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Abstract 

 

There is an urgent need to examine what individual and environmental risk factors are associated with 

COVID-19 mortality. This objective of this study is to investigate the association between long term 

exposure to air pollution and COVID-19 mortality. We conducted a nationwide, ecological study 

using zero-inflated negative binomial models to estimate the association between long term (2014-

2018) small area level exposure to NOx, PM2.5, PM10 and SO2 and COVID-19 mortality rates in 

England adjusting for socioeconomic factors and infection exposure. We found that all four pollutant 

concentrations were positively associated with COVID-19 mortality. The increase in mortality risk 

ratio per inter quarter range increase was for PM2.5:11%, 95%CIs 6%-17%), PM10 (5%; 95%CIs 1%-

11%), NOx (11%, 95%CIs 6%- 15%) and SO2 (7%, 95%CIs 3%-11%) were respectively in adjusted 

models. Public health intervention may need to protect people who are in highly polluted areas from 

COVID-19 infections.  

 

Keywords: COVID-19, air pollution, mortality, middle super output areas, England 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.20174227doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.13.20174227
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

 

Introduction 

 

It is well established that long term exposure to air pollution is harmful to human health and has led to 

excess morbidity and mortality (Hoek et al 2013; Brunekreef and Holgate, 2002; Samet et al 2000). 

The mechanism points to both direct and indirect systemic impact on the human body through 

increasing oxidative stress and inflammation, resulting in respiratory, cardiovascular, and immune 

system dysfunction and deterioration in circulation (Brunekreef. and Holgate, 2002;  Brook et al 

2010; WHO 2004; Zanobetti and Schwartz, 2009).  

 

The COVID-19 pandemic that is caused by a novel coronavirus (SARs-COV-2), has, as of July, 2020 

claimed over half a million lives worldwide and also resulted in serious socio and economic 

consequences. Since the December of 2019 when the pandemic started medical and epidemiological 

studies have improved our knowledge on the aetiology of COVID-19-related disease. However, there 

is still considerable unknown on its pathogenesis, as well as factors contributing to disease severity. 

Much attention has been paid to individual factors. Research worldwide has showed many individual 

risk factors that are associated with the risk of COVID-19 related death including older age, 

underlying health conditions, belonging to an ethnic minority group, and lower socioeconomic status 

(Verity et al 2020; Travaglio et al 2020, Williamson et al, 2020). Environmental factors, such as air 

pollution, may play an important role in increasing susceptibility to severe outcomes of COVID-19. 

But their impacts have been understudied so far.   

 

In most cases, COVID-19 results in mild symptoms. However, it may lead to an excessive 

inflammatory response causing Acute Respiratory Distress Syndrome (ARDS) and death (Guan et al, 

2020; Cao, 2020). There is clear overlap between the symptoms of Covid-19-induced ARDS and long 

term exposure to air pollution; it is highly likely that the underlying mechanism operates similarly (Qu 

et al 2020; Cole et al 2020).  Air pollutants can increase the risk of COVID-19 death in different 

ways. Major pollutants such as fine particulate matter (PM2.5, PM10), nitrogen oxide (NOx), and 
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sulphur dioxide (SO2), have been suggested to be associated with severity of COVID-19 conditions. 

This is similar to the pathways that they affect respiratory and cardiovascular mortality. For example, 

NOx can reduce lung activity and increase infection in the airway. SO2 has significant impacts on 

TNF, 1 IL 2 1 b, IL-6, IL-8, IL-17 and IL-18, they have a prominent role in inflammation of the 

respiratory and systemic systems, thus increasing the risk of developing coronavirus. On the other 

hand, PM10/2.5 by penetrating the depth of lung not only can paralyzes the ciliums airway, but also 

lead to chronic respiratory tract inflammation (Comunian et al 2020; Liang et al 2020). 

 

Previous findings on the severe acute respiratory syndrome (SARS) have shown that exposure to 

pollution was linked to the high mortality related to  the Sars-Cov-1 virus (Cui et al., 2003) with a 

positive association being observed between poor air quality and high SARS case-fatality rate in the 

Chinese population. A limited number of studies have explored the association of air pollution with 

COVID-19 related mortality (Wu et al 2020; Liang et al 2020; Ogen 2020; Conticini et al 2020). The 

conclusions are so far mixed with some identifying positive associations while others not.  

 

In this study we explore the association between air pollution and COVID-19 mortality across a large 

number of small area data in England. We used ecological data analysis based on middle super output 

areas and focused on four key air pollutants, particulate matter 2.5, particulate matter 10, nitrogen 

oxide and sulphur dioxide.  

 

Data 

The COVID-19 death data is acquired from ONS (Office for National Statistics). 

(https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/d

eathsinvolvingcovid19bylocalareasanddeprivation/). Data include all deaths of three months from 1st 

of March to the 31st of May, 2020 when the majority of deaths in England occurred. COVID-19 death 

referred to a death that COVID-19 was mentioned in the death certificate, with a delay of usually five 
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days between occurrence and registration. The data were the number of cumulative deaths in Middle 

Lower Super Output Areas (MSOA, average population was 8200) in England.  

The age composition and population density data was from the ONS mid-year population estimates in 

2018 

(https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimate

s/datasets/lowersuperoutputareamidyearpopulationestimates). The ethnicity, care home, and 

commuting data were from the 2011 census. Income deprivation data were from the index of multiple 

deprivation (IMD) statistics of 2019, provided by the Ministry of Housing, Communities & Local 

Government (MHCLG, 2019).  

We measured the percentage of the population from a minority group in each MSOA as the 

proportion that reported their ethnic group as Black, South Asian, or Chinese in the 2011 Census. The 

percentage of people who reported to have limiting long term illness was also derived from the 2011 

census. Our measure of deprivation was the income deprivation domain from the IMD 2019 score. 

The income deprivation score measures the percentage of the population experiencing deprivation 

relating to low income, based on a non-overlapping count of people receiving welfare benefits for 

low-income. It includes those who are out-of-work and those who are in work but have low earnings 

(MHCLG, 2019). Population estimate data provided by the ONS were used to calculate percentages 

of the population aged 65 and over for MSOAs.  

 

In order to adjust for viral exposure we include measures including population density, means of 

transport for commuting and the level of viral transmission by days since the day when there first was 

10 confirmed COVID-19 case in the local authority. Population density was computed using the mid-

year population estimates in 2018. The Public Health England (PHE) data 

(https://coronavirus.data.gov.uk/) was used to calculate the number of days since the day when 10 

laboratory confirmed cases in a local authority were identified. The 2011 census data on percentage of 

residents using different forms of transport for commuting (bus, train, tube) were also derived to 

measure virus spread in a local area. 
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Four pollutants were explored in this research: PM2.5, PM10, NOx and SO2. They were obtained from 

DEFRA (Department for Environment, Food and Rural Affairs) modelled annual average pollutant 

concentrations at a 1km by 1km resolution from 2014 to 2018. The five year average of four pollutant 

concentrations were used to indicate long term exposure to air pollution. Concentration values for 

each of the pollutants were for 1km grid-squares (https://uk-air.defra.gov.uk/data/pcm-data), which 

was interpolated to MSOA level using the point-in-polygon method. For middle-layer Super Output 

Areas that did not have grid points falling within them, data from the nearest point of the air quality 

grid was assigned. These four pollutants have been shown to be associated with all cause mortality, 

respiratory mortality and cardiovascular mortality in England (Carey et al 2013) and have been 

explored in research on COVID-19 mortality (Cole et al 2020; Wu et al 2020; Liang et al 2020). 

Methods 

We estimated the relationship between air pollution and COVID-19 deaths using a zero-inflated 

negative binomial mixed model (ZINB) (Venable & Ripley, 2002; Zhang et al 2017).  We tested the 

zero-inflation assumption and the result showed that there were substantially more zeros in the 

observed outcome compared than expected from a Negative Binomial process. These zeros arise 

because the absence of COVID-19 cases (and presumably the SARS-CoV-2 virus) in some MSOAs 

on/before the end of May, 2020 making them ineligible to experience a COVID-19 death.  

 

The number of COVID-19 deaths was the outcome and the logged population size was the offset. 

There are two sub-models in the ZINB model. The first is a count sub-model that estimates the 

association between COVID-19 deaths and pollutants. The second is a zero sub-model that takes care 

of the excess of zeros that may be produced by MSOAs not yet eligible for COVID-19 deaths (e.g., 

due to the absence of confirmed COVID-19 cases) and unlikely to have COVID-19 deaths as of 31st 

May, 2020.  We also included a random intercept by lower tier local authority (N=315) to account for 

potential correlation in MSOAs within the same local authority, due to similar socio-cultural, 

behavioural, and healthcare system features. All confounders were normalised before entering the 
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model. Three sets of models were fitted separately. The first set of models were adjusted at the MSOA 

level for: percentage of residents: aged 65+, Black, South Asian, Chinese, in care homes. Population 

density and the number of days from the day when 10 infection cases were identified were also 

adjusted. For the zero inflation model, in addition to socioeconomic variables mentioned above 

percentages of public transport commuters and particular matters (PM2.5) in 2018 were adjusted for. 

The second and the third sets of models expanded the first set by including percentage of low income 

people and percentage of people with limiting long term illness respectively to the first set of models.  

 

hEffect estimates were presented as mortality rate ratios (MRR) with 95% confidence intervals. The 

MRR can be interpreted as the relative increase in the COVID-19 death rate associated with a 1 unit 

increase in long-term average pollutant concentrations among MSOAs eligible to experience a 

COVID-19 death. We reported the mortality rate ratio per inter-quartile range increase for pollutant 

concentrations. Statistical analysis was conducted in R. Data and syntax are available upon request. 

Results 

The total number of COVID-19 deaths were 44,359 in the three months from March to May with an 

average of 7 deaths across MSOAs. The total number of MSOAs included in our main analysis is 

6,971, of which 237 (3%) had not reported any COVID-19 deaths by the end of May, 2020. The high 

death rates occurred mostly in London, Liverpool, Sunderland, Sheffield, Birmingham, and Cumbria 

(Figure 1). MSOAs within Greater London had the highest concentrations for PM10, PM2.5, and NOx. 

By contrast, the highest concentrations for SO2 existed in Northwest, and Yorkshire and the Humber. 

The average annual concentrations of four pollutants are correlated with each other.  PM10, PM2.5, 

NOx have strong correlations between them (PM2.5 vs PM10 0.97; PM2.5 vs NOx 0.75; PM10 vs NOx 

0.71). In contrast, these three pollutants have low-moderate correlation with SO2 (PM2.5 vs SO2: 0.13, 

PM10 v SO2: 0.09; NOx vs SO2: 0.41). 

 

There was considerable variation in terms of demographic structure, population density, travel 

behaviour, low income and prevalence of limiting long term illness. For examples, people aged 65 
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and over ranged from 1% to 52%. Percentage of black people in a local middle super output area 

varied from no black people at all to over half of the local population. Days from 10 confirmed cases 

were also markedly different in local authorities from 48 days to 88 days during the observation 

period (Table 1).  

 

 

Figure 1 COVID-19 deaths (March to May) per million in middle super output areas   
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Table 1 Summary statistics of variables 

Variable Mean 

Std. Dev 

(IQR). Min Max 

Number of deaths 6.53 5.14 0 66 

PM2.5 (µg/m3) 9.75 2.10 5.04 14.60 

PM10 (µg/m3) 14.56 3.02 7.31 21.74 

SO2 (µg/m3) 1.59 0.81 0.36 5.61 

NOx (µg/m3) 23.35 13.82 4.09 102.81 

% Age 65 and over 13.68 4.99 0.44 37.06 

% Black 3.26 6.32 0.00 54.50 

% South Asian 5.12 10.34 0.00 81.14 

% Chinese 0.68 1.06 0.00 21.47 

% In care home 0.68 0.75 0.00 8.05 

% Bus commuter 4.73 3.83 0.09 27.52 

% Train commuters 3.37 4.45 0.04 34.66 

% Tube commuters 2.41 6.25 0.00 44.75 

% Low income  0.13 0.08 0.01 0.49 

% limiting long term illness  17.8 4.33 3.60 38.9 

Days from 10 confirmed 

cases in local authority 74.35 5.29 48 88 

Total population 8242.8 1936.3 2242 24969 

Population density 

(Persons/km2) 3538.57 3811.05 5.61 28338.79 

Note: For pollutants inter quartile range (IQR) is presented while for other factors standard deviation 

(Std. Dev) is listed. 

Data sources: ONS, PHE, MHCLG.  
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The results from the models are shown in Table 2. Model 1 refers to the model that adjusted for 

socioeconomic variables while Model 2 added the variable of low income and model 3 added the 

limiting long term illness variable. We reported the association with socioeconomic and infection 

spread variables first (Model 1). As expected areas with a higher proportion of people aged over 65, 

higher proportion of Black and South Asian, higher proportion of people in care home, higher level of 

low income people were associated with higher risks of COVID-19 deaths (Model 2). In Model 3, 

percentage of limiting long term illness was found to be associated with higher risks of COVID-19 

deaths. Areas where there was a longer duration in coronavirus infection was also linked to a higher 

risk of COVID-19 deaths. In contrast, areas with a higher proportion of Chinese were related to lower 

COVID-19 mortality risk. Population density was not a significant predictor of COVID-19 death. 

 

Associations with COVID-19 deaths were positive for all four pollutants. Based on the first set of 

models (Model 1), after adjustment for age composition, population density, ethnicity, and days since 

10 confirmed cases in the local authority mortality rate ratios relating to PM2.5, PM10, NOx and SO2 

per inter-quartile range increase were separately 1.10 (95%CI 1.04-1.16); 1.04 (95%CI 0.99-1.09); 

1.13 (95%CI 1.08-1.18); 1.12 (95%CI 1.08-1.16). An increase of inter quartile range (2.1 µg/m3) in 

PM2.5 was associated with a 10% increase in the risk of COVID-19 mortality independent of a number 

of socioeconomic risk factors. For PM10, NOx and SO2, the equivalent increases in MRR were 

respectively 4%, 13% and 12%. However, the association with PM10 was not significant. When the 

additional low income variable and additional limiting long term illness variables were separately 

adjusted for the positive association with the mortality risk of these four pollutants remained largely 

unchanged for PM2.5, NOx and SO2. However, the association with PM10 changed to be significant. 

The association with SO2 was attenuated down to 1.09 (Model 2, 95% CI, 1.05-1.12).  
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Table 2 Estimated mortality rate ratios from the zero-inflated negative binomial mixed models  

Variable Model Model 2 Model 3 

PM2.5 1.10(1.04-1.16) 1.12(1.06-1.17) 1.11(1.06-1.17) 

Population density (persons/Km2) 0.99(0.97-1.02) 0.98(0.95-1.01) 0.98(0.95-1.01) 

% Age 65 and above 1.16(1.13-1.19) 1.23(1.19-1.26) 1.13(1.1-1.16) 

% Black 1.07(1.04-1.09) 1.03(1.00-1.06) 1.05(1.02-1.07) 

% South Asian 1.04(1.02-1.06) 1.03(1.01-1.05) 1.04(1.02-1.06) 

% Chinese 0.92(0.9-0.93) 0.94(0.92-0.96) 0.94(0.92-0.96) 

% Care home 1.28(1.26-1.3) 1.27(1.25-1.29) 1.25(1.24-1.27) 

Days since 10 confirmed cases 1.20(1.16-1.26) 1.23(1.18-1.28) 1.23(1.18-1.28) 

% Low income 

 

1.11(1.08-1.13) 

 
% Limiting long term illness 

  

1.14(1.11-1.16) 

PM10 1.04(0.99-1.09) 1.06(1.01-1.11) 1.05(1.01-1.10) 

Population density (persons/Km2) 1.01(0.98-1.03) 0.99(0.97-1.02) 0.99(0.96-1.02) 

% age 65 and above 1.16(1.13-1.18) 1.22(1.19-1.25) 1.12(1.1-1.15) 

% Black 1.07(1.04-1.1) 1.03(1.01-1.06) 1.05(1.02-1.08) 

% South Asian 1.04(1.02-1.06) 1.03(1.01-1.05) 1.04(1.02-1.06) 

% Chinese 0.92(0.9-0.93) 0.94(0.92-0.96) 0.94(0.92-0.96) 

% care home 1.28(1.26-1.3) 1.27(1.25-1.29) 1.25(1.24-1.27) 

Days since 10 confirmed 

cases  1.22(1.17-1.27) 1.24(1.19-1.29) 1.24(1.19-1.3) 

% Low income 

 

1.11(1.08-1.13)  

% Limiting long term illness 

  

1.14(1.11-1.16) 

NOx 1.13(1.08-1.18) 1.11(1.07-1.16) 1.11(1.06-1.15) 

population density 0.99(0.96-1.02) 0.98(0.95-1.01) 0.98(0.95-1.01) 

% age 65 and above 1.16(1.14-1.19) 1.22(1.19-1.26) 1.13(1.11-1.16) 

% Black 1.06(1.04-1.09) 1.03(1.01-1.06) 1.05(1.02-1.07) 

% South Asian 1.03(1.01-1.05) 1.03(1.01-1.05) 1.04(1.02-1.06) 

% Chinese 0.90(0.89-0.92) 0.93(0.91-0.95) 0.93(0.91-0.95) 
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% care home 1.28(1.26-1.29) 1.27(1.25-1.29) 1.25(1.23-1.27) 

Days since 10 confirmed cases  1.18(1.13-1.23) 1.21(1.16-1.26) 1.22(1.17-1.27) 

% Low income 

 

1.10(1.08-1.12) 

 
% Limiting long term illness 

  

1.13(1.10-1.15) 

SO2 1.12(1.08-1.16) 1.09(1.05-1.12) 1.07(1.03-1.11) 

Population density 1.00(0.97-1.03) 0.99(0.97-1.02) 0.99(0.96-1.02) 

% age 65 and above 1.18(1.15-1.21) 1.22(1.19-1.26) 1.14(1.11-1.17) 

% Black 1.07(1.05-1.1) 1.04(1.02-1.07) 1.06(1.03-1.08) 

% South Asian 1.04(1.02-1.06) 1.03(1.01-1.05) 1.04(1.02-1.06) 

% Chinese 0.92(0.9-0.94) 0.94(0.92-0.96) 0.94(0.92-0.96) 

% care home 1.28(1.26-1.29) 1.27(1.25-1.29) 1.25(1.24-1.27) 

Days since 10 confirmed cases  1.22(1.17-1.27) 1.24(1.19-1.3) 1.25(1.20-1.30) 

% Low income 

 

1.09(1.07-1.12) 

 
% Limiting long term illness 

  

1.12(1.10-1.15) 

Note: 95% confidence intervals are presented in bracket 

Data sources: ONS, PHE, MHCLG.  

 

Discussion  

 

Using data from various sources including small area COVID-19 death registrations, census, income 

deprivation and COVID-19 cases from public health bodies of England this study examined the 

association between ambient air pollution and COVID-19 mortality. We found statistically significant 

associations between four pollutants risk of COVID-19 mortality. These associations were 

independent of demographic, socioeconomic factors and viral exposure. 

The larger effect was observed for PM2.5 and NOx than that for PM10 and SO2 based on the model that 

included both percentage of low income or limiting long term illness with an increase of inter-quartile 

range leading to 12% and 11% increase in mortality rate ratio. The effect of PM10 and SO2 was  

similar with an increase of inter-quartile range leading to 6% and 8% increase in mortality rate ratio of 

COVID-19 death. 
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The results of the study suggest that long term exposure to air pollution is associated with the most 

severe COVID-19 outcomes. These findings are in line with previous studies that showed association 

with respiratory and cardiovascular mortality (Carey et al 2003). They are also consistent with 

findings that air pollution exposure increased the risk of death during the severe acute respiratory 

syndrome (SARS) outbreak in 2003 (Cui et al 2003). They provided further support to previous 

studies that observed 78% of the COVID-19 deaths occurred in the most polluted five regions with 

the highest NO2 levels (Ogen, 2020) and another study that found a correlation between high levels of 

air pollution and high death rates in Italy (Conticini et al, 2020). Nevertheless these two studies had 

severe limitations because of their methodologies. The paper by Ogen (2020) used two month 

pollution data as long term exposure measures and both failed to adjust for potential confounders. 

Travaglio et al. (2020) took a similar approach but control only for differences in population density 

and across only 7 relatively large regions. Studies based on U.S. were rigorous in terms of the data 

and methodology. However, their finding have been mixed. For example, while some found a positive 

association with PM2.5 (Wu et al 2020) others did not (Liang et al 2020; Knittel and Ozaltun, 2020). 

In the work by Liang et al (2020) they examined three NO2, PM2.5 and O3 and found that only NO2 

showed consistent positive association with COVID-19 mortality.  

 

The strengths of this analysis include air pollution measures based on well validated approaches used 

in a large number of previous studies (Carey et al 2013; Dibben and Clemens, 2015). Our analysis 

utilised COVID-19 death data up to 31st May 2020 allowing us to capture almost the entire course of 

the first phase of the pandemic in England and hence much more fully than the previous studies which 

have examined data up to only March or early April. In addition, the analysis includes controlling for 

a number of socioeconomic, demographic confounders, not adjusted for in other studies. Viral 

exposure is also adjusted for in the analysis. Use of small areas is also an advantage because air 

pollution varies considerably across large areas, such as local authority or region, used in other 

studies. The heterogeneity of pollution within a large area is considerable thus losing granularity. US 

counties are still relatively large, raising the question of how well such aggregated data can capture 
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the local variation in confounding effects without being averaged out. The analysis in Netherlands 

used municipalities (Cole et al 2020). Although this is an improvement in terms of area size compared 

to the US county based analysis. Municipalities are also larger than MSOAs in England.   

There are limitations to this study. Air pollution and covariates are all measured at the small area level 

not as individual level exposures, so like any ecological analysis there may be a danger of ecological 

fallacy. A few variables were not up to date but from the 2011 census. Future research that links 

individual data with pollution in residential areas should be carried out to avoid this issue. The study 

was observational and therefore any causal interpretation needs to be taken with caution. However, 

the causal pathways relating to respiratory and cardiovascular mortality has been established and it is 

highly likely that air pollution operates in the same way that impair the respiratory and circulation 

system which leads to exacerbates conditions of infected patients (Comunian et al, 2020).  

 

Conclusions 

 

This analysis provides evidence that there is positive association between long term exposure to air 

pollution and COVID-19 deaths in England. Research on how modifiable factors may exacerbate 

COVID-19 symptoms and increase mortality risk is essential to guide policies and behaviours to 

minimize fatality related to the outbreak.  

 

This paper provides further evidence that people living in an area with lasting high levels of pollutant 

are more prone to develop serious COVID-19 conditions. Future studies are needed to evaluate the 

role of the atmospheric pollution in certain populations and provide effective support for health 

intervention in reducing COVID-19 mortality.  Reducing air pollution will have positive effect on 

many different areas reducing vulnerability to severe outcomes from virus infection like coronavirus. 

In addition, the intervention will have a lasting effect especially if the COVID-19 pandemic remains 

in the near future.  

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.20174227doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.13.20174227
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

References 

Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, 

Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD: 2010 

Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from 

the American heart association. Circulation, 121:2331–2378 

Brunekreef, B. and Holgate, S.T., 2002. Air pollution and health. The lancet, 360(9341), pp.1233-

1242. 

Cao, X. 2020. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol, 1-2, 

doi:10.1038/s41577-020-0308-3  

Carey, I.M., Atkinson, R.W., Kent, A.J., Van Staa, T., Cook, D.G. and Anderson, H.R., 2013. 

Mortality associations with long-term exposure to outdoor air pollution in a national English 

cohort. American journal of respiratory and critical care medicine, 187(11), pp.1226-1233. 

Cole, Matthew A. and Ozgen, Ceren and Strobl, Eric, 2020 Air Pollution Exposure and COVID-19. 

IZA Discussion Paper No. 13367, Available at SSRN: https://ssrn.com/abstract=3628242 

Conticini, E., Frediani, B. and Caro, D., 2020. Can atmospheric pollution be considered a co-factor in 

extremely high level of SARS-CoV-2 lethality in Northern Italy?. Environmental pollution, p.114465. 

Comunian, S., Dongo, D., Milani, C. and Palestini, P., 2020. Air Pollution and Covid-19: The Role of 

Particulate Matter in the Spread and Increase of Covid-19's Morbidity and Mortality. International 

Journal of Environmental Research and Public Health, 17(12), p.4487. 

Cui, Y., Zhang, Z.F., Froines, J., Zhao, J., Wang, H., Yu, S.Z. and Detels, R., 2003. Air pollution and 

case fatality of SARS in the People's Republic of China: an ecologic study. Environmental 

Health, 2(1), pp.1-5. 

Daraei, H., Toolabian, K., Kazempour, M. and Javanbakht, M., 2020. The role of the environment and 

its pollution in the prevalence of COVID-19. Journal of Infection.81, e168-169 

Dibben, C. and Clemens, T., 2015. Place of work and residential exposure to ambient air pollution 

and birth outcomes in Scotland, using geographically fine pollution climate mapping 

estimates. Environmental research, 140, pp.535-541. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.20174227doi: medRxiv preprint 

https://ssrn.com/abstract=3628242
https://doi.org/10.1101/2020.08.13.20174227
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

Guan, W.J., Ni, Z.Y., Hu, Y., Liang, W.H., Ou, C.Q., He, J.X., Liu, L., Shan, H., Lei, C.L., Hui, D.S. 

and Du, B., 2020. Clinical characteristics of coronavirus disease 2019 in China. New England journal 

of medicine, 382(18), pp.1708-1720. 

Hoek, G., Krishnan, R.M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B. and Kaufman, J.D., 2013. 

Long-term air pollution exposure and cardio-respiratory mortality: a review. Environmental 

Health, 12(1), p.43. 

Knittel, C.R. and Ozaltun, B., 2020. What does and does not correlate with COVID-19 death 

rates. https://www.medrxiv.org/content/10.1101/2020.06.09.20126805v1  

Liang, D., Shi, L., Zhao, J., Liu, P., Schwartz, J., Gao, S., Sarnat, J., Liu, Y., Ebelt, S., Scovronick, N. 

and Chang, H.H., 2020. Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality 

Rates in the United States. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273261/ . 

McLaughlin, J.C., Hamilton, K. and Kipping, R., 2017. Epidemiology of adult overweight recording 

and management by UK GPs: a systematic review. British Journal of General Practice, 67(663), 

pp.e676-e683. 

MHCLG (Ministry of Housing, Communities & Local Government). English indices of deprivation 

2019: research report. GOV.UK. 2019. https://www.gov.uk/government/publications/english-indices-

of-deprivation-2019-research-report (accessed April 23, 2020). 

Ogen, Y., 2020. Assessing nitrogen dioxide (NO2) levels as a contributing factor to the coronavirus 

(COVID-19) fatality rate. Science of The Total Environment, p.138605. 

Qu, G, Li, X, Hu, L, and Jiang, G, 2020 An Imperative Need for Research on the Role of 

Environmental Factors in Transmission of Novel Coronavirus (COVID-19). Environ. Sci. Technol. 

2020, 54, 3730−3732 R 

Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I. and Zeger, S.L., 2000. Fine particulate air 

pollution and mortality in 20 US cities, 1987–1994. New England journal of medicine, 343(24), 

pp.1742-1749. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.20174227doi: medRxiv preprint 

https://www.medrxiv.org/content/10.1101/2020.06.09.20126805v1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273261/
https://doi.org/10.1101/2020.08.13.20174227
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Travaglio, M., Yu, Y., Popovic, R., Leal, N.S. and Martins, L.M., 2020. Links between air pollution 

and COVID-19 in England.  

https://www.medrxiv.org/content/medrxiv/early/2020/04/28/2020.04.16.20067405.full.pdf 

Venables, W. N. and Ripley, B. D. (2002) "Modern Applied Statistics with S". Fourth edition. 

Springer. 

Verity, R. et al. (2020). Estimates of the severity of coronavirus disease 2019: a model-based  

analysis. Lancet Infect Dis, doi:10.1016/S1473-3099(20)30243-7  

Williamson, E.J., Walker, A.J., Bhaskaran, K. et al. Factors associated with COVID-19-related 

death using OpenSAFELY. Nature (2020). https://doi.org/10.1038/s41586-020-2521-4 

World Health Organization, 2004. Health aspects of air pollution: results from the WHO project" 

Systematic review of health aspects of air pollution in Europe" (No. EUR/04/5046026). Copenhagen: 

WHO Regional Office for Europe. 

Wu, X., Nethery, R. C., Sabath, B. M., Braun, D. & Dominici, F. 2020 Exposure to air  pollution and 

COVID-19 mortality in the United States.  2020.2004.2005.20054502, 

doi:10.1101/2020.04.05.20054502. 

Zanobetti, A. and Schwartz, J., 2009. The effect of fine and coarse particulate air pollution on 

mortality: a national analysis. Environmental health perspectives, 117(6), pp.898-903. 

Zhang, X,  Mallick, H, Cui, X, Benson, A.K. and Yi, N (2017) Negative Binomial Mixed Models for 

Analyzing Microbiome Count Data. BMC Bioinformatics 18(1):4. 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.13.20174227doi: medRxiv preprint 

https://www.medrxiv.org/content/medrxiv/early/2020/04/28/2020.04.16.20067405.full.pdf
https://doi.org/10.1101/2020.08.13.20174227
http://creativecommons.org/licenses/by-nc-nd/4.0/

