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Abstract 

 

Background: Cognitive decline remains highly underdiagnosed despite efforts to find novel 

biomarkers for detection. EEG biomarkers based on machine learning may offer a 

noninvasive low-coast approach for identifying cognitive decline. However, most studies 

use multi-electrode systems which are less accessible. This study aims to evaluate the ability 

to extract cognitive decline biomarkers using a wearable single-channel EEG system with an 

interactive assessment tool. 

 

Methods: This pilot study included data collection from 82 participants who performed a 

cognitive assessment while being recorded with a single-channel EEG system. Seniors in 

different clinical stages of cognitive decline (healthy to mild dementia) and young healthy 

participants were included. Seniors’ MMSE scores were used to allocate groups with cutoff 

scores of 24 and 27. Data analysis included correlation analysis as well as linear mixed 

model analysis with several EEG variables including frequency bands and three novel 

cognitive biomarkers previously extracted from a different dataset.  

 

Results: MMSE scores correlated significantly with reaction times, as well as two EEG 

biomarkers: A0 and ST4. Both biomarkers showed significant separation between study 

groups: ST4 separated between the healthy senior group and the low-MMSE group. A0 

differentiated between the healthy senior group and the other three groups, showing different 

cognitive patterns between different stages of cognitive decline as well as different patterns 

between young and senior healthy participants. In the healthy young group, activity of 

Theta, Delta and VC9 biomarker significantly separated between high cognitive load and 

resting state. VC9 and Theta showed a finer separation between high and low cognitive load 

levels consistent with previous reports. 

 

Conclusions: This study successfully demonstrated the ability to assess cognitive state with 

an easy-to-use single-channel portable EEG device and a short interactive cognitive 

assessment. Future studies should explore potential usefulness in controlled studies 

characterizing changes in EEG patterns of cognitive decline over time, for detection of 

cognitive decline in every clinic to potentially allow early intervention. 
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Background 

Cognitive decline is characterized by impairments in various cognitive functions such as 

memory, orientation, language, and executive functions [1], expressed more than anticipated 

for an individual’s age and education level. Cognitive decline with memory deficit 

indications is associated with high-risk for developing dementia in general, and Alzheimer’s 

disease in particular [2]. Interventions starting early in the disease process, before 

substantial neurodegeneration has taken place, can change the progression of the disease 

dramatically [3]. Yet, there is still no universally recommended screening tool that satisfies 

all needs for early detection of cognitive decline [4].  

The most commonly used screening tool for cognitive decline in the elderly population is 

the Mini-Mental State Examination (MMSE) [5]. The MMSE evaluates cognitive function, 

producing a total possible score of 30 points. Patients who score below 24 would typically 

be suspected of cognitive decline or early dementia [6]. However, several studies showed 

that factors unrelated to the cognitive state, such as age and education as well as tester bias, 

could affect individual scores [7], [8].  

Naturally, objective cognitive assessment based on brain activity measurements would be 

preferable to subjective clinical evaluation using pen-and-paper assessment tools like the 

MMSE. Electroencephalography (EEG) offer such noninvasive and relatively inexpensive 

screening tool for cognitive assessment [9]. EEG studies investigating cognitive decline 

highlight the role of theta power as a possible indicator for early detection of cognitive 

decline [10]–[12]. Specifically, it was found that frontal theta activity differs substantially in 

cognitively impaired subjects performing cognitive tasks compared to healthy seniors. 

Studies suggest that novel diagnostic classification based on EEG signals could be even 

more useful than frontal theta for differentiating between clinical stages [10]. The 

development of machine learning (ML) alongside high-level signal processing, has largely 

contributed to the extraction of useful information from the raw EEG signal [13]. Novel 

techniques are capable of exploiting the large amount of information on time-frequency 

processes in a single recording [14], [15]. Recent studies demonstrated novel measures of 

EEG for identification of cognitive impairment with high accuracy, using classifiers based 

on neural networks, wavelets, and blind source separation, indicating the relevance of such 

methods for cognitive assessment [16]–[19].  
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However, most studies in this field have several constraints. Most commonly, such studies 

use multichannel EEG systems to characterize cognitive decline. The difficulty with 

multichannel EEG is the long set-up time which require specifically trained technicians, as 

well as a professional interpretation of the results. This makes the systems costly and not 

portable, thus, not suitable for wide-range screening in every clinic. Consequently, these are 

not included in the usual clinical protocol for cognitive decline detection. This emphasizes 

the need for additional cost-effective tools with a short assessment time and easy set-up, to 

allow detection of cognitive decline of patients in the community. 

A recent study [20] examined differences in responses to auditory stimuli between 

cognitively impaired and healthy subjects and concluded that cognitive decline can be 

characterized using data from a single EEG channel. Specifically, using data from frontal 

electrodes, the authors extracted 590 features that were later used in classification models to 

identify subjects with cognitive impairments. The results contribute to the idea that a single 

channel EEG can be used as an efficient and convenient way for detecting cognitive decline. 

However, the risk of overfitting the data in such classification studies should be addressed to 

ensure generalization capabilities, especially with a small sample size. Studies that use the 

same dataset for training as well as feature extraction [20]–[22], extend the risk of 

overfitting. For generalization of the data, the features should be examined on different 

datasets and provide consistency in the results on new datasets. Furthermore, measuring the 

correlations of the extracted features with standard clinical measurements (like the MMSE 

score) or behavioral results of cognitive tests (like reaction times and accuracy) is highly 

valuable for further validation of such novel features. 

In this study we evaluated the ability of an easy-to-use single-channel EEG system with an 

interactive cognitive assessment to potentially detect cognitive decline in the elderly 

population. The system uses auditory stimuli, and extracts biomarkers using harmonic 

analysis and machine learning methods from the EEG signal. The pre-extracted biomarkers 

used in this study were validated in a previous study performed on young healthy subjects 

[23]. This pilot study aims to evaluate the ability of the system to extract cognitive decline 

biomarkers, recognizing the importance of providing an accurate low-cost alternative for 

cognitive decline detection. 

Methods 

Participants 
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Senior participants 

Ethical approval for this study was granted by the Ethics Committee (EC) of Dorot Geriatric 

Medical Center on July 01, 2019. Israeli Ministry of Health (MOH) registry number 

MOH_2019-10-07_007352, first posted on Oct 07, 2019. NIH Clinical Trials Registry 

number NCT04386902, first posted on May 13, 2020, URL: 

https://clinicaltrials.gov/ct2/show/NCT04386902?term=Neurosteer&draw=2&rank=1.  

Sixty patients from the inpatient rehabilitation department at Dorot Geriatric Medical Center 

were recruited to this study. For the full demographic details see Table 1. The overall mean 

age was 77.55 (9.67) years old. There was a wide range of ages for each group with no 

significant age difference between the groups. Participants consisted of 47% females and 

53% males. Among the patients, 82% were hospitalized for orthopedic rehabilitation and 

18% due to various other causes. Among the patients who had surgery, an average of 27 

(16.3) days passed since the surgery. Potential subjects were identified by the clinical staff 

during their admission to the inpatient rehabilitation department. All subjects were 

hospitalized at the center and were chosen based on inclusion criteria specified in the study 

protocol. The patients undergo a Mini Mental State Examination (MMSE) by an 

Occupational Therapist upon hospital administration and this score was used for screening 

patients to include those that have scores between 10-30. All subjects were also evaluated 

for their ability to hear, read, and understand instructions for discussion of Informed 

Consent Form (ICF) as well as for the auditory task. Patients that speak English, Hebrew, 

and Russian were provided with the appropriate ICF and auditory task in the language they 

could read and understand. All participants provided ICF according to the guidelines 

outlined in the Declaration of Helsinki. Patients that showed any verbal or non-verbal form 

of objection were not included in the study. Other exclusion criteria included MMSE score 

lower than 10, presence of several comorbidities, damage to integrity of scalp and/or skull 

and skin irritation in the facial and forehead area, significant hearing impairments, and 

history of drug abuse. 

In total, 50 of the 60 recruited patients, completed the auditory task and their EEG data was 

used. 10 patients signed the ICF and were included in the overall patient count but were 

excluded from data analysis due to their desire to stop the study or technical problems in the 

recording. The participants were divided into 3 groups according to the MMSE scores: 17 

patients with a score of 17-23 in the Mild Dementia (MD) group, 16 patients with a score of 
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24-27 in the Mild Cognitive Impairment Risk (MCI-R) group and 17 patients with a score of 

28-30 in the Healthy seniors group. See table 1 for demographic information. 

 

Group Healthy   MCI-R MD 

MMSE scores 28-30 24-27 17-23 

n 17 16 17 

MMSE 28.88 (0.78) 25.64 (0.66) 20.46 (2.06) 

Age 74.77 (8.05) 75.42 (7.36) 79.26 (8.57) 

Sex, F(%) 13 (81.25) 9 (56.25) 5 (29.41) 

Table 1. Demographic information of the senior groups included in the analysis.  

 

Healthy young participants 

22 healthy students participated in this study for course credit. The overall mean age was 

24.09 (2.79) years old. Participants consisted of 60% females and 40% males. Ethical 

approval for this study was granted by Tel-Aviv University ethical committee 27.3.18. 

 

Apparatus 

EEG device 

EEG recordings were performed using a single channel EEG system (Aurora Neurosteer 

Inc). A 3-electrode medical-grade patch was placed on the subject’s forehead using dry gel 

for optimal signal transduction. The electrodes were located at Fp1 and Fp2 and a reference 

electrode at Fpz. EEG signal was amplified by a factor of a 100 and sampled at 500 Hz. 

Signal processing was done in the Neurosteer cloud, for further details see Appendix A. 

 

EEG Recording and Auditory battery 

The recording room was quiet and illuminated. The research assistant set up the sanitized 

system equipment (electrode patch, sensor, EEG monitor, clicker) and provided general 

instructions to the participants before starting the task. Then the electrode was placed on the 

subject’s forehead and the recording was initiated. The participant was sitting during the 

assessment and heard instructions through a loudspeaker connected to the EEG monitor. 

The entire recording session typically lasted 20-30 minutes. The cognitive assessment 

battery was pre-recorded and included a detection task as well as answering a series of 
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true/false questions by pressing on a wireless clicker button. Further explanations for the 

task were kept at a minimum to avoid bias. A few minutes of baseline activity were 

recorded to ensure an accurate test. The auditory cognitive assessment lasted 18 minutes. 

Detection Task 

Figure 1 illustrates the detection task used in the study. In each block, participants were 

presented with a sequence of melodies (played by a violin, a trumpet, and a flute). The 

participants were given a clicker to respond to the stimuli. In the beginning of each block, 

auditory instructions indicated an instrument to which the participant responded by clicking 

once. The click response was only to “yes” trials, when the indicated instrument melody had 

played. The task included two difficulty levels to test increasing cognitive load. In level 1, 

each melody was played for 3 seconds, and the same melody repeated throughout the entire 

block. The participant was asked to click once as fast as possible for each repetition of the 

melody. In level 2, the melodies were played for 1.5 seconds, and all three instruments 

appeared in the block. The participants were asked to click only for a specific instrument 

within the block and ignore the rest of the melodies. 

 

Figure 1. An example of six trials of detection level 1 (top) and detection level 2 (bottom). 

Both examples show a “Trumpet block” in which the participant reacts to the trumpet 

melody. Red icons represent trials in which the participant was required to respond with a 

click when hearing the melody, indicating a “yes” response. 

 

Data Analysis 

Construction of Brain Activity Features and Classifiers 

The signal processing algorithm interprets the EEG data using a time/frequency wavelet-

packet analysis [24], [25], which characterizes different components by their fundamental 

frequency and corresponding higher harmonics. In addition, standard spectral analysis of the 

signal was used to produce the classical EEG frequency bands.  

Detection 2 

Detection 1 
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The optimal number of different features was determined on a large dataset using 

unsupervised Machine Learning techniques (i.e. ML extracting features on unlabeled data). 

This analysis resulted in 121 Brain Activity Features (BAFs). The BAFs activity can be 

regarded as a series of vectors with 121 values that are sampled every second. 

Combinatorically, there are millions of linear and non-linear combinations that can be 

created out of these long vectors. Prior to this examination, several such combinations were 

computed using ML. These combinations were calculated from data of healthy subjects 

performing different tasks in different difficulty levels. The labelled data was used to train 

linear and non-linear classifiers that differentiate between different tasks. The value of each 

feature was calculated once every second from a moving window of 4 seconds. Three of 

those biomarkers were described in a previous study on healthy subjects performing a well-

validated cognitive task (i.e. n-back task) [23]. The biomarkers exhibited separation between 

different levels of cognitive load and therefore were the most relevant for the present study. 

The full technical specifications regarding the construction of these features and the 

extractions of the biomarkers are provided in Appendix A. 

 

Dependent variables 

Behavioral measurements 

The behavioral dependent variables included mean response accuracy and mean reaction 

times (RT) per participant, for correct responses only. 

 

Electrophysiological variables      

The electrophysiological dependent variables included the power spectral density. Absolute 

power values were converted to logarithm base 10 to produce values in dB. The following 

frequency bands were included: Delta (0.5-4 Hz), Theta (4–7 Hz), Alpha (8–15 Hz), Beta 

(16–31 Hz), and lower Gamma (32–45 Hz). 

The BAFs analysis included the activity of the three selected biomarkers: ST4, A0, and VC9 

normalized to a scale of 0-100. The EEG variables were calculated per each second from a 

moving window of 4 seconds, and mean activity per condition was taken into the analyses. 

 

Statistical analyses 
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Statistical analyses were performed on data from 50 senior participants and 22 young 

participants. Analyses included Pearson correlations and Mixed Linear Models (LMM). 

 

Pearson correlations 

Based on previous studies [3] we hypothesized that the Reaction Times (RTs) in the 

cognitive detection task would be higher for participants with lower MMSE scores. This 

was tested by calculating Pearson correlation between mean RTs in detection levels 1 and 2, 

and the individual MMSE score of each participant. RTs correlations to the EEG variables 

were also calculated. 

Another correlation analysis was performed to find which of the EEG variables correlated 

with the (previously assigned) MMSE score of each participant. For this purpose, Pearson 

correlation was calculated using the mean activity of the EEG variables during the detection 

task and each individual MMSE score. 

 

Linear Mixed Models (LMM) 

The independent variables included task as a within-participants variable (including 

detection 1, detection 2, resting state tasks) and group as a between-participants variable. 

Groups were allocated as follows (see Figure 2): data of the senior participants was divided 

into three groups according to MMSE scores: Mild Dementia (MD) group with MMSE 

scores between 17-24, Mild Cognitive Impairment Risk (MCI-R) group with MMSE scores 

between 24-27, and Healthy Seniors with MMSE scores between 28-30. We used MMSE 

score cutoffs of 24 and 27 in allocating the groups as we are mostly interested in detecting 

cognitive decline as early as possible and found previous indications that a higher cutoff 

score would achieve optimal evaluations of diagnostic accuracy [7]. Furthermore, it was 

argued that educated individuals who score below 27 are at greater risk of being diagnosed 

with dementia [26]. The last group included in the analysis was consist of the 22 young 

healthy participants (Healthy young group). Overall, 4 groups were taken into the analysis. 

Since both independent variables have more than two levels, indicator variables (aka 

dummy variables) were computed. For the group variable, Healthy seniors group was 

determined as the reference level, and the three remaining levels were computed as dummy 

variables: Healthy young (e.g., the difference between Healthy seniors and Healthy young), 

MCI-R (e.g., the difference between Healthy seniors and MCI-R), and MD (e.g., the 
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difference between Healthy seniors and MD). Accordingly, a significant effect in one of the 

groups would mean that the activity of the Healthy seniors group is significantly different 

than the activity of said group. For the task variable, detection 1 (which represents low 

cognitive load level) was determined as the reference level, and the two remaining levels 

were computed as dummy variables: Detection 2 (e.g., the difference between detection 1 

and detection 2 which represents high cognitive load level) and Resting state (e.g., the 

difference between detection 1 and resting state). A significant effect of one of the levels, 

would mean that the activity during detection 1 level was significantly different than the 

activity during said level. 

An LMM analysis was performed on each EEG variable separately (A0, ST4, VC9, Delta, 

Theta, Alpha, Beta, and Gamma). Due to the interpretation complexity of the effects, the 

first analysis included the two variables (group and task level) without their interactions. 

Significance level for this analysis was p<0.05. For models that achieved significant effects 

in the task variable, follow-up models were calculated to examine the activity level 

differences within each group. Therefore, the interaction between task level and group was 

examined within the senior groups and the young healthy group separately. For these post-

hoc models (measuring the simple effects of task within each study group), significance 

level resulted in the LMM model was corrected with Bonferroni correction to p<0.025 (in 

accordance with two comparisons). all analyses were conducted with Python Statsmodels 

[27].  
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Figure 2. Study design and groups at each stage. The study included both seniors and young 

participants as controls. For the senior participants, an MMSE score was obtained, and 

division into groups was based on the individual MMSE score. 

 

Results 

Validation of behavioral task 

Correlations between individual MMSE scores and participants’ Reaction Times (RTs) in 

both levels of the detection task were significant, both for each level separately as well as 

the mean activation in the entire cognitive detection task (p<.01 for all, see Table 2). 

Additionally, mean RTs were calculated for each participant and each task. A0 activity 

significantly increased with slower participant RTs, while ST4 activity significantly 

decreased with slower RTs (see Table 3 and Figure 3). 

 

Task level Detection 1 Detection 2 Mean 

r -.535** -.423** -.519** 

p <.001 0.005 <.001 

df 49 43 49 

Table 2. Results of Pearson correlation between individual MMSE scores and reaction 

times (RTs) for the cognitive detection task (levels 1 and 2) and mean reaction times. 

Significant effects are marked in bold. 

 

Feature Alpha Beta Delta Gamma Theta A0 VC9 ST4 

r 0.198 0.194 0.037 0.183 0.000 0.264 -0.036 -0.252 

p 0.058 0.064 0.728 0.081 0.997 0.011 0.732 0.016 

Table 3. Pearson correlation analysis between individual mean RTs of the cognitive 

detection task (levels 1 and 2) and EEG variables activity. Significant effects are marked in 

bold. 
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Figure 3. Pearson correlation between individual mean reaction times (RTs) and mean 

activity of A0 (left) and ST4 (right) during detection task. 

 

Correlations between MMSE scores and EEG variables 

Pearson r and p values of correlations for each EEG variable are presented in Table 4. The 

activity of A0 increased for lower MMSE score while the activity of ST4 decreased for 

lower MMSE score (p=.010 and p=.009, respectively, see Figure 4). All other EEG 

variables did not exhibit significant correlation with MMSE scores. 

 

Feature Alpha Beta Delta Gamma Theta A0 VC9 ST4 

r -0.1111 -0.2430 0.0773 -0.2269 0.1439 -0.3570 0.0930 0.3617 

p 0.4423 0.0891 0.5938 0.1130 0.3187 0.0109 0.5204 0.0099 

Table 4. Pearson correlation analysis between individuals MMSE scores and mean activity 

of the EEG variables during the detection task. Significant effects are marked in bold. 
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Figure 4. Pearson correlation between individual MMSE scores and mean activity of A0 

(left) and ST4 (right) during detection task. 

 

Mixed linear models results 

The first LMM analysis (see table 5), revealed significant differences between the groups in 

VC9, A0 and ST4 biomarkers’ activity. Specifically, VC9 activity was significantly lower in 

healthy young participants compared to healthy seniors (p=0.005), A0 showed significant 

differences between healthy seniors and all other groups (Healthy young, p<0.001, MCI-R, 

p=0.04 and MD p=0.011), and ST4 showed a significant difference between healthy seniors 

and MD group (p=0.011). 

Follow-up LMM analysis revealed that in the young healthy group (see table 6), VC9 

showed increased activity for detection 2 compared to detection 1, and decreased activity for 

resting state (corrected p=0.012 and p=0.008 respectively). A0 activity significantly 

increased in detection 2 relative to detection 1 (corrected p=0.004). No significant 

differences between task levels were found in any of the senior groups (for all means and SE 

see figure 5 and 6, for LMM analyses variables see tables 5-7). 
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Figure 5. Mean activity of A0 (top), ST4 (middle), and VC9 (bottom) as a function of task: 

detection 2 (green), detection 1 (red) and resting state (blue), for the different groups. Data 

is presented as mean and SE. 
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No significant differences were found between the groups in any of the frequency bands. 

However, Theta and Delta showed increased activity for detection 2 compared to detection 1 

level (p<0.001, and p=0.006 respectively). Theta also exhibited a significant decrease in 

activity in resting state task compared to detection 1 (p<0.001).  

Follow-up LMM analysis revealed that among the healthy young group, a significant 

increase in Theta activity in detection level 2 compared to detection level 1, as well as a 

significant decrease in resting state task (corrected p=0.006 and p=0.016 respectively). Delta 

activity in the healthy young group was significantly higher in detection level 2 relative to 

detection level 1 (corrected p=0.022). The difference in Delta power between detection 1 

and resting state in the MCI-R group did not survive Bonferroni correction (corrected 

p=0.07). No other significant differences between task levels were found in any of the senior 

groups. 
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Figure 6. Mean activity of Theta (top) and Delta (bottom) as a function of task: detection 2 

(green), detection 1 (red) and resting state (blue), for the different groups. Data is presented 

as mean and SE. 

 

Feature Variable [Level] Coef. Std.Err. z P>|z| [0.025 0.975] 

A0 

Intercept 78.979 1.675 47.15 <0.001 75.696 82.262 

Group [Healthy young] -12.58 2.278 -5.522 <0.001 -17.046 -8.115 

Group [MCI-R] 4.867 2.367 2.056 0.04 0.227 9.507 

Group [MD] 5.935 2.342 2.534 0.011 1.344 10.525 

Task Level [Detection 2] 1.098 0.461 2.383 0.017 0.195 2.002 

Task Level [Resing State] 0.648 0.549 1.181 0.238 -0.428 1.723 

ST4 

Intercept 47.912 1.129 42.448 <0.001 45.7 50.125 

Group [Healthy young] 0.775 1.4 0.554 0.58 -1.969 3.52 

Group [MCI-R] -1.231 1.555 -0.792 0.428 -4.279 1.816 

Group [MD] -3.829 1.512 -2.532 0.011 -6.792 -0.865 

Task Level [Detection 2] 0.38 0.383 0.992 0.321 -0.37 1.13 

Task Level [Resing State] -0.597 0.636 -0.938 0.348 -1.844 0.65 

VC9 

Intercept 57.243 1.239 46.183 <0.001 54.814 59.672 

Group [Healthy young] -4.695 1.687 -2.784 0.005 -8.001 -1.39 

Group [MCI-R] -0.145 1.729 -0.084 0.933 -3.533 3.243 

Group [MD] -1.487 1.707 -0.871 0.384 -4.832 1.858 

Task Level [Detection 2] 1.174 0.322 3.647 <0.001 0.543 1.805 

Task Level [Resing State] -1.611 0.476 -3.384 0.001 -2.544 -0.678 

Theta 

Intercept -4.864 0.731 -6.657 <0.001 -6.296 -3.432 

Group [Healthy young] -1.838 1.006 -1.826 0.068 -3.811 0.135 

Group [MCI-R] -0.565 1.026 -0.551 0.582 -2.575 1.445 

Group [MD] -1.512 1.006 -1.504 0.133 -3.483 0.458 

Task Level [Detection 2] 0.561 0.175 3.209 0.001 0.219 0.904 

Task Level [Resing State] -0.941 0.29 -3.249 0.001 -1.508 -0.373 

Delta 

Intercept 4.743 0.855 5.547 <0.001 3.067 6.418 

Group [Healthy young] 0.597 1.156 0.516 0.606 -1.669 2.863 

Group [MCI-R] 0.423 1.237 0.342 0.733 -2.002 2.847 

Group [MD] -0.866 1.189 -0.729 0.466 -3.196 1.463 
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Task Level [Detection 2] 0.667 0.245 2.723 0.006 0.187 1.148 

Task Level [Resing State] -0.645 0.357 -1.806 0.071 -1.344 0.055 

Alpha 

Intercept -11.099 0.519 -21.398 <0.001 -12.115 -10.082 

Group [Healthy young] 1.053 0.711 1.481 0.139 -0.34 2.447 

Group [MCI-R] 0.674 0.735 0.916 0.36 -0.768 2.115 

Group [MD] -0.242 0.718 -0.337 0.736 -1.648 1.165 

Task Level [Detection 2] 0.212 0.121 1.756 0.079 -0.025 0.448 

Task Level [Resing State] -0.139 0.183 -0.76 0.447 -0.499 0.22 

Beta 

Intercept -10.479 0.888 -11.797 <0.001 -12.22 -8.738 

Group [Healthy young] 1.156 1.169 0.988 0.323 -1.136 3.447 

Group [MCI-R] 1.538 1.263 1.218 0.223 -0.938 4.013 

Group [MD] 1.343 1.244 1.08 0.28 -1.095 3.782 

Task Level [Detection 2] 0.259 0.189 1.369 0.171 -0.112 0.629 

Task Level [Resing State] 0.467 0.267 1.751 0.08 -0.056 0.99 

Gamma 

Intercept -11.006 0.961 -11.455 <0.001 -12.889 -9.123 

Group [Healthy young] -0.156 1.265 -0.123 0.902 -2.634 2.323 

Group [MCI-R] 1.875 1.364 1.375 0.169 -0.798 4.548 

Group [MD] 1.728 1.343 1.287 0.198 -0.904 4.36 

Task Level [Detection 2] 0.372 0.213 1.75 0.08 -0.045 0.789 

Task Level [Resing State] 0.551 0.308 1.793 0.073 -0.051 1.154 

Table 5. Coefficients, Standard errors, z values, p values, and CI interval for group (healthy 

seniors as reference group), and task level (detection 1 as reference group) in the first LMM 

analysis which not included interactions. 

 

Feature Variable [Level] Coef. Std.Err. z P>|z| [0.025 0.975] 

A0 

Intercept 65.51 0.999 65.545 <0.001 63.551 67.469 

Task Level [Detection 2] 1.924 0.616 3.124 0.002 0.717 3.13 

Task Level [Resting State] -0.283 0.787 -0.36 0.719 -1.825 1.259 

VC9 

Intercept 52.589 0.971 54.149 <0.001 50.685 54.492 

Task Level [Detection 2] 2.161 0.794 2.722 0.006 0.605 3.717 

Task Level [Resting State] -2.79 0.966 -2.889 0.004 -4.683 -0.897 

Theta 
Intercept -6.4 0.592 -10.817 <0.001 -7.559 -5.24 

Task Level [Detection 2] 1.119 0.424 2.635 0.008 0.287 1.951 
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Task Level [Resting State] -1.788 0.605 -2.955 0.003 -2.974 -0.602 

Delta 

Intercept 5.38 0.641 8.396 <0.001 4.124 6.636 

Task Level [Detection 2] 1.417 0.558 2.54 0.011 0.324 2.51 

Task Level [Resting State] -1.167 0.759 -1.536 0.124 -2.655 0.322 

Table 6. Coefficients, Standard errors, z values, p values (before Bonferroni correction), 

and CI interval for task level (detection 1 as reference group) in the young healthy 

participants group. 

 

Feature Variable [Level] Coef. Std.Err. z P>|z| [0.025 0.975] 

A0 

Task Level [Detection 2] 1.4 0.892 1.57 0.116 -0.347 3.148 

Task Level [Resting State] 2.241 1.1 2.038 0.042 0.086 4.397 

Group [MCI-R] X Task Level [Detection 2] -1.864 1.327 -1.404 0.16 -4.465 0.738 

Group [MD] X Task Level [Detection 2] -0.846 1.293 -0.655 0.513 -3.381 1.688 

Group [MCI-R] X Task Level [Resting state] -1.204 1.641 -0.734 0.463 -4.42 2.013 

Group [MD] X Task Level [Resting state] -2.239 1.607 -1.394 0.163 -5.389 0.91 

VC9 

Task Level [Detection 2] 0.38 0.478 0.795 0.427 -0.557 1.316 

Task Level [Resting State] -1.186 0.858 -1.382 0.167 -2.867 0.496 

Group [MCI-R] X Task Level [Detection 2] 0.127 0.713 0.178 0.859 -1.271 1.525 

Group [MD] X Task Level [Detection 2] 0.764 0.688 1.111 0.267 -0.584 2.111 

Group [MCI-R] X Task Level [Resting state] -1.061 1.283 -0.827 0.409 -3.576 1.455 

Group [MD] X Task Level [Resting state] 1.476 1.251 1.18 0.238 -0.976 3.928 

Theta 

Task Level [Detection 2] 0.195 0.274 0.712 0.477 -0.342 0.732 

Task Level [Resting State] -0.546 0.513 -1.065 0.287 -1.552 0.46 

Group [MCI-R] X Task Level [Detection 2] 0.229 0.408 0.561 0.575 -0.571 1.029 

Group [MD] X Task Level [Detection 2] 0.166 0.394 0.421 0.674 -0.607 0.939 

Group [MCI-R] X Task Level [Resting state] -0.576 0.763 -0.755 0.45 -2.071 0.919 

Group [MD] X Task Level [Resting state] 0.621 0.749 0.829 0.407 -0.847 2.089 

Delta 

Task Level [Detection 2] 0.414 0.391 1.058 0.29 -0.353 1.181 

Task Level [Resting State] -0.025 0.599 -0.042 0.967 -1.198 1.148 

Group [MCI-R] X Task Level [Detection 2] -0.87 0.583 -1.492 0.136 -2.013 0.273 

Group [MD] X Task Level [Detection 2] 0.583 0.563 1.036 0.3 -0.52 1.687 

Group [MCI-R] X Task Level [Resting state] -1.883 0.893 -2.108 0.035* -3.633 -0.132 

Group [MD] X Task Level [Resting state] 0.619 0.872 0.709 0.478 -1.091 2.329 
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Table 7. Coefficients, Standard errors, z values, p values (before Bonferroni correction), 

and CI interval for group (healthy seniors as reference group), task level (detection 1 as 

reference group), and their interactions, in the senior groups (healthy seniors, MCI-R and 

MD).  

 

Discussion 

Cognitive decline remains highly underdiagnosed [28]. Improving the detection rate in the 

community to allow early intervention is therefore imperative. The aim of this study was to 

evaluate the ability of a single-channel EEG system with an interactive assessment tool to 

detect cognitive decline with correlation to known assessment methods. We demonstrate 

that a short evaluation which can be self-administered, together with automatically extracted 

objective EEG features from a wearable system with an easy set-up, may provide an 

assessment method for cognitive decline. 

50 seniors and 22 young controls completed a short and interactive cognitive assessment 

battery. Classical EEG frequency bands were used in the analysis of the data as well as pre-

defined Machine Learning (ML) features. ML applied on raw EEG signals is increasingly 

being examined for detection of cognitive deterioration. The biomarkers that are extracted 

using ML approaches show accurate separation between healthy and cognitively impaired 

populations [17], [18], [29]. Our approach utilizes advanced wavelet-packet analysis [30], 

[31] as pre-processing to ML. The biomarkers used here were calculated on a different 

dataset to avoid the risks associated with classification studies such as overfitting [32]. This 

is unlike other studies that use classifiers trained and tested via cross validation on the same 

dataset [10], [20], [21]. Specifically, the pre-extracted biomarkers used here, ST4 and VC9, 

were previously considered in a study performed on young healthy subjects. Results showed 

a correlation of VC9 to working memory load and correlation of ST4 to individual 

performance [23]. 

A novel interactive cognitive assessment based on auditory stimuli with three cognitive load 

levels (high, low and rest) was used to probe different cognitive states. Individual response 

performance in the tasks (i.e. reaction times) was correlated to the MMSE score which 

further validates the cognitive assessment tool. Importantly, individual response 

performance also significantly correlated with A0 and ST4 biomarkers. These results 
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support previous findings that recording EEG during active engagement in cognitive and 

auditory tasks offer distinct features and may lead to better discrimination power of brain 

states [33]. To continue this notion, we used an auditory assessment battery with musical 

stimuli. It was previously shown that musical stimuli elicit stronger activity than using 

visual cues such as digits and characters [34]. 

Results further show that A0 and ST4 significantly correlated with individual MMSE 

scores. To get a clearer separation between cognitive stages, we divided the participants to 

groups according to the MMSE scores. In allocating the groups, we used the common cutoff 

score of 24 to divide between low-functioning (MMSE<24) and high-functioning 

participants, however, we divided the high-functioning group further using a cutoff score of 

27, to get a notion of possible separability between cognitive states in high-functioning 

seniors. 

Results demonstrated the ability of A0 and ST4 to significantly differentiate between groups 

of seniors with high vs. low MMSE scores. Specifically, ST4 separated between the healthy 

seniors and low-MMSE seniors (MD group) with the common cutoff score of 24, 

comparable to previous reports in this field [16], [20], [21]. Conversely, A0 showed 

differences between the healthy seniors and all other groups. A0 results suggest detection of 

more delicate differences between healthy seniors and seniors that are considered healthy to-

date, but at a greater risk for developing cognitive decline (with MMSE scores below 27 but 

above 24). These results may indicate a different cognitive functionality between entirely 

healthy seniors and seniors that are not considered to suffer from cognitive decline, but 

score lower in the initial screening test, contributing to the debate in the literature over 

cognitive functionality of patients with scores below 27 [8], [26]. Furthermore, A0 and VC9 

results suggest different cognitive patterns between healthy young participants and healthy 

seniors, consistent with reports from previous studies [35]. With regards to the commonly 

used EEG frequency bands, Theta and Delta activity increased with higher cognitive load, 

separating between the two cognitive load levels in the young healthy group. Theta also 

showed separation between low cognitive load and resting state. This is in line with 

previous reports of frontal Theta and Delta increase during cognitively demanding tasks 

[36]–[38]. This difference was not present in the senior population, supporting the notion 

that Theta and Delta may be indicative to cognitive decline and serve as a predictor of 

deterioration status, consistent with previous findings [10], [11]. Finally, A0 showed 

separation between high and low cognitive load levels within the cognitive task, further 
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supporting the ability of A0 to differentiate between cognitive states. VC9 biomarker 

showed differences between all task levels, with a significant increase between rest and 

cognitive load levels within the cognitive task. This supports previous work validating VC9 

as a working memory load biomarker in the healthy population [23]. Together, these results 

provide an initial indication of the ability of the proposed system to assess and detect 

cognitive decline in the elderly population. 

It was shown that cognitive decline is associated with high-risk for developing dementia, 

and Alzheimer’s disease in particular [2], and that cognitive decline may be detected several 

years before dementia onset with known validated tools [39]. Dementia is gradually 

recognized as one of the most significant medical challenges of the future. So much so, that 

it has already reached epidemic proportions, with prevalence roughly doubling every five 

years over the age of 65 [40]. This rate is expected to increase unless therapeutic approaches 

are found to prevent or stop disease progression [41]. Since Alzheimer’s Disease (AD) is the 

most prevalent form of dementia, responsible for about 60–70% of cases [42], it remains the 

focus of clinical trials. To date, most clinical trials that include a disease-modifying 

treatment, fail to demonstrate clinical benefits in symptomatic AD patients. This could be 

explained by the late intervention that occurs after neuropathological processes have already 

resulted in substantial brain damage [43]. Hence, the discovery of predictive biomarkers for 

preclinical or early clinical stages such as cognitive decline is imperative [44]. 

The ability to differentiate between cognitive sates with the novel biomarkers shown here 

relies only on a single EEG channel and a short assessment battery, unlike most studies 

attempting to assess cognitive decline with multichannel EEG systems [17], [45], [46]. It 

has been argued that the long setup time of multichannel EEG systems may cause fatigue, 

stress, or even change mental states, affecting EEG patterns and subsequently study 

outcomes [22]. This suggests that cognitive decline evaluation using a wearable single-

channel EEG with a quick setup time may not only make the assessment more affordable 

and accessible but also potentially reduce the effects of the pretest time on the results. Using 

a single EEG channel was previously shown to be effective in detection of cognitive decline 

[20], however, here we demonstrate results using biomarkers that were extracted on an 

independent dataset to avoid an overfitting of the data. The extracted cognitive biomarkers 

from the system offered here may potentially enable detection in the community in much 

earlier stages before dementia symptoms arise. 
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While the study shows initial promising results, more work is needed. Specifically, 

additional studies should include a longer testing period to quantify the variability within 

subjects and potentially increase the predictive power. Also, larger cohorts of patients that 

are quantified by extensive brain scanning methods would offer an opportunity to get more 

sensitive separation between earlier stages of cognitive decline using the suggested tool, and 

potentially reduce the subjective nature of the MMSE test. Moreover, a longitudinal study 

could assess cognitive state in asymptomatic elderly patients and follow participants’ 

cognition over an extended period of time, validating the predictive power of the 

biomarkers. 

In conclusion, this study successfully demonstrated the ability to assess cognitive decline, 

using a wearable single-channel EEG system and novel cognitive biomarkers which 

correlate to well-validated clinical measurements for detection of cognitive decline. Using 

an automatic and low-cost approach, it may provide objective biomarkers and consistency in 

assessment across patients and between medical facilities clear of tester bias. Furthermore, 

due to a short set-up time and interactive cloud-based assessment, this tool has the potential 

to be used on a large scale in every clinic to detect deterioration before clinical symptoms 

emerge and thus potentially allow earlier intervention. 
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