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ABSTRACT 

Objectives This study aims to develop a machine learning approach for automated severity 

assessment of COVID-19 patients based on clinical and imaging data. 
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Materials and Methods Clinical data—demographics, signs, symptoms, comorbidities and 

blood test results—and chest CT scans of 346 patients from two hospitals in the Hubei 

province, China, were used to develop machine learning models for automated severity 

assessment of diagnosed COVID-19 cases. We compared the predictive power of clinical and 

imaging data by testing multiple machine learning models, and further explored the use of four 

oversampling methods to address the imbalance distribution issue. Features with the highest 

predictive power were identified using the SHAP framework. 

Results Targeting differentiation between mild and severe cases, logistic regression models 

achieved the best performance on clinical features (AUC:0.848, sensitivity:0.455, 

specificity:0.906), imaging features (AUC:0.926, sensitivity:0.818, specificity:0.901) and the 

combined features (AUC:0.950, sensitivity:0.764, specificity:0.919). The SMOTE 

oversampling method further improved the performance of the combined features to AUC of 

0.960 (sensitivity:0.845, specificity:0.929).  

Discussion Imaging features had the strongest impact on the model output, while a 

combination of clinical and imaging features yielded the best performance overall. The 

identified predictive features were consistent with findings from previous studies. 

Oversampling yielded mixed results, although it achieved the best performance in our study. 

Conclusions This study indicates that clinical and imaging features can be used for automated 

severity assessment of COVID-19 patients and have the potential to assist with triaging 

COVID-19 patients and prioritizing care for patients at higher risk of severe cases. 
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BACKGROUND AND SIGNIFICANCE 

Coronavirus disease 2019 (COVID-19) has overwhelmed health systems worldwide.[1,2] As 

of July 5, 2020, more than 11 million cases have been confirmed worldwide, with 528,953 

global deaths.[3] Given the various complications associated with COVID-19,[4-6] methods 

that facilitate triage of COVID-19 can help prioritize care for those who are likely to experience 

severe or critical cases. COVID-19 illness severity can be defined as four groups: (1) mild, (2) 

ordinary, (3) severe, and (4) critical.[7] Severe and critical cases require intensive care and 

more healthcare resources. A high rate of false positive severe or critical cases could 

overwhelm healthcare resources (i.e., ICU beds). Equally important, delays in identifying 

severe or critical cases would lead to delayed treatment of patients at a higher risk of mortality. 

It is, therefore, important to identify severe cases as early as possible, so that resources can be 

mobilized and treatment can be escalated. 

Chest CT scans have been found to provide important diagnostic and prognostic 

information,[8,9] and consequently, they have been the focus of numerous recent studies using 

machine learning techniques for prediction tasks related to the COVID-19 pandemic.[10-22] 

Studies have looked at mortality predictions,[10] diagnosis (detecting COVID cases and 

differentiating from other pulmonary diseases or no disease),[11,15–19] and severity 

assessment and disease progression.[20–22] The majority of current approaches have used 

deep learning and imaging features from CT-scans[11,12,15–19] and X-rays,[13,14,22] with 

popular architectures including ResNet,[11,16,18] U-Net,[15,21] Inception,[19] Darknet,[13] 

and other convolutional neural networks.[14,22] More details can be found in recent review 

papers[1,23–25].  

Automatic assessment of chest CT scans to predict COVID-19 severity is of a great clinical 

importance, but has only been the focus of few studies.[20–22] Automated assessment of chest 

CT scans can substantially reduce the image reading time for radiologists, provide quantitative 
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information that can be compared across patients and time-points, with clinical applications in 

detection and diagnosis, progression tracking and prognosis.[9] While CT scans are an 

important diagnostic tool, prior work has also shown that clinical data, such as symptoms, 

comorbidities and laboratory findings, differed for COVID-19 patients who were admitted to 

intensive care units (ICU) vs non-ICU patients,[26] and were predictive of the mortality 

risk.[10]  One study compared the imaging data and clinical data of 81 confirmed COVID-19 

patients, suggesting that the combination of imaging features with clinical and laboratory 

findings could facilitate early diagnosis of COVID-19.[27]  

In this study, we used patient clinical data and imaging data to predict COVID-19 case severity. 

We consider this as a binary classification task, predicting whether a diagnosed patient is likely 

to develop a mild or a severe case of COVID. The contributions of this work are three-fold. 

First, we compared the predictive power of clinical and image data for severity assessment, by 

testing three machine learning models: logistic regression (LR),[28] gradient boosted trees 

(XGB),[29] and neural network (NN).[30] Secondly, due to the cohort data being highly 

imbalanced, with the majority of cases being mild/ordinary, we explored the use of four 

oversampling methods to address the imbalance distribution issue.[31–34]  Third, we 

interpreted the importance of features using the SHAP (SHapley Additive exPlanations) 

framework and identified the features with the highest predictive power.[35] The evaluated 

predictive models yielded high accuracy and identified predictive imaging and clinical features 

consistent with prior findings. 

MATERIALS AND METHODS 

Study Design and Participants 

This is a retrospective study carried out with data collected by two hospitals in the Hubei 

province, China. The study cohort consisted of patients who had COVID-19 diagnosis 
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confirmed by reverse transcription PCR (RT-PCR). A total of 346 patients from two hospitals 

were retrospectively enrolled, including 230 patients from Huang Shi Central Hospital (HSCH) 

and 116 from Xiang Yang Central Hospital (XYCH). These patients were admitted to hospital 

between 11-01-2020 and 23-02-2020, and all underwent chest CT scans at initial 

hospitalization. All the participants provided written consent. This study was approved by the 

Institutional Review Board of both hospitals. Table 1 shows the demographics of the two 

cohorts of patients.  

Table 1. Demographics of the two cohorts of patients. 

Category HSCH XYCH Total 

Mild 7 1 8 

Ordinary 212 104 316 
Severe 7 6 13 

Critical 4 5 9 
Total patients 230 116 346 

Age (mean±SD) 49.0±14.4 47.5±17.2 48.5±15.4 

Gender (female/male) 120/110 57/59 177/169 

 

Imaging and Clinical Data 

Chest CT scans were collected from the patients at initial hospitalization. All CT scans were 

pre-processed with intensity normalization, contrast limited adaptive histogram equalization, 

and gamma adjustment, using the same pre-processing pipeline as in our previous study.[36] 

We performed lung segmentation on the CT slices using an established model - 

R231CovidWeb,[37] trained on a large and diverse dataset of non-COVID-19 CT scans and 

further fine-tuned with an additional COVID-19 dataset.[38] The CT slices with less than 

3mm2 lung tissue were removed from the datasets since they bear little or no information of 

the lung. The lesions were segmented using EfficientNetB7 U-Net,[20] also trained using a 

public COVID-19 dataset.[38] The model produced four types of lesions, including ground-
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glass opacities, consolidations, pleural effusions, and other abnormalities. The volume of each 

lesion type and the total lesion volume were calculated from the segmentation maps as the 

imaging features, which were further normalized by the lung volume. Figure 1 shows 

examples of the lung and lesion segmentation results of a mild case and a severe case. The 

upper row presents the 3D models of the lung and lesions, reconstructed using 3D Slicer 

(v4.6.2),[39] and the lower row presents the axial CT slices with the lung and lesion (green: 

ground-glass opacities; yellow: consolidation; brown: pleural effusion) boundaries overlaid on 

the CT slices. 

 

Figure 1. Examples of the CT scans and the lung and lesion models of (a) mild case and (b) a 

severe case. 

Clinical data collected from the patients included demographics, signs, symptoms, 

comorbidities and 18 laboratory test results: white blood cell count (× 10!/L), neutrophil count 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.12.20173872doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.12.20173872
http://creativecommons.org/licenses/by-nc-nd/4.0/


(× 10!/L ), lymphocyte count (× 10!/L ), haemoglobin (× 10!/L ), platelet (× 10!/L ), 

prothrombin time (s), activated partial thromboplastin time (s), D-dimer (mg/L), C-reactive 

protein (mg/L), albumin (g/L), alanine aminotransferase (U/L), aspartate aminotransferase 

(U/L ), total bilirubin (mmol/L ), potassium (mmol/L ), sodium (mmol/L ), creatinine 

(µmol/L), creatine kinase (U/L), and lactate dehydrogenase (U/L).  

All the features were either continuous or binary—all binary features belong to signs, 

symptoms and comorbidities. Continuous features were standardized to be centred around 0 

with a standard deviation of 1. Figure 2 shows the structure and dimensions of the features 

used in this study. 

 

Figure 2. Structure and dimensions of the feature sets. 

These features were grouped into four feature sets: (1) demographic and symptoms (a subset 

of the available clinical features), (2) clinical features (demographic, signs and symptoms, and 

laboratory test results), (3) imaging features extracted from the CT chest scans using deep 

learning, and (4) combination of clinical and imaging features. 

Severity Assessment Models 

Three models were trained and compared to predict case severity: logistic regression (with 

Scikit-learn),[40] gradient boosted trees (with XGBoost),[29] and a neural network (with 
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Fastai).[41] We used the HSCH data (230 samples) for training and validation using 5-fold 

repeated stratified cross-validation. The XYCH data (116 samples) was withheld for testing. 

We report results for the test set using AUC and F1 scores averaged over the independent runs.  

Hyperparameter exploration and tuning were done using the train/validation set. Random 

search was used to tune the hyperparameters of LR and XGB. For NN, we used a four-layer, 

fully-connected architecture, with the first hidden layer having 200 nodes and the second 

hidden layer having 100 nodes. The learning rate (0.01) was determined using the learning rate 

finder.[42] All other parameters of NN were set to default values. We explored a different 

number of nodes in the first and second hidden layers, with 200x100 yielding the best results 

in the validation set. Out of the 346 patients, 167 (48%) had at least one missing feature (5.7 

on average, mostly in the laboratory test results category). Missing feature values were imputed 

with the mean for each feature.  

Oversampling 

The majority of cases in our dataset were mild/ordinary cases and the minority were 

severe/critical cases. The imbalance ratio for the entire dataset was 0.07, for the 

training/validation set – 0.05, and for the testing set – 0.10. We tested four oversampling 

methods to increase the ratio of the minority class: Synthetic Minority over-Sampling 

Technique (SMOTE),[31] ADAptive SYNthetic sampling approach (ADASYN),[32] 

geometric SMOTE,[33] and a conditional generative adversarial network model for tabular 

data (CTGAN).[34] For all these methods, we oversampled the training set, trained a model on 

the oversampled data, and reported results on the same test set. We fixed the resampling ratio 

of all methods to 0.3 (bringing imbalance ratio to 0.3). When using CTGAN for oversampling, 

we fitted the CTGAN model with the training set, sampled to generate synthetic data, keeping 

only synthetic data for the minority class (severe/critical), repeating until the ratio of the 

minority to the majority class reached 0.3. 
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RESULTS 

Patient Characteristics 

Table 2 presents the patients’ characteristics. The differences between the mild/ordinary and 

severe/critical groups were calculated with the Mann-Whitney U test and Fisher’s exact test. 

In the full cohort, the median age was 49 (IQR 38-59). The median age for patients with 

mild/ordinary cases was 48.5 (IQR 37 – 57.3) and for the severe/critical cases it was 63 (IQR 

52.5 – 69.5). There are statistically significant differences between patients with severe/critical 

and mild/normal infections with respect to age (P < 0.001) and comorbidities of cardiovascular 

disease (P=0.002), hypertension (P=0.002), diabetes (P=0.01), and cancer (P=0.01). Out of all 

the signs and symptoms, raised respiration rate (P=0.002) and dyspnea (P<0.001) were more 

common in patients with severe/critical cases of COVID-19.  

Table 2. Demographics and baseline characteristics of patients with confirmed COVID-19. 
Patients with higher severity of COVID-19 were more likely to have cardiovascular disease 
and experience shortness of breath as a symptom. 

Characteristics All patients  
(n=346) 

Mild/Ordinary 
(n=324) 

Severe/Critical 
(n=22) 

p-value 

Demographics 

Age 49 (38 – 59) 48.5 (37 – 57.3) 63 (52.5 – 69.5) < 0.001 

Gender 
Female 177 (51%) 168 (52%) 9 (41%) 

0.38 
Male 169 (49%) 156 (48%) 13 (59%) 

Comorbidities 

Cardiovascular 
disease 40 (12%) 32 (10%) 8 (36%) 0.002 

Diabetes 34 (10%) 28 (9%) 6 (27%) 0.01 

Hypertension 51 (15%) 42 (13%) 9 (41%) 0.002 

COPD 11 (3%) 9 (3%) 2 (9%) 0.152 

Chronic liver disease 7 (2%) 7 (2%) 0 (0%) - 

Chronic kidney 
disease 4 (1%) 3 (1%) 1 (5%) 0.20 
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*Continuous variables are expressed as median with lower and upper quartiles. Binary 
variables are expressed as n (%). P-values comparing mild/ordinary and severe/critical cases 
were obtained with Mann-Whitney U test and Fisher’s exact test. As no patient in our cohort 
had stomach-ache, this feature was not used in our modelling. 

 

Prediction of COVID-19 Severity at Baseline 

The data from HSCH (230 patients) was used for training and validation, and the data from 

XYCH (116 patients) was used as the independent test set. We compared model performance 

using four feature sets: (1) demographics and symptoms, (2) clinical features, (3) imaging 

features and (4) combination of clinical and imaging features, as shown in Figure 2. The 

optimal classification threshold for the sensitivity, specificity and F1 score was identified using 

Youden’s index.[43] Table 3 shows the severity assessment performance of an LR model, an 

XGB model, and a 4-layer fully connected NN model. Overall, LR models outperformed the 

Cancer  8 (2%) 5 (2%) 3 (14%) 0.01 

Signs 

Body temperature 37.8 (37– 38.3) 37.8 (37 – 38.3) 38.1 (37.1 – 39) 0.11 

Heart rate 85 (80 – 90) 85 (80 – 90) 90 (80 – 101.8) 0.11 

Breaths per minute 20 (20 – 21) 20 (20 – 21) 21 (20 – 28) 0.002 

Blood pressure high 120 (119.5–
130) 

120 (118.5–
130) 

127 (120–
146.5) 0.07 

Blood pressure low 74 (69 – 80) 74 (69 – 80) 79.5 (71 – 89) 0.08 

Symptoms 

Fever 275 (79%) 256 (79%) 19 (86%) 0.59 

Cough 238 (69%) 220 (68%) 18 (82%) 0.24 

Fatigue 118 (34%) 108 (33%) 10 (45%) 0.25 

Dyspnea 32 (9%) 23 (7%) 9 (41%) < 0.001 

Sore muscle 38 (11%) 35 (11%) 3 (14%) 0.72 

Headache 34 (10%) 31 (10%) 3 (14%) 0.47 

Diarrhea 23 (7%) 20 (6%) 3 (14%) 0.17 

Nausea 9 (3%) 7 (2%) 2 (9%) 0.11 

Stomach-ache 0 (0%) 0 (0%) 0 (0%) - 
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other evaluated models, achieving the highest AUC, F1 score and sensitivity for all four feature 

sets. While imaging features yielded substantially better results than clinical features, the 

combination of clinical and imaging features benefited LR only. Hence, LR yielded the best 

performance (AUC = 0.950, F1 Score = 0.604, sensitivity = 0.764, specificity = 0.919) using 

the combination of clinical and imaging features. 

Table 3. Results from using different feature sets.  

 Model AUC F1 Sensitivity Specificity  

Demographic 
+ Symptoms 

LR 0.819 0.382 0.627 0.825 

XGB 0.763 0.363 0.318 0.956 

NN 0.730 0.332 0.427 0.880 

Clinical 

LR 0.848 0.387 0.455 0.906 

XGB 0.787 0.286 0.227 0.962 

NN 0.647 0.237 0.309 0.881 

Imaging 

LR 0.926 0.593 0.818 0.901 

XGB 0.904 0.486 0.636 0.896 

NN 0.845 0.555 0.600 0.936 

Clinical + 
Imaging 

LR 0.950 0.604 0.764 0.919 

XGB 0.904 0.520 0.473 0.965 

NN 0.782 0.413 0.486 0.907 

LR = logistic regression; XGB = gradient boosted trees; NN = neural network. Bold-faced 
values indicate the best results.  

 

Prediction at Baseline Severity with Oversampling 

Since the cohort was highly imbalanced, with the majority of cases being mild/ordinary 

(imbalance ratio of 0.07), we applied four oversampling methods to increase the ratio of 

severe/critical cases: SMOTE,[31] ADASYN,[32] geometric SMOTE,[33] and CTGAN.[34] 

Figure 3 shows the differences in AUC values and F1 scores resulting from the use of 

oversampling, with negative values indicating a decrease in AUC or F1 score and positive 

values indicating the opposite. Oversampling resulted in greater improvements in F1 score 
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compared to AUC. The greatest improvement in F1 (0.09) is observed for the clinical features 

(Clinical) with XGB and SMOTE method (XGB-smo); however, the AUC dropped by 0.08 

with the same method. Considering both AUC and F1 score at the same time, the combination 

of clinical and imaging features (Clinical + Imaging) benefited the most from oversampling. 

Specifically, the AUC and F1 score for Clinical + Imaging features were increased by 0.01 and 

0.06, respectively, using LR with SMOTE (LR-smo). 

 

Figure 3. Differences in (a) AUC values and (b) F1 scores with oversampling compared to 
those without oversampling. Positive values (blue) indicate oversampling resulting in higher 

values, negative values (red) indicate oversampling resulting in lower values. smo = SMOTE; 
ada = ADASYN; geo = geometric SMOTE; gan = CTGAN; LR = logistic regression, NN = 

neural network, XGB = gradient boosted trees. 

	

Table 4 presents the best results of the evaluated models using various feature sets after 

oversampling. Oversampling did not improve LR’s performance on Demographics + 

Symptoms features, but SMOTE and geometric SMOTE resulted in increased F1 scores using 

Clinical features and Imaging features, respectively. Notably, the best performing in Table 3 

LR model using a combination of clinical and imaging features further improved to AUC of 
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0.960 (vs. 0.950), F1 score of 0.668 (vs. 0.604), sensitivity of 0.845 (vs. 0.764) and specificity 

of 0.929 (vs. 0.919), after oversampling with SMOTE.  

Table 4. The best results from using different feature sets after oversampling. 

 Model AUC F1 Sensitivity Specificity  

Demographic 
+ Symptoms LR* 0.819  0.382  0.627  0.825  

Clinical LR – smo 0.837  0.421 ↑ 0.518 ↑ 0.902  

Imaging LR – geo 0.926  0.599 ↑ 0.818  0.904 ↑ 

Clinical + 
Imaging LR – smo 0.960 ↑ 0.668 ↑ 0.845 ↑ 0.929 ↑ 

smo = SMOTE; geo = geometric SMOTE; LR = logistic regression; *no improvement after 
oversampling; ↑improved performance after oversampling. 

 

Model Interpretation 

We used the SHAP (SHapley Additive exPlanations) framework[35] to interpret the output of 

the best performing LR model with SMOTE oversampling. This framework calculates the 

importance of a feature by comparing model predictions with and without the feature. Figure 

4 illustrates a SHAP plot summarizing how the values of each feature impact the model output 

of the LR model using all features (clinical and imaging features), with features sorted from 

most important to least important. Figure 4(a) shows feature importance scores sorted by the 

average impact on the model output, and Figure 4(b) presents the SHAP values of individual 

feature instances. Four imaging features, including consolidation volume (consolidation_val), 

total lesion volume (lesion_vol), ground-glass volume (groundglass_vol), and volume of other 

abnormalities (other_vol), are among the top six features with their high values resulting in the 

model being more likely to predict a severe/critical case of COVID-19. Low albumin, high 

counts of C-reactive protein, high counts of leukocytes, and low values of lactate 

dehydrogenase make the model more likely to predict a case severity of critical/severe. Older 

age and male gender also made the model more likely to predict severe/critical cases.  
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Figure 4. (a) Feature importance, evaluated using the mean SHAP values, in the LR model 
using all features. (b) SHAP plot for the LR model using all features. Each point represents a 

feature instance, and the color indicates the feature value (red for high and blue for low). 
Negative SHAP values indicate feature instances contributing to a model output of a 
mild/ordinary case of COVID-19, whereas positive SHAP values indicate features 

contributing to a model output of a severe/critical case. 

 

DISCUSSION 

Main Findings 

In our cohort, fever, cough, and fatigue were the most common symptoms in patients with 

COVID-19, consistent with other studies of COVID-19 patients.[27] Severe cases manifested 

a statistically higher incidence of dyspnea and raised respiratory rate. Some symptoms such as 

sore muscle, headache, diarrhea, and nausea were present in 3-11% of patients and were not 

statistically different between mild and severe cases. Severe cases of COVID-19 tended to be 

of older age and had medical comorbidities (cardiovascular disease, diabetes, hypertension, 

cancer), in similar to prior studies.[1,4,6,27] There was no difference between males and 
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females in our cohort, although the model did rely on gender for increasing the likelihood of 

predicting a severe/critical case.  

A combination of clinical and imaging features yielded the best performance. Imaging features 

had the strongest impact on the model output, with high values of consolidation volume, lesion 

volume, ground-glass volume, and other volume making the model more likely to predict a 

severe case of COVID-19. Ground-glass opacity has also been found to be an important feature 

in prior work.[18] Inclusion of clinical features further improved the accuracy of severity 

assessments, with findings such as albumin, C-reactive protein, thromboplastin time, white 

blood cell counts, and lactate dehydrogenase being amongst the most informative features. The 

identification of lactate dehydrogenase, white blood cell counts, and C-reactive protein as 

informative features is consistent with findings from one prior study that also used laboratory 

findings for COVID-19 mortality prediction.[10] C-reactive protein was also associated with a 

significant risk of critical illness in a study of 5,279 laboratory confirmed COVID-19 

patients.[6] Symptoms and patient characteristics such as gender, dyspnea, body temperature, 

diabetes, and breaths per minute were also relied on by the model for differentiating between 

mild and severe cases. Clinical features alone (demographics, signs, symptoms, and laboratory 

results), resulted in low sensitivity. Relying only on clinical features, thus, poses the risk of 

predicting mild/ordinary severity for patients who will develop a critical/severe case of 

COVID-19. 

Oversampling yielded mixed results, although it resulted in the best model performance in our 

study. We note that the best model without oversampling (LR) also yielded strong results 

(AUC: 0.950, F1: 0.604, sensitivity: 0.764, specificity: 0.919), and the SMOTE oversampling 

method improved the performance further (AUC: 0.960, F1: 0.668, sensitivity: 0.845, 

specificity: 0.929). Given the propensity of imbalanced data in healthcare,[44–47] our results 

suggest the need for further analysis of oversampling methods for medical datasets. Self-
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supervision,[48,49] may also help in improving performance on imbalanced medical datasets; 

in particular, future work should evaluate the impact of self-supervision on tabular medical 

data.  

Clinical Implications 

The rapid spread of COVID-19 has put a strain on healthcare systems, necessitating efficient 

disease severity assessment of COVID-19 patients. Results from this study indicate that clinical 

and imaging features can inform automated severity assessment of COVID-19. While our work 

would benefit from a larger dataset, our current results are encouraging given that the models 

were trained on data from one hospital only and tested on an independent dataset from another 

hospital, demonstrating nevertheless strong predictive accuracy.  

The proposed methods and models would be useful in several clinical scenarios. First, the 

proposed models are fully automated and can expedite the assessment process, saving time in 

reading the CT scans or evaluating patients using a scoring system. They can be of use in 

hospitals that are overwhelmed by a high volume of patients during the outbreak by identifying 

severe cases as early as possible, so that treatment can be escalated. Our models, with a higher 

specificity and relatively lower sensitivity, would best be used in combination with a model 

with higher sensitivity in diagnostic situations, i.e., a high sensitivity model can identify the 

patients with severe cases of COVID-19, and our model (with high specificity) could reduce 

false positives—patients with a mild case of COVID-19 who were wrongly identified as having 

a severe case of COVID-19. 

Our models were developed and validated on four different feature sets, providing the 

flexibility to accommodate patients with different available data. For example, if a patient does 

not have a chest CT scan nor a blood test, the model based on demographics and symptoms 

can still achieve reasonably good prediction performance (AUC 0.819, sensitivity: 0.627, 
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specificity: 0.825). If the clinical and imaging features are available for patients, the model’s 

sensitivity and specificity can be improved, with potential in triaging of COVID-19 patients, 

e.g., prioritizing care for patients at a higher risk of mortality.  

Limitations 

Our dataset consisted of 346 patients with confirmed COVID-19, with the data of 230 patients 

from the HSCH hospital used for training/validation and the 116 patients from the XYCH 

hospital used for testing. Our dataset was highly imbalanced, which could have made models 

overfit to the majority class. In addition, only the baseline data for patients were used in this 

study, therefore we could not assess how early the progression can be detected. We will be 

further investigating the longitudinal data and designing computational models to predict 

disease progression in our future work.  

While we explored various configurations of NN, results were not comparable to LR, 

presumably due to the limited dataset and the low dimensionality of the feature vectors. In this 

study, we used a complex NN model (EfficientNetB7	U-Net) to extract the imaging features 

and tested various models for classification using the imaging features combined with tabular 

clinical data. Such two-stage process may simplify the classification task for these models, 

thereby reducing the need for another NN model for classification due to low dimensionality 

of features. Further exploration of NN architectures for tabular data is likely to benefit the 

performance of the NN model, especially if more data is available.  

During training and validation, the performance of the models across cross-validation folds 

showed high variance due to the small number of positive cases in the validation fold. A larger 

dataset would improve the reliability and robustness of the models. The data also consisted of 

COVID-19 cases which were confirmed with RT-PCR. As such, our model is limited to 

differentiating severe/critical cases from mild/ordinary cases of COVID-19, and not for 
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diagnosing COVID-19 or for differentiating COVID-19 cases from other respiratory tract 

infections. Further work is needed to determine the efficacy of the severity assessments, 

including data from asymptomatic patients. 

CONCLUSIONS 

This work presents a novel method for severity assessment of diagnosed COVID-19 patients.  

The results indicate that clinical and imaging features can be used for automated severity 

assessment of COVID-19 patients. While imaging features had the strongest impact on the 

model’s performance, inclusion of clinical features and oversampling yielded the best 

performance in our study. The proposed method may have the potential to assist with triaging 

COVID-19 patients and prioritizing care for patients at higher risk of severe cases. 
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