such that higher 447 
numbers of infected cells engenders faster killing.  448 

Population nonlinear mixed effects (pNLME) approach. We modeled the plasma viral load using a 449 
nonlinear mixed-effects approach (pNLME). In this approach an observed plasma viral load for individual 450 
𝑖 at time	𝑗 is modeled as logB' 𝑦LM = 𝑓OP𝑡LM, 𝜃LQ + 𝜖O . Here, 𝑓O  is the solution of the nonlinear 451 
mechanistic model for the variable describing the virus (𝑉) given the individual parameter vector 𝜃L  and 452 
𝜖O~𝒩(0, 𝜎WX) is the measurement error for the logged viral load. We assumed that the individual-453 
specific parameter 𝜃L  is drawn from a probability distribution with median or fixed effects 𝜃Y$Y  and 454 
random effects 𝜂L~𝒩(0, Ω), being Ω the variance-covariance matrix. Except otherwise specified we 455 
modeled parameters 𝛽M  and 𝜋M  as 𝜃L = 10\]^]A_` and remaining parameters as 𝜃M = 𝜃Y$Y𝑒bc . 456 
 457 
Model fitting. We explored four different mechanistic models with different statistical complexities, for a 458 
total of 30 models (See Supplementary Table 1 for details). For each model we obtained the Maximum 459 
Likelihood Estimation (MLE) of the measurement error standard deviation 𝜎W, the fixed effects vector 460 
𝜃Y$Y  and the elements of matrix Ω using the Stochastic Approximation of the Expectation Maximization 461 
(SAEM) algorithm embedded in the Monolix software (www.lixoft.eu). We run the SAEM algorithm 15 462 
times (assessments) for each model using randomly selected initial guesses for the parameters to 463 
estimate. For all model fits we assumed 𝑡LM = 0 as the time of first positive viral load. However, we 464 
defined the initial value as the time -𝑡%&#  when 𝑉(−𝑡%&#) = 0.01 copies/mL. We fixed other initial values 465 
as 𝑆(𝑡%&#) =

ef
𝛿𝑆

 cells/μL and 𝐼(𝑡%&#) =
gO(h#ijk)

𝜋
 cells/μL. Per Ref 31, we fixed parameter 𝛾 = 23 day-1. We 466 

estimated the remaining parameters of the mechanistic model including 𝑡%&# . Individual parameters 467 
were selected using the mode of the conditional distribution 𝑝(𝜃L|𝑦LM; 𝜃qrs

Y$Y , Ωqrs) constructed by the 468 
MCMC algorithm in the Monolix software. The conditional distribution of  𝑡%&#  for each individual is used 469 
to compute the time of infection 𝑡'. 470 
 471 
Model selection. To determine the most parsimonious model we calculated the log-likelihood (log L) for 472 
all 15 assessments for each one of the 30 models. We then computed the Akaike Information Criteria for 473 
the model with highest likelihood among the 15 assessments (𝐴𝐼𝐶 = −2 log ℒwxy + 2𝑚, where 𝑚 Is 474 
the number of parameters estimated). We assumed a model has similar support from the data if the 475 
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difference between the AIC for its best assessment and the best one for the model with lowest AIC is 476 
less than two33. 477 
 478 
Stochastic simulation scheme. We adapted the ordinary differential equation system Eq 1 to simulate 479 
stochastically12. Our implementation in Python, which employs the τ-leap approach24, is publicly 480 
available. A time interval Δ𝑡 = 0.0001 days is chosen for step size, in which a Poisson number of each 481 
transition type occurs. Initial conditions are changed to discrete values by multiplying by a volume. We 482 
choose this volume to be 108 μL based on the observation that there is approximately 1-10 L of blood in 483 
an adult human and that there are approximately 10- 100 times more T cells in lymph tissue than blood. 484 
A single infected cell is assumed (other than in sensitivity analyses in Supplementary figure 4). 485 

APTIMA analysis.  APTIMA was the primary diagnostic assay in the RV217 study, of which 43 486 
participants in our analysis were diagnosed by a positive APTIMA quantitative measurement.  The 487 
remaining participants were diagnosed via a qualitative APTIMA response or directly with viral load. 488 
Among the 43 participants, only 6 had concurrent measurements of viral load for analysis. Comparing 489 
concurrent measurements APTIMA and viral load we found 1) substantial Pearson correlation between 490 
APTIMA and viral load at first positive viral load; and 2) diminished correlation later in the study at 491 
higher values of both measurements (Figure 2A).  492 

Given the high correlation between the two measurements, we sought to investigate whether we could 493 
use APTIMA measurements at diagnosis to predict the unmeasured viral load for our model. This was 494 
accomplished using linear regression models predicting log first positive viral load with concurrent 495 
APTIMA as the predictor, evaluating both untransformed and log-transformed inputs (Supplementary 496 
figure 6A). One participant had an APTIMA measurement of 3, an outlier more than 2-fold lower than 497 
the next lowest value, and were removed from the model. To determine the appropriate upper range 498 
for APTIMA input for prediction, linear regression models were fit applying different upper bounds.  499 
Model performance was evaluated using residual mean square error (RMSE) predicting log viral load 500 
(Supplementary figure 6B). We found the best model used raw APTIMA measurements as the input 501 
with an upper bound of 34 (Supplementary figure 6B&C). This model was applied to the data to impute 502 
first positives for participants where APTIMA was measured for diagnosis without viral load 503 
(Supplementary figure 6D).   504 
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 601 

Supplementary figures and tables 602 
 603 

 604 
Supplementary figure 1. Model selection details. All 30 models tested compared by log likelihood (-2LL) 605 
and Akaike Information Criterion (AIC). Boxplots give -2LL of 15 assessments for each model, where each 606 
assessment begins at a different parameter set and proceeds with the stochastic SAEM algorithm. Red 607 
diamonds give AIC of the median -2LL across assessments. Blue circles give the AIC of the mean 608 
assessment. The best model is 2h. Several different correlation models were attempted for each model, 609 
ultimately leading to the most identifiable model combinations. 610 

 611 
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 612 
Supplementary figure 2. Model sensitivity analysis. All best fit parameter sets simulated together. A) % 613 
deviation from the initial number of susceptible cells can go up to -100% percent, indicating massive 614 
destruction of cells in acute HIV infection. The total number of infected cells at that point can rise to 615 
~1000 cells per µL. Viral loads can have peaks ranging from 106-108 copies/mL, with setpoints varying 616 
substantially between 102-106 copies/mL. B) Pearson correlation between parameters and viral kinetic 617 
phenotypes.  618 

 619 

 620 
Supplementary figure 3. Correlation between observed first positive viral load and the inferred 621 
deterministic time. 622 
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 623 
Supplementary figure 4. Relationship between initial number of infected cells and stochastic time. As 624 
the initial number of infected cells is increased, the time to reach the deterministic threshold decreases. 625 
Within this plausible range of 1-1000 initially infected cells, the estimates of the stochastic interval 626 
decrease from median 5 to median 1 day. This affects estimations, bounded by this 4 day window. For 627 
each value of I(0), 1000 simulations were performed. 628 

  629 
Supplementary figure 5. Relationship between viral dynamic parameters and multiple founder status. 630 
Grouped as either 1 founder (n = 24) or 2+ founders (n = 9) No estimated parameter is significantly 631 
(Mann-Whitney U-test p-value above each panel) different across founders, meaning the method is not 632 
significantly affected by the presence of multiple founders.  633 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.08.13.20174243doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.13.20174243
http://creativecommons.org/licenses/by-nd/4.0/


 21 

 634 
Supplementary figure 6. Predicting viral load (VL) with APTIMA measurement at diagnosis. A) First 635 
positive viral load measurements vs. concurrent raw or log-transformed APTIMA measurements. Color 636 
denotes time (weeks) of first positive relative to the diagnostic APTIMA measurement. ‘Same’ denotes 637 
participants who were diagnosed by first positive viral load and positive APTIMA on the same visit. B) 638 
Residual mean squared error (RMSE) predicting log10 first positive viral load with concurrent APTIMA 639 
(raw or log-transformed) for varying input data for different APTIMA upper bounds. C) Selected best 640 
regression model from B) denoted by the line with shading for standard error for predicting viral load 641 
where APTIMA input range limited to 9-34.  Raw data denoted by points. D) Predicted first positive viral 642 
load using the model depicted in C) and participants’ APTIMA measurements at diagnosis. Red dots 643 
denote the 6 participants where first positive and diagnostic APTIMA were measured together, and red 644 
line depicts prediction error. Predicted viral load was only used when for participants without viral load 645 
measurements at diagnosis. 646 

Supplementary Table 1. Description of all the models with their assumptions that were fit to the data. 647 
Estimated standard deviation of random effects (σ.) and correlations for matrix Ω for each model are 648 
specified, if not included in the table they were assumed to be zero. Other fixed parameters not specified 649 
in the text are included here. Distribution for the Log likelihood estimations for each model, AIC for the 650 
median and highest likelihood are presented in Supplementary figure 1. 651 
 652 
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Model Model 
Name Fixed Parameters Estimated Random 

Effects Estimated Correlations 

1. Basic: 
dS/dt = αS - δSS - 

βSV; dΙ/dt = βSV - 
dIΙ; 

dV/dt = πΙ - γV - βSV 

1a No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI 

No correlations 

1b No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI 

corr(log10β,αS) 

1c No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI 

corr(tdet,δS), 
corr(log10β,αS) 

1d No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI 

corr(log10π,log10β) 

1e No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI 

corr(log10β,δS), 
corr(log10π,dI) 

1f No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI 

corr(log10β,δS), 
corr(log10π,δS), 

corr(log10π,log10β) 

1g No other fixed 
parameters σtdet, σαS, σδS, σlog10β, σδI 

corr(tdet,δS), 
corr(log10β,αS) 

2. Holte: 
dS/dt = αS - δSS - 

βSV; dΙ/dt = βSV - 
κΙh+1; dV/dt = πΙ - γV 

- βSV 

2a No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σκ, σh 

No correlations 

2b No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σκ, σh 

corr(log10π,log10β) 

2c No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σκ, σh 

corr(log10β,δS), 
corr(log10π,dI) 

2d No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σκ, σh 

corr(δS,dI), corr(log10β,dI), 
corr(log10π,dI), 
corr(log10β,δS), 
corr(log10π,δS), 

corr(log10π,log10β) 

2e No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σκ, σh 

corr(log10β,δS, 
corr(log10π,δS), 

corr(log10π,log10β) 

2f No other fixed 
parameters 

σtdet, σδS, σlog10β, σlog10π, 
σκ, σh 

corr(δS,dI, corr(log10β,dI), 
corr(log10π,dI), 
corr(log10β,δS), 
corr(log10π,δS), 
corr(log10πlog10β 

2g No other fixed 
parameters 

σtdet, σδS, σlog10β, σlog10π, 
σh 

corr(log10βδS, corr(log10πδS, 
corr(log10π,log10β) 

2h No other fixed 
parameters 

σtdet, σδS, σlog10β, σlog10π, 
σκ, σh 

corr(δS_dI, corr(log10β,dI), 
corr(log10π_dI, 
corr(log10β,δS), 
corr(log10π,δS), 

corr(log10π,log10β) 
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3. Hill: 
dS/dt=αS - δSS - 

βSV/(1+φE); 
dΙ/dt = βSV/(1+φE) - 

δII -κEΙ; 
dV/dt = πΙ - γV - 

βSV; 
dP/dt = αE + ω(1-
f)PΙ/(1+Ι/N) -δpP; 

dE/dt = 
ωfPΙ/(1+Ι/N) - δEE 

3a δE_pop=1 
σtdet, σαS, σδS, σlog10β, 

σlog10π, σδI, σlog10φ, σαE, 
σω, σh, σδp 

No correlations 

3b δE_pop=1 
σtdet, σαS, σδS, σlog10β, 

σlog10π, σδI, σlog10φ, σαE, 
σω, σh, σδp 

corr(log10β,tdet) 

3c δE_pop=1 
σtdet, σαS, σδS, σlog10β, 

σlog10π, σδI, σlog10φ, σαE, 
σω, σh, σδp 

corr(log10π,log10β) 

3d 

δS_pop=0.05,log10π
_pop=4.7,δI_pop=0.

4,log10φ_pop=-
4,δp_pop=0.001,δE_

pop=1 

σtdet, σαS, σlog10β, σαE, σω, 
σh No correlations 

3e 

δS_pop=0.05,log10π
_pop=4.7,δI_pop=0.

4,log10φ_pop=-
4,δp_pop=0.001,δE_

pop=1 

σtdet, σαS, σlog10β, σαE, σω, 
σh corr(tdet,αS) 

3f 

δS_pop=0.05,δI_pop
=0.4,log10φ_pop=-

4,δp_pop=0.001,δE_
pop=1 

σtdet, σαS, σlog10β, σlog10π, 
σαE, σω, σh corr(log10π,log10β) 

3g 
log10φ_pop=-

3,αE_pop=0.1,δE_po
p=1 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI, σω, σh, σδp 

corr(log10π,log10β) 

3h 
log10φ_pop=-

3,αE_pop=0.1,δE_po
p=1 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI, σω, σh, σδp 

corr(log10β,tdet), 
corr(log10π,tdet), 

corr(log10π,log10β) 

4. Reeves: 
dS/dt=αS - δSS - 

βSV; dΙp/dt = τβSV - 
δIIp -κEΙp; 

dΙu/dt =(1-τ)βSV - 
δIIu -κEΙu; 

dV/dt = πΙp - γV - 
βSV; 

dE/dt = αE +  
ωEΙ/(E+E50) - δEE 

4a No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI, σlog10κ, σαE, 

σω, σE50, σδE 
No correlations 

4b No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI, σlog10κ, σαE, 

σω, σE50, σδE 

corr(tdet,αS), 
corr(log10κ,δS) 

4c No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σδI, σlog10κ, σαE, 

σω, σE50, σδE 

corr(δE,αS), corr(tdet,αS), 
corr(tdet,δE), 

corr(log10κ,δS) 
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4d No other fixed 
parameters 

σtdet, σδS, σlog10β, σlog10κ, 
σω, σE50, σδE 

No correlations 

4e 
αS_pop=70,log10π_p
op=4.7,δI_pop=0.8,α

E_pop=1e-05 

σtdet, σδS, σlog10β, σlog10κ, 
σω, σE50, σδE 

corr(log10β,tdet), 
corr(log10κ,tdet), 

corr(log10κ,log10β) 

4f No other fixed 
parameters 

σtdet, σαS, σδS, σlog10β, 
σlog10π, σlog10κ, σω, σE50, 

σδE 

corr(δE,αS), corr(tdet,αS), 
corr(tdet,δE), 

corr(log10κ,δS) 

4g 
αS_pop=70,log10π_p
op=4.7,δI_pop=0.8,α

E_pop=1e-05 

σtdet, σδS, σlog10β, σlog10κ, 
σE50, σδE 

corr(log10β,tdet), 
corr(log10κ,tdet), 

corr(log10κ,log10β) 

 653 

Supplementary Table 2. 6 estimated parameter estimates for each individual. Fixed parameters include 654 
V0=0.01 copies/mL and 𝛾=23 day-1. Parameter 𝛼9 was assumed identical for all individuals with 655 
estimated value 42.7 cells day-1μL-1.  656 

id t_det δS log10β log10π κ η 
10066 9.62324 0.00015132 -4.65193 0.909672 0.277224 0.123357 
10203 8.54516 0.00204632 -3.26718 0.817297 0.527654 0.127292 
10220 6.65122 0.00313841 -3.08099 0.620871 0.401491 0.114859 
10428 11.1077 0.00073429 -4.59846 1.54429 0.368804 0.111938 
10435 19.0919 0.00027166 -4.47328 0.904101 0.264548 0.110447 
10463 6.84935 0.00026507 -4.38649 0.889934 0.301887 0.131843 
10723 9.97963 0.00146281 -3.99989 1.37432 0.498574 0.141124 
10739 9.411 0.00019097 -4.95646 1.24387 0.261739 0.127887 
10742 10.3869 0.00082387 -5.0462 2.02491 0.37825 0.1278 
40007 6.24852 0.00018223 -5.21088 1.54045 0.294554 0.163842 
40061 5.39621 0.00314832 -3.31239 0.903244 0.445166 0.141676 
40094 12.6378 0.00199422 -4.13477 1.32797 0.309711 0.13599 
40100 11.2924 0.00025118 -5.36688 1.82283 0.308901 0.140513 
40123 7.57667 0.00329133 -3.84293 1.30979 0.365231 0.121762 
40168 13.9136 0.00060717 -4.75154 1.43615 0.265229 0.168813 
40231 9.42558 0.00076336 -4.20229 1.12247 0.335064 0.127668 
40250 7.36099 0.00109501 -4.47884 1.52832 0.348449 0.147586 
40257 6.78964 0.00011896 -5.1431 1.42538 0.343796 0.168909 
40265 6.95792 0.00136279 -4.2837 1.42853 0.357415 0.156733 
40353 6.31939 0.00143253 -3.2951 0.661891 0.47208 0.115288 
40363 6.62144 0.00146629 -4.34715 1.55672 0.385113 0.139406 
40511 5.98824 0.00059542 -4.18057 1.39129 0.633979 0.165386 
40512 7.61647 0.00135145 -4.56775 1.71063 0.365675 0.151776 
40577 9.63581 0.00013342 -5.38839 1.54198 0.263169 0.151545 
10753 6.92639 0.00026048 -4.84951 1.30014 0.288365 0.179543 
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40032 9.56705 0.00444984 -4.01053 1.99893 0.763984 0.143641 
40211 13.6817 0.00058183 -4.29235 1.307 0.462561 0.173981 
40503 6.45906 0.00070623 -4.67312 1.57485 0.35149 0.156667 
40646 5.3783 0.00013301 -4.82366 1.06741 0.294896 0.131254 
10204 17.0122 0.00036347 -4.53213 1.08932 0.280075 0.116799 
10374 10.5916 0.00273136 -3.58615 1.49338 0.847886 0.21121 
40067 16.4039 0.00214128 -4.33294 1.95401 0.629711 0.1607 
40096 11.6224 0.00035585 -4.74625 1.35842 0.316595 0.145131 
40134 13.9472 0.00026626 -4.17889 0.794832 0.359614 0.143679 
40139 22.4029 0.00150565 -3.88411 1.71941 1.07298 0.103824 
40242 20.7467 0.00125992 -3.90151 1.03766 0.357604 0.126244 
40283 13.8411 0.000963 -4.25141 1.62302 0.640396 0.106864 
40195 19.2263 0.00180051 -4.28104 1.76886 0.550271 0.169485 
40435 18.0127 0.00076233 -4.39397 1.53545 0.497526 0.190491 
40492 12.2856 0.00071631 -4.55015 1.37054 0.300422 0.199821 
40528 2.51471 0.011889 -3.0486 2.29511 3.53815 0.213035 
40652 15.3836 0.00036841 -3.87475 0.703953 0.421935 0.173104 
40700 24.9363 0.00383498 -4.09306 1.66294 0.407487 0.160303 
40436 10.8677 0.00066651 -4.11294 0.839844 0.257823 0.173444 
40491 13.3018 0.00023218 -4.43882 0.892541 0.299901 0.142118 
40737 32.6352 0.00028113 -4.51066 0.978777 0.27742 0.128034 

 657 

Supplementary Table 3. Best estimate of infection time relative to first positive viral load for each 658 
individual. This table illustrates 5 previously reported methods3 and our population nonlinear mixed 659 
effects (pNLME) viral dynamics modeling approach. These methods are the maximum slope of any 660 
two points on the upslope (max_slope), the best log-linear regression slope (linear_model), self-661 
reported entries from trial participants (diary), Bayesian phylogenetic inference of median time to 662 
most-recent common ancestor (BEAST), and Poisson fitter diversity estimate assuming star-like 663 
phylogeny. 664 

id max-slope linear_model Diary BEAST PFitter pNLME 
10066 -7.0240004 -18.176592  -2.62 -8 -16.372267 
10203 -10.247329 -25.198679    -13.74697 
10220 1.18944995 -2.6721271   -13 -16.04084 
10428 -18.571441 -19.277159  -12.18 -17 -14.198643 
10435 -27.053564 -92.332248    -26.6943 
10463 -4.1810206 -7.290377  -25.42 -7 -12.977523 
20225 -34.189189 -34.189189  -4.56 -6  
20245       
20263 -4.3846261 -7.4981795     
20314 -20.822782 -23.49317  -3.25 -10  
20337 -5.4536831 -11.143324     
20355 -10.400144 -22.516374     
20368 -3.07086 -7.8134674  1.87 -2  
20442 -5.2628089 -8.7491781     
20502 -7.7774033 -13.562055   -4  
20507 -5.4597332 -9.8952878  -9.64 -7  
20509 -8.4397215 -17.466691  -8.9 -6  
20511 -15.132734 -31.487589  -0.9 -2  
20631 -12.120706 -12.731752  -11.29 -30  
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30112 -3.4486448 -10.198418  -10.97 -18  
30124 -6.9575257 -15.019169   -16  
30190 -6.0162679 -19.733117  -1.35 -6  
30507 -13.070499 -21.902597     
30812 -5.3750022 -10.439993     
30924 -26.677419 -26.677419  -7.82 -11  
40007 -4.0959219 -8.7359897  -6.17 -4 -10.715117 
40061 -1.3961514 -4.0645918 -13 0.39 -7 -13.25748 
40094 -9.3396373 -28.128959  -19.12 -20 -22.087233 
40100 -15.397661 -16.900742 -8 1.37 2 -15.072733 
40123 -2.5469005 -5.6085575 -7  -36 -15.28629 
40168 -0.3014733 -2.8255718 -4 -6.87 -6 -20.232067 
40231 -9.2630352 -18.909093 -7 -6.45 -9 -14.589803 
40250 -5.1308885 -10.832909 -15 -5.69 -2 -12.941387 
40257 -3.714285 -6.8801494 -9 -6.1 -11 -9.51851 
40265 -3.6988264 -6.4509726 -8 -21.74 -19 -13.166543 
40353 -0.8379281 -3.7858275 -3 -0.46 6 -13.518597 
40363 -3.4435622 -7.4401583 -9  -2 -11.435493 
40436 -6.498836 -19.142592 -5 1.14 -6 -18.718233 
40491 -14.437486 -28.648138 -14   -17.9225 
40511   -3 -5.65 -18 -8.7821767 
40512 -5.2047177 -11.910279 -20 2.62 2 -12.201273 
40577 -7.5341659 -16.900867  -6.39 -14 -14.813207 
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