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Abstract 

Cervical cancer is highly preventable but remains a common and deadly cancer in areas without 

screening programmes. Pap smear analysis is the most commonly used screening method but is 
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labour-intensive, subjective and requires access to medical experts. We developed a diagnostic 

system in which microscopy samples are digitized at the point-of-care (POC) and analysed by a 

cloud-based deep-learning system (DLS) and evaluated the system for the detection of cervical 

cell atypia in Pap smears at a peripheral clinic in Kenya. A total of 740 conventional Pap smears 

were collected, digitized with a portable slide scanner and uploaded over mobile networks to a 

cloud server for training and validation of the system. In total, 16,133 manually-annotated image 

regions where used for training of the DLS. The DLS achieved a high average sensitivity 

(97.85%; 95% confidence interval (CI) 83.95─99.75%) and area under the curve (AUCs) (0.95) 

for the detection of cervical-cellular atypia, compared to the pathologist assessment of digital and 

physical slides. Specificity was higher for high-grade atypia (95.9%; 95% CI 94.9─97.6%) than 

for low-grade atypia (84.2%; 95% CI 79.9─87.9%). Negative predictive values were high (99.3–

100%), and no samples classified as high grade by manual sample analysis had false-negative 

assessments by the DLS. The study shows that advanced digital microscopy diagnostics 

supported by machine learning algorithms is implementable in rural, resource-constrained areas, 

and can achieve a diagnostic accuracy close to the level of highly trained experts.  
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Summary box 

 

What is already known? 

• Cervical cancer can be prevented with Pap smear screening, but manual sample analysis 

is labor-intensive, subjective and not widely-available in regions with the highest disease 

prevalence 

• Novel digital methods, such as image-based artificial intelligence (AI), show promise for 

facilitated analysis of microscopy samples 

• Digital methods are typically limited to high-end laboratories, due to the requirements for 

advanced equipment and supportive digital infrastructure  

 

What are the new findings? 

• A point-of-care diagnostic system where samples are digitized with a portable slide 

scanner and analyzed using a cloud-based AI model can be implemented in rural settings 

and utilized to automatically interpret Pap smears and identify potentially precancerous 

samples with similar accuracy as a pathologist specialized in reading Pap smears. 

 

What do the new findings imply? 

• The results demonstrate how advanced digital methods, such as AI-based digital 

microscopy, can be implemented in rural, resource-limited areas, and used for analysis of 

microscopy samples, such as Pap smears.  

• This technology shows promise as a novel method for digital microscopy diagnostics, 

which can be implemented in rural settings, and could be of particular value in areas 

lacking cytotechnicians and pathologists. 

Introduction 

Inadequate access to microscopy diagnostics affects over a billion people in low-resource areas 

and causes the underdiagnosis of a number of common and treatable conditions.1 Although 

significant advances have been made in technologies for microscopy diagnostics at the point-of-
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care (POC), their clinical implementation has been slow.2 In this article, we propose a novel 

digital diagnostics system in which microscopy slides are digitized at the POC and uploaded 

using local data networks for analysis with an artificial intelligence (AI) model based on deep 

convolutional neural networks. We implemented the system in the setting of a peripheral clinic 

in Kenya and evaluated its use for the analysis of cervical smears (Papanicolaou (Pap) smears). 

Cervical cancer is a significant health problem in areas without screening programmes, where it 

remains among the most common and deadliest cancers.3 During the next decade, the disease 

incidence is predicted to increase, and the yearly mortality is expected to double, with the largest 

burden of disease occurring in sub-Saharan Africa.4 As the causative agent of cervical cancer is 

human papillomavirus (HPV),5 it has been possible to develop several efficient prevention 

methods.3 Theoretically, HPV vaccines have the potential to eradicate the disease, but as the full 

benefits of even the most efficient vaccination programmes will take decades to realize, millions 

of women who are already infected with HPV remain at risk.6 Therefore, screening tests remain 

essential,7 and innovative POC diagnostic solutions are needed.8 Conventional cytology 

screening (Pap smear analysis) can drastically reduce the incidence and mortality of cervical 

cancer when it is adequately implemented, but the manual analysis of samples is labour 

intensive,9 prone to variations in sensitivity and reproducibility, and requires medical experts to 

analyse the samples,10,11 thus making it hard to implement in resource-limited settings.12 

Molecular techniques that detect the nucleic acid of oncogenic HPV have high sensitivity and 

reproducibility but are limited by the requirement for validated laboratory assays and a relatively 

low specificity, especially in high-risk populations, as most HPV infections are transient.13,14 In 

high-resource areas, both molecular- and cytology-based screening are commonly used and are 

often combined (‘cotesting’) to improve the diagnostic accuracy.15,16 Digital methods have been 
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proposed to facilitate the visual analysis of Pap smears, but the development of fully automated 

systems has been challenging.17,18 Although semi-automatic systems for Pap smear screening 

have been developed,19 they are limited by the need for bulky, expensive laboratory 

equipment20,21 and are not suitable for usage in POC or rural settings. Traditional image analysis 

methods have relied on the identification of pre-defined cellular features in digitized slides (by 

methods such as the segmentation of the nucleus and cytoplasm of individual cells), rendering 

them vulnerable to sample quality problems, such as debris and overlapping cells.19,22 Recently, 

deep learning-based medical AI algorithms have provided efficient tools for medical image 

analysis applications, with levels of performance that have even surpassed human experts in 

certain tasks.23–26 However, deep learning algorithms have been mainly studied for the analysis 

of cervical cytology smears using cropped images from digital samples with a limited number of 

cells that have been digitized with high-end equipment; however, to our knowledge, no research 

has been conducted on the analysis of whole slides prepared in rural clinical environments.26–29 

Thus, the technology has so far not been applied in locations without access to well-equipped 

laboratories, where the need for improved diagnostics is highest.28 

In this study, we developed and implemented a novel POC digital diagnostic system at a 

rural clinic in Kenya, a country where cervical cancer is the leading cause of female cancer-

related death.30 Pap smears collected at the clinic were digitized with a portable slide scanner, 

and whole-slide images were uploaded to a cloud server using the local mobile data network for 

analysis by a deep learning system (DLS). We measured the diagnostic accuracy for the 

detection of common forms of cervical squamous cell atypia with the DLS and validated the 

results by comparing them with the visual assessment of both digital and physical slides by 

independent pathologists. 
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Methods 

Study design, patient cohort and collection of samples 

This study is a diagnostic accuracy study which is reported in accordance with the STARD-

guidelines (Supplementary Figure 1). The research site for this study was a local clinic (Kinondo 

Kwetu Health Services Clinic, Kinondo, Kwale County) in Kenya (Figure 1). Pap smears (n = 

740) for this study were acquired from women in a regional HIV-control programme in Kwale 

County. Samples were collected from volunteering patients who fulfilled the inclusion criteria: 

non-pregnant women, aged between 18 and 64 years (mean: 41.76), confirmed HIV-positivity 

(mean year of diagnosis 2012), and signed informed consent acquired. In this cohort, a minority 

(2.6%) reported that they had previously participated in Pap smear screening. The reported mean 

number of children per patient was 3.39 (SD 2.16), a minority of patients were smokers (1.8%), 

28.7% were postmenopausal and no patients were currently receiving hormonal replacement 

therapy (Supplementary Table 1). Eligible patients were assigned a study number, after which 

Pap smears were obtained from the patients using a cervical broom sampling kit (Touchfree 

Cytopak, AS Diagnostics & Disposables, Chennai, India) by trained nurses.  

 

Figure 1. Practical aspects of the study methodology. (a) Location of the study site in Kenya. (b) 

Slide staining bench and hood. (c) Slide digitization equipment: (1) laptop  computer with access 

to the slide-management platform; (2) slide scanner; (3) mobile-network router; and (4) Pap-

smear microscopy slide. 

 

The cervical sample was applied to a clean frosted glass slide, fixated using the provided fixative 

solution and allowed to air-dry at room temperature. Following sample acquisition, the slides 
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were fixed in 95% ethyl alcohol for 15 minutes at room temperature after which staining was 

performed using glassware equipment placed in a fume hood, with the Papanicolaou staining 

method.31 Laboratory reagents for the staining process were acquired from Cytolab Kenya 

(Cytolab Enterprises, Nairobi, Kenya). For the staining process, the slides were first immersed in 

70% and 50% ethyl alcohol, consequently, and rinsed with distilled water. Following this, the 

slides were stained using Meyer’s haematoxylin, after which they were washed in distilled water 

and 95% ethyl alcohol. The first counterstain was performed using the OG-6 staining solution, 

after which the slides were again washed in 95% ethyl alcohol. The second counterstain was 

performed using the EA-65 staining solution, after which slides were washed in 95% ethyl 

alcohol and dehydrated using absolute ethanol. Sample clearance was after this carried out with 

rectified Xylene. After the staining procedure, the slides were covered with coverslips using the 

diethyl propene xylene (DPX) mounting medium, and air-dried at room temperature in a level 

position overnight prior to analysis. Stained slides were examined using a light microscope to 

assess quality before further analyses and stored in slide boxes before digitization and 

transportation to the pathology laboratory (Coast Provincial General Hospital, Mombasa, 

Kenya). Prior to this, slide labels were counter-checked against the patient records and the 

numbers recorded on the report forms which were sent with the slide boxes to the pathologist 

laboratory. Patients with slides which were classified as inadequate for analysis by the 

pathologist, were contacted and offered to provide a repeat sample for analysis. Clinical patient 

records used in the study were stored in digital format using the secured and password-protected 

web-based data-collection software REDCap (Research Electronic Data Capture, Vanderbilt 

University, Nashville, TN, USA), running on a password-protected, encrypted local server in a 

locked room. Paper forms with patient data were stored in locked cabinets in a locked room at 
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the clinic, accessible only to study personnel. Both digitized and physical slides were 

pseudonymized using study numbers and no personal identifiers were uploaded to the image-

management platform. Prior to study participation, eligible patients were given information in 

both written and oral form about the purpose of the study and the testing procedure. Information 

was provided in English and Swahili before signed consent from patients was obtained. Patients 

were compensated for travel expenses to the sample-acquisition site and informed of the test 

results, but were not offered other monetary compensation for study participation. In cases of 

abnormal Pap smears, treatment expenses were covered by study funding, and treatment was 

arranged by a gynaecologist (JM) in accordance with national guidelines.32  

 

Digitization of slides at the research site 

Following the acquisition and staining of samples, Pap smears were digitized with a portable 

whole-slide microscope scanner (Grundium Ocus, Grundium, Tampere, Finland) (Figure 1). The 

device features an 18-megapixel image sensor with a 20× objective (NA 0.40) and a pixel size of 

0.48 µm. The microscope was connected to a laptop computer over a wireless local area network 

connection and operated via a browser interface. The coarse focus for the scanner was adjusted 

manually, after which the built-in autofocus routine was utilized for fine focus. Image files were 

saved on the local computer in Tagged Image File Format and converted to a wavelet file format 

(Enhanced Compressed Wavelet, Hexagon Geospatial, Madison, AL, USA) using a compression 

ratio (1:16) that was previously shown to preserve sufficient detail to not significantly alter the 

image-analysis results,33 before uploading to the image-management and machine-learning 

platform (Aiforia Cloud and Aiforia Create, Aiforia Technologies, Helsinki, Finland). On the 

slide-management platform, digitized slides were stored as JPG-compressed tile-maps with a 
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pyramid-structure of zoom levels (70% JPG-quality). Uploading of slides was performed 

primarily via a 3G/4G mobile-network router (Huawei B525S, Huawei Technologies, Shenzhen, 

China) operating on the local mobile network (Safaricom, Nairobi, Kenya), with a subset of 

slides uploaded via the in-house ADSL connection. The compressed size of the digitized slides 

ranged from 0.2 Mb to 0.8 Gb, resulting in a turnaround time for sample uploading of ~10–40 

min over the mobile network (upload speed 5–8 Mbps) or ADSL connection (upload speed 5–

10Mbps). Access to the image server for remote slide viewing was established with a web 

browser secured with Secure Socket Layer encryption. 

Expert visual analysis of samples 

The expert assessment of physical slides was performed at the local pathology laboratory (Coast 

Provincial General Hospital, Mombasa, Kenya) with light-microscopy, performed by a trained 

pathologist (NM). Slides were initially classified as adequate or inadequate for examination. A 

slide was classified as inadequate for evaluation if the quality of the smear was unsatisfactory, it 

contained insufficient cellular material, lacked endocervical cells, had excess blood, mucus or 

other debris, or presented with high levels of inflammatory cells (covering >90% of cellular 

details). Physical slides classified as inadequate, which had already been digitized, were 

excluded as ineligible also from the validation series of digitized slides (n = 29). Slides which 

were adequate for analysis were reviewed by the pathologist, and results entered into the report 

form according to the Bethesda classification system.34 The acquired report form contained 

information about sample quality (satisfactory/unsatisfactory), evidence of infection or 

inflammation and detected atypia. For the analyses in this study, slides with findings recorded in 

the cytological report as low-grade squamous intraepithelial atypia (LSIL) or higher (i.e. ASC-H 

or HSIL, or higher) were included as slides with significant cervical-cell atypia. The expert 
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assessment of the digital slides was performed by remotely located, independent experts. For this 

process, all slides in the validation series were initially screened by a cytotechnologist (KK) with 

experience in cervical-cytology screening, and slides with detected cellular atypia were reviewed 

by a pathologist with experience in Pap-smear analysis (LK). In accordance with generally 

accepted quality-control guidelines for cervical-cytology screening,35 10% of slides that were 

assessed as negative in the initial cytological screening were randomly selected and submitted 

for re-evaluation by the pathologist. In this subset, no additional slides with significant atypia 

were detected. The samples were reviewed independently by the pathologist without access to 

the final cytodiagnoses made by the other pathologist or access to results from the final DLS-

based analysis of samples. Visual analysis of slides was performed on a laptop computer with an 

LCD display using an internet browser to access and navigate the slides on the slide-management 

platform.  

Statistical analysis 

General-purpose statistical software (Stata 15.1, Stata, College Station, TX, USA) was used for 

analysis of the results. The web-based REDCap application was used for collection and storage 

of patient data. Prior to analysis, the data were pseudonymized and exported into a standardized 

spreadsheet table (Microsoft Excel, Microsoft, Redmond, WA, USA). Statistical-power 

calculations were performed with a sample-size formula,36 assuming a prevalence (Pr) of 8% (± 

2%) for significant atypia in the study population37 with α = 0.05 (and correspondingly Z1−α/2 = 

1.96), and a precision parameter (ε) of 0.10, to determine whether sensitivity (SN) and specificity 

(SP) were comparable to the study ground truth. 
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These calculations indicated a required target sample-size of 304 with the assumed prevalence of 

atypical samples. We estimated that 500 to 700 slides would be feasible to collect during the 

planned sample-acquisition period, given the frequency of visits for eligible patients at the clinic, 

and decided on a target number of 700 slides to yield 350 slides for training and 350 slides for 

validation. All statistical tests were two-sided unless otherwise stated. Diagnostic accuracy was 

evaluated in terms of sensitivity for the detection of abnormal slides and calculated as the 

percentage of true positives divided by (true positives plus false negatives). Specificity was 

calculated as the percentage of true negatives divided by (true negatives plus false positives). 

Evaluation of the performance of the algorithm was performed by calculating the AUC after 

plotting the measured true-positive rate (sensitivity) versus the false-positive rate (1 − 

specificity) for different thresholds of slide-level positivity. Statistical estimates of diagnostic 

accuracy are reported with 95% confidence intervals (95% CIs).  

Ethical statement 

Approval for the current study was issued by the Ethical Review Committee at the National 

Commission for Science, Technology and Innovation (Pwani University, Nacosti, Kenya) (No. 

ERC/PU-STAFF/005/2018). The study was also approved by the Helsinki Biobank (No. 

359/2017). 

Role of the funding sources 

The funders of the study had no role in the study design, processing of samples, analysis of data, 

interpretation of results or writing of the manuscript. The corresponding author states that he had 
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full access to all the data in the study and had final responsibility for the decision to submit for 

publication. 

 

Patient and public involvement statement 

Patients and members of the public were involved at several stages of the project, including the 

design, management and execution of the study. When planning the study, we consulted with 

local co-investigators to identify actual needs of the local patients attending the clinic. Prior to 

study initiation, healthcare staff (community health volunteers and traditional midwives) 

provided information about the study to both eligible patients and the general public. During the 

study, personnel at the clinic (so-called mentor mothers and linkage officers) were in regular 

contact with the patients both at the clinic and outside the clinic, when disseminating results from 

the study. Patients were provided with information about the study purpose, methodology, 

procedures, and expected outcomes and were allowed to provide input and ask questions at all 

stages. For the ethical committee, we explicitly stated our goal to make the technologies here 

available locally, to ultimately benefit the general community. For this, we aim to disseminate 

the main results to the health authorities and focal people, including trial participants (patients 

attending the clinic), and will consult with our local collaborators to find an appropriate method 

to achieve this. 
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Results 

Development of a deep-learning system for detection of cervical-cell atypia 

To develop a deep-learning system for the detection of cervical-cell atypia in the digitized Pap 

smears, we used a commercially available machine-learning and image-analysis platform 

(Aiforia Create, Aiforia Technologies, Helsinki, Finland). Using this platform, we trained a 

machine-learning model based on deep convolutional neural networks, to detect LSILs and 

HSILs (or higher-grade lesions) in the Pap smear digital whole slides. The samples series was 

split with a 50–50 distribution of the target number of samples into the training series (n = 350), 

used for training and tuning of the model, and external validation series (n = 390). Individual 

digitized slides measured approximately 100,000 × 50,000 pixels. Training was performed by a 

researcher (OH), assisted by a cytotechnologist (KK) specialized in cervical-cytology screening, 

using manually defined representative regions of the digitized slides of the training series (Figure 

2).  

 

Figure 2. Overview of sample processing and algorithm training and validation. (a) Flowchart 

illustrating the sample-processing workflow, showing stages from the collection of samples to 

the analysis of digital images and physical slides. (b) Schematic view of the annotation process 

used for creation of the digital-slide data for training of the deep-learning system (DLS). (c) 

Validation analysis of a digitized image of a whole slide (Pap smear) with the DLS, showing 

calculations of areas of atypia, with locations of atypia in a heatmap of the digital slide, and 

identification of individual cells, with colour overlays (red for high-grade atypia and green for 

low-grade atypia). 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.12.20172346doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.12.20172346
http://creativecommons.org/licenses/by-nc/4.0/


 15

Regions (n = 16,133, with cross-sections of ~25–100 µm) were selected visually, and included 

areas of both normal cervical cellular morphology and various degrees of atypia; visible atypia 

(low-grade and high-grade) was manually annotated.  

Training of the DLS used 30,000 iterations (training epochs), with a pre-determined feature size 

(field-of-view) of 30 µm. To optimize the generalizability of the deep-learning algorithm, the 

training data were augmented with the following image perturbations: variation in scale (± 10%), 

aspect ratio (± 10%), shear distortion (± 10%), luminance (± 10%), contrast (± 10%), white 

balance (± 10%) and variation in image compression quality (40–60%). DLS analyses were 

performed on entire digitized slides, and a slide-level operating threshold for the total area of 

detected atypia was decided on the basis of the training data, to determine whether slides were 

classified as atypical, decided on based on best performance in the training data set. Analysis 

time for one whole-slide image with the trained model was ~30 s. The image analysis gave the 

total area per slide of LSILs and HSILs (or higher-grade lesions). For the slide-level 

classification by the DLS, slides with both detected low- and high-grade lesions where classified 

as high-grade. 

Detection of cervical-cell atypia in digital Pap smears with the DLS 

Following the training of the DLS with the training slides (n = 350), we analysed the slides in the 

validation series with the DLS to detect cervical-cell atypia, and compared the results to the 

ground-truth assessment of digital and physical slides. After exclusion of inadequate slides (29; 

7%), 361 slides remained in the validation series. Expert assessment of digitized slides by the 

cytotechnologist and pathologist revealed 19 slides (5%) with low-grade atypia, 28 slides (8%) 

with high-grade atypia and 314 slides (87%) that were negative for significant squamous cell 

atypia (defined as atypical squamous cells of undetermined significance (ASC-US) or lower). 
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Compared with these expert assessments, for the detection of slides with general atypia (low-

grade and/or high-grade atypia), the DLS achieved an area under the receiver operating 

characteristic curve (AUC) of 0.94 and, at the operating threshold, sensitivity of 95.7% (95% CI 

85.5–99.5%) and specificity of 84.7% (95% CI 80.2–88.5%) (Figure 3). The AUC for detection 

of slides containing HSILs or higher-grade lesions was 0.93, with sensitivity of 85.7% (95% CI 

67.3–96.0%) and specificity of 98.5% (95% CI 96.5–99.5%) at the chosen threshold. For the 

detection of slides containing only LSILs, the AUC was 0.86, with sensitivity of 84.2% (95% CI 

60.4–96.6%) and specificity of 86.0% (95% CI 81.8–89.5%) at the selected threshold (Table 1). 

In these analyses, discrepancies in the type of atypia (such as LSIL-only slides that were 

classified by DLS as high-grade, or vice versa) were considered to be of equal statistical value to 

slides with atypia that were classified by DLS as negative. Overall, the DLS classified 266 slides 

(74%) as negative, 61 slides (17%) as positive for low-grade atypia and 34 slides (9%) as 

positive for high-grade atypia. Compared to the expert assessments, two slides with low-grade 

atypia were falsely classified as negative by the DLS (<1%), but no slides with high-grade atypia 

were falsely classified as negative by the DLS, although four slides (1%) with high-grade atypia 

were classified as low-grade atypia by the DLS (Table 1). The negative predictive value (NPV) 

for the DLS was high for general atypia (266/268 = 99.3%; 95% CI 97.3–99.9%), low-grade 

atypia (294/297 = 99.0%; 95% CI 97.1–99.8%) and high-grade atypia (328/332 = 98.8%; 95% 

CI 96.9–99.7%). Examples of comparisons between DLS assessments of atypia and expert 

assessments at the cellular level are shown in Figure 3. In summary, compared to the expert 

assessment of the digitized slides, the DLS demonstrated high sensitivity for the detection of 

cervical-cell atypia in general, with higher diagnostic accuracy for high-grade than for low-grade 

atypia. The total number of false negatives was low, and NPV high for atypical slides.  
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Figure 3. Detection of atypia in cervical smears by automated deep-learning system (DLS) and 

by manual assessment. (a) and (b) Areas under the receiver operating characteristic (ROC) 

curves (AUCs) for the detection of general atypia, high-grade atypia and low-grade atypia with 

the DLS compared with manual assessment of (a) digital slides by a cytotechnologist and a 

pathologist, and (b) physical slides by a local pathologist. ROC curves were calculated for a 

range of operating thresholds for the DLS, and the diamond marker on each ROC curve 

corresponds to thresholds used for the model for each assessment. (c) View of a digitized sample 

on the cloud-based slide-management platform, with a magnified view of a detected atypical 

cellular cluster at 40× digital magnification. (d) Examples of atypical cells marked by the experts 

in the digitized slides (yellow), and the corresponding regions extracted from the DLS results, 

with cells assessed as high-grade atypia coloured in red and low-grade atypia coloured in green.  
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Table 1. Detection of cervical-cell atypia with the deep-learning system (DLS) in digitized Pap 
smears, compared with expert-assessments of digitized and physical slides.  

Diagnostic 
comparison 

Sensitivity,  
% (95% CI) 

Specificity,  
% (95% CI) 

True 
positive,  

n (%) 

True 
negative,  

n (%) 

False 
positive,  

n (%) 

False 
negative,  

n (%) 
Digitized-slide 
cytodiagnosis 

      

General atypia 95.7 
(85.5─99.5) 

84.7 
(80.2─88.5) 

45 
(12.5) 

266 (73.7) 48 (13.3) 2 (0.6) 

High-grade 
atypia 

85.7 
(67.3─96.0) 

98.5 
(96.5─99.5) 

24 (6.6) 328 (90.9) 5 (1.4) 4* (1.1) 

Low-grade 
atypia 

84.2 
(60.4─96.6) 

86.0 
(81.8─89.5) 

16 (4.4) 294 (81.4) 48 (13.3) 3 (0.8) 

       

Glass-slide 
cytodiagnosis 

      

General atypia 100.0 
(82.4─100.
0) 

78.4 
(73.6─82.6) 

19 (5.3) 268 (74.2) 74 (20.5) 0 (0) 

High-grade 
atypia 

100.0 
(47.8─100.
0) 

93.3 
(90.1─95.6) 

5 (1.4) 332 (92.0) 24 (6.6) 0 (0) 

Low-grade 
atypia 

21.4 
(4.7─50.8) 

82.4 
(78.0─86.3) 

3 (0.8) 286 (79.2) 61 (16.9) 11** (3.0) 

              
Sensitivity and specificity results from the deep-learning system are shown with the associated 
95% confidence intervals. Numbers of false-negative, false-positive, true-negative and true-
positive assessments are shown with the corresponding percentage of the total number of 
slides in the validation series (n = 361) 
*Four slides identified as having high-grade atypia were classified as low-grade atypia by the 
DLS 
**Eleven slides identified by the local pathologist as low-grade atypia were classified as high-
grade atypia by the DLS 
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Comparison of DLS results to the pathologist glass-slide cytodiagnosis  

Next, we evaluated the performance of the DLS for detection of cervical-cell atypia, as compared 

to the assessment of physical slides, performed by a local pathologist. To do this, we compared 

the results obtained by the DLS with those produced by the local pathology laboratory for 

physical-slide cytodiagnosis. In the cytological report of the 361 physical slides in the validation 

subset, 342 (95%) were classified as negative for significant squamous-cell atypia, 14 (4%) were 

classified as positive for low-grade atypia and five (1%) were classified as positive for high-

grade atypia. With reference to these results, the DLS achieved high sensitivity for general atypia 

(100%; 95% CI 82.4–100%) and for high-grade atypia (100%; 95% CI 47.8–100%), with 

corresponding specificities of 78.4% (95% CI 73.6–82.4%) and 93.3% (95% CI 90.1–95.6%), 

respectively (Table 1). Specificity was moderate for low-grade atypia (82.4%; 95% CI 78.0–

86.3) but sensitivity was lower (21.4%; 95% CI 4.7–50.8) as 11 of the 14 slides that were 

classified as low-grade atypia in the cytological report from the pathology laboratory were 

classified as high-grade atypia by the DLS. The NPV was high for general atypia (266/266 = 

100%; 95% CI 98.6–100.0%), high-grade atypia (332/332 = 100%; 95% CI 98.9–100.0%) and 

low-grade atypia (286/297 = 96.3%; 95% CI 93.5–98.1%) (Table 1). The DLS achieved high 

AUCs for detection of general atypia (0.96), high-grade atypia (0.94) and low-grade atypia 

(0.94) (Figure 3). Compared to the physical-slide cytodiagnosis, no atypical slides were falsely 

classified as negative by the DLS. In conclusion, we observed a high sensitivity for the DLS for 

detection of slides classified as atypical by the local pathologist, but the DLS showed a lower 

threshold for classifying slides as high-grade, resulting in a majority of low-grade slides being 

classified as high-grade by the DLS. 
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Discussion 

In this study, we implemented a POC digital diagnostics system at a peripheral clinic in Kenya 

and evaluated it for the analysis of Pap smears. The DLS achieved high diagnostic accuracy for 

the detection of slides with cervical squamous cell atypia, with AUCs of 0.94–0.96 and 

sensitivities of 96–100%, compared to the visual interpretation of digitized and physical slides. 

With the visual assessment of digitized slides as reference, the number of false-negative 

assessments by the DLS was low, with two low-grade and no high-grade slides being incorrectly 

classified as negative (although four high-grade slides were falsely classified as low-grade). 

Compared to the visual analysis of the physical slides by the local pathologist, the DLS 

sensitivity was high for general atypia (100%) and high-grade atypia (100%) but was low for 

low-grade atypia (21%), as 11 of 14 physical slides that were assessed as low grade were 

classified as high grade by the DLS. The visual interpretation of Pap smears is known to be 

subjective, especially when assessing low-grade findings,10,38 and accordingly, we observed 

variation between the expert assessments of slides, with a lower threshold for the classification 

of findings as high grade by the pathologist who assessed the digitized slides. The DLS was 

trained with assistance from one of the experts who analysed the digitized training slides, which 

possibly explains why the DLS classification resembled the expert assessment of digitized slides. 

Notably, however, none of the slides that were classified as negative by the DLS were classified 

as atypical in the cytodiagnosis of the physical slides. 

Previous studies have reported encouraging results with the deep learning-based analysis of 

smaller cropped images from Pap smears26,27,29,39 that were digitized with conventional slide 

scanners, but clinical application requires the examination of substantially larger sample areas.28 

In this study, we used routine samples collected in the clinic, and correspondingly, the whole-
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slide images were magnitudes larger than those previously analysed, measuring on average 

100,387 × 47,560 pixels; thus, the total number of pixels analysed corresponded to 

approximately twice the number in the entire ImageNet database at commonly used 

resolutions.40 Pap smears may contain very limited numbers of isolated atypical cells, and robust 

algorithms are necessary to reliably detect such cells in these large and complex samples. In this 

study, we investigated the use of a DLS as a potential screening tool with a relatively low 

threshold for the classification of slides as atypical, to ensure high sensitivity at the potential 

expense of specificity; this method resulted in relatively high rates of false positives for low-

grade atypical slides (13–17%). However, as this type of algorithm can operate using multiple 

configurations, sensitivity and specificity could be adjusted to match clinical requirements, with 

high sensitivity for screening purposes or higher specificity for confirmatory diagnostics. 

Importantly, our findings demonstrate how a front-line diagnostic system based on POC digital 

microscopy with the deep learning-based analysis of whole microscopy slides can be deployed in 

rural clinical settings. To our knowledge, no other study has evaluated this technology using 

whole slides that have been collected, stained, digitized and uploaded using a mobile data 

network in a similar setting. Overall, we achieved high NPVs for the detection of atypical slides, 

suggesting that this technique may be useful for screening purposes. For this application, clinical 

implementation could reduce sample analysis workloads to allow clinicians to focus on verifying 

potentially abnormal slides and could exclude the majority (~70%) of slides while retaining high 

sensitivity for atypical slides. By combining this technology with primary POC molecular testing 

for HPV8,14, the number of slides that needs to be analysed could be reduced even further, which 

would be essential in low-resource areas where the number of practising pathologists is low and 

the cervical cancer incidence is rising.4,41 By using methods such as self-sampling for both 
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molecular and cytology-based testing,42 the dissemination of tests to large populations could be 

feasible. The importance of fast, accurate and reliable diagnostics is especially important for 

patients with risk factors, such as HIV positivity, who are not only less suitable for screening 

with only HPV tests but also are at a higher risk for other diseases, such as sexually transmitted 

infections,43 neglected tropical parasites44 and other malignancies.45 Notably, as these conditions 

are currently diagnosed with microscopy, the technology described here is likely to also be 

applicable for diagnostics of these diseases,2,46,47 thus creating opportunities for integrated 

disease control. 

As this is an early study, it had some limitations. The performance of the DLS was benchmarked 

against two independent experts for the assessment of cytological samples, but for the results to 

be directly comparable to other screening modalities, the ideal reference standard would be 

cervical biopsies with histologically confirmed precancers, which were not available here. 

Further, even though the total number of slides collected was relatively large, the prevalence of 

slides with significant atypia was limited. Although these results are promising, increasing the 

amount of training data would likely improve the performance of the DLS, and would be 

required before confirmatory diagnostic applications. To achieve this, experts who would 

eventually be using the system should ideally be involved during the training process of the DLS 

to ensure consistent and reliable annotations of training data. Moreover, as this study was a 

single-centre study, the results might differ if the sample acquisition and preparation procedures 

are altered, and further work is needed to prospectively validate these results. As the technology 

here provides a platform for digital microscopy at the POC, which is likely to also be useful for 

diagnostics of other conditions, future studies are also warranted to evaluate other potential 

applications. 
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Conclusion 

We have developed a novel system for deep learning-based digital microscopy at the POC, 

which was used for the analysis of cervical smears in cervical cancer screening. The detection of 

squamous cell atypia with the technology is feasible, with high sensitivity for slides 

demonstrating atypia, and particularly for slides showing high-grade atypia. The clinical 

utilization of this technology could reduce the sample analysis workload for microscopists and 

provide a platform for general-purpose digital pathology, which is implementable in rural areas. 

As such, the technology here could create novel opportunities to facilitate the diagnostics of a 

variety of diseases that are still underdiagnosed, especially in low-resource settings. 
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