1	Title Page
2	Title: Social Network Analysis of COVID-19 Transmission in Karnataka, India
3	Authors: S. Saraswathi ¹ , A. Mukhopadhyay ² , H. Shah ³ , and T.S. Ranganath ¹
4	Affiliations:
5	1. Department of Community Medicine, Bangalore Medical College and Research
6	Institute, Bangalore, Karnataka, India.
7	2. Independent researcher, formerly with Department of Community Medicine, Bangalore
8	Medical College and Research Institute Karnataka, India.
9	3. Independent researcher, formerly with Henry Ford Health System, Detroit, Michigan,
10	USA.
11	Corresponding author: A. Mukhopadhyay
12	Email address: dr.amukho@gmail.com
13	
14	Word count (summary): 186
15	Word count (text): 2593
16	No. of figures: Five (5)
17	No. of tables: Nil
18	Supplementary files: One (1)
19	
20	Running title: Network Analysis of Covid-19 in India
21	
22	
23	

2

Summary

25	We used social network analysis (SNA) to study the novel coronavirus (COVID-19) outbreak in
26	Karnataka, India, and assess the potential of SNA as a tool for outbreak monitoring and control.
27	We analyzed contact tracing data of 1147 Covid-19 positive cases (mean age 34.91 years,
28	61.99% aged 11-40, 742 males), anonymized and made public by the government. We used
29	software tools Cytoscape and Gephi to create SNA graphics and determine network attributes of
30	nodes (cases) and edges (directed links, determined by contact tracing, from source to target
31	patients). Outdegree was 1–47 for 199 (17.35%) nodes, and betweenness 0.5–87 for 89 (7.76%)
32	nodes. Men had higher mean outdegree and women, higher betweenness. Delhi was the
33	exogenous source of 17.44% cases. Bangalore city had the highest caseload in the state (229,
34	20%), but comparatively low cluster formation. Thirty-four (2.96%) "super-spreaders"
35	(outdegree≥5) caused 60% of the transmissions. Real-time social network visualization can allow
36	healthcare administrators to flag evolving hotspots and pinpoint key actors in transmission.
37	Prioritizing these areas and individuals for rigorous containment could help minimize resource
38	outlay and potentially achieve a significant reduction in COVID-19 transmission.
39	
40	Keywords: Social network analysis; Contact tracing; Disease Transmission, Infectious; Covid-
41	19; SARS-CoV-2; Infection
42	
43	
44	
45	
46	

3

47

Social Network Analysis of COVID-19 Transmission in Karnataka, India

48 Introduction

Karnataka, a southern state of India, reported its first case of coronavirus disease (COVID-19) 49 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), on 9 March 50 2020. The state has had fewer cases than other Indian states and has deployed modern 51 52 technology tools as part of its logistics and containment measures [1,2]. As of 17 May 2020, Karnataka had declared 1147 diagnosed cases, 38 deaths, and 18648 individuals under 53 54 observation[3]. Among the 1147, there were 600 active cases, 509 who had recovered, and 37 who died due to COVID (a fatality rate of 3.2%); one person died by suicide after being 55 diagnosed. Social network analysis (SNA) is a technique to study the configurations of social 56 relations between individuals or other social units. Social network models can be used to 57 measure variables that shape relationships between social actors, and the extent to which they 58 affect health-related outcomes [4,5]. Researchers are exploring the application of SNA to various 59 60 facets of the COVID-19 pandemic, such as the role of public figures in communication[6], and clustering patterns within the broader patient network[7]. 61 The Karnataka healthcare task force has relied primarily on contact tracing to limit the spread of 62 63 COVID-19. To aid in accelerating our understanding of the transmission characteristics of this novel virus, we applied SNA to the contact tracing data of COVID-19 patients from Karnataka 64 65 State, with two main research objectives in mind: First, can SNA improve our understanding of 66 the transmission patterns of SARS-CoV-2? Second, can SNA produce actionable findings that 67 can help in timely control of the spread of this disease?

68

4

70 Methods

We performed social network analysis (SNA) on the anonymized contact tracing data of 1147 71 72 SARS-CoV-2 positive patients, uploaded to the public domain by the state government of Karnataka[3]. Our analysis included all cases reported positive for COVID-19 from 9 March to 73 17 May 2020, spanning the period from detection of the first Covid-19 case in the state to the 74 75 end of phase-3 of the preventive lockdown declared by the government. We collected anonymized contact tracing data from daily government bulletins, and tabulated and summarized 76 77 relevant demographic details such as age, district of residence, and history of travel, using Microsoft Excel. We created nodes and links tables in Excel, with each node representing a 78 patient, and each link (edge), a confirmed contact between a source and a target patient. We 79 imported this dataset into Gephi version 0.9.2 and applied the following sequence of layout 80 algorithms: YiFan Hu Proportional, Fruchterman Reingold, and 'No Overlap,' to achieve a 81 visual representation in which the more connected nodes are placed centrally, and ones with 82 83 lower connectivity are placed towards the periphery of the network[8]. We wanted to use the capabilities of the two leading software tools [9], Gephi and Cytoscape, and 84 make use of the features missing in one but available in the other. The use of Gephi's network 85 analysis tools results in the data for nodes and edges being populated with additional attribute 86 variables. These values, such as node betweenness and edge betweenness, can then be displayed 87 88 as visual features of the network elements in other software tools such as Cytoscape[10]. We 89 reformatted the data exported from Gephi to make it compatible with the data model acceptable 90 to Cytoscape version 3.8.0, which we used to create network graphics highlighting pertinent 91 demographic characteristics of the nodes. Layout algorithms provided in Cytoscape were applied 92 in the following sequence: Compound Spring Embedder (CoSE) and yFiles Remove Overlap,

93	followed by a few manual adjustments to improve clarity. Network attributes generated by Gephi
94	were analyzed using MS Excel to explain relevant aspects of the network and its components.
95	Important definitions
96	Degree centrality is a measure of the number of social connections or links that a node has. It is
97	expressed as an integer or count[11]. The indegree of a node is the number of incoming links to
98	it from source nodes and refers to the number of infectious patients who had confirmed contact
99	with a given target patient. Outdegree is the number of links to target nodes from a source node
100	and is a measure of the number of secondary cases infected by a given patient.
101	Betweenness centrality is a measure of the number of times a node appears on the shortest path
102	between other nodes[12]. It reflects the role a patient plays in creating a bridge of infectious
103	transmission between patients who would not have had direct contact with each other.
104	Closeness centrality is the average of the shortest path lengths from a node to every other node
105	in the network. We used harmonic closeness to measure closeness centrality due to the presence
106	of unconnected nodes[13].
107	Edge betweenness is the number of the shortest paths that go through an edge in a graph or
108	network, with a high score indicative of a bridge-like connection between two parts of a network,
109	crucial to transmission between many pairs of nodes[14].
110	Clustering coefficient measures the degree to which nodes in a graph tend to cluster
111	together[15].
112	Network density is the number of existing ties between nodes, divided by the number of
113	possible ties[16].
114	Network diameter is the shortest path between the two most distant nodes in a network[15].
115	Mean path length is the average of the shortest path lengths between all possible node pairs[15].

116	Network component is an island of interlinked nodes that are disconnected from other nodes of
117	the network. Many networks consist of one large component, sometimes together with several
118	smaller ones and singleton actors[5].
119	Super-spreader (operational definition): Any node with an outdegree ≥ 5 was considered a
120	super-spreader. Individuals represented by these nodes would have infected five or more
121	contacts.
122	Results
123	Demography: We analyzed 1147 patients (742 males, 64.69%), aged 34.91 years on average,
124	most of whom (711, 61.99%) belonged in the 11-40 years age range. Most deaths, however,
125	occurred among older patients, with the highest mortality percentage (10/34, 29.41%) in patients
126	aged over 70 years (Supplementary Figure S1).
127	Network parameters (Supplementary Table S1): We found 948 nodes with zero outdegree. The
128	remaining 199 (17.35%) nodes had an outdegree range of 1–47 and were the source of infection
129	to 657 targets through 706 links (edges). Among the target nodes, 36 had indegree >1 (range 2–
130	5), implying more than one source. There were 490 nodes with zero indegree, of which 383 had
131	zero outdegree. These were isolated nodes with degree centrality value zero. The range of
132	betweenness centrality was 0.5-87 for 89 (7.76%) nodes. The network had 143 nodes with a
133	harmonic closeness centrality (HCC) of one and 56 with HCC between zero and one. Our
134	network density was 0.001, diameter was 4, and clustering coefficient was 0.004.
135	Men had a higher mean outdegree (0.628, M vs 0.593, F) and women, higher betweenness
136	(0.573, F vs 0.412, M, Supplementary Table S2). The 95 th percentile values for outdegree and
137	betweenness were 3 and 2, respectively. There were 77 (6.71% of 1147) nodes with outdegree
138	\geq 3, and combined, they accounted for 556 (78.75% of 706) edges. More than two-thirds of these

139	(54, 70.13%) were men. The average HCC for the 77 nodes with outdegree \geq 3 was 0.887,
140	compared to 0.161 for the entire network. Of the 59 nodes with betweenness ≥ 2 , more than half
141	(33, 55.93%) were men, though women had a higher mean betweenness overall.
142	We noted 34 super-spreaders with outdegree \geq 5, with a cumulative outdegree of 410, and after
143	deducting 17 duplicate edges for target nodes with indegree >1, they accounted for 393 (59.81%)
144	of the 657 target cases.
145	The aggregate network graphic (Figure 1), created using Gephi, shows nodes representing
146	patients, and components representing case clusters. The nodes are colored according to district
147	and sized by outdegree, making the larger nodes represent individuals who infected a greater
148	number of targets. Bangalore had the highest number of cases, followed by Belagavi,
149	Kalaburagi, and Mysuru (Supplementary Table S3). The largest node is in Mysuru, denoting a
150	patient who infected 47 target nodes, at the center of a major component. Transmission between
151	districts was limited, occurring chiefly from Mysuru to Mandya, a geographically adjacent city.
152	The network figure also has two large-sized gray nodes that represent two patients with
153	outdegree 29 and 25, from districts Vijayapura and Uttara Kannada, respectively.
154	The network contained 93 clusters of connected nodes (components), of which 37 components,
155	made up of five or more nodes each, had more than half of all the nodes (613, 53.44%) and four-
156	fifths of the links (611, 86.54%) concentrated within them (Figure 2).
157	Figure 3 shows the age and sex distribution of cases in the network. Nodes are colored by age
158	group and sized by outdegree. Figure 4 shows nodes colored by source of infection and sized by
159	betweenness centrality. We have considered patients with a history of travel from Delhi in a
160	separate category as their count was comparable to the combined number of travelers from all

8

other states of India. It is noteworthy that travelers from abroad did not contribute to theformation of any major cluster.

Comparing figures 3 (nodes sized by outdegree) and 4 (nodes sized by betweenness), we find 163 that in clusters with nodes that had multiple interconnections, relatively low outdegree, and high 164 betweenness, the key nodes were females. This indicates that women played a significant 165 166 bridging role. This differs from clusters with edges radiating from a central node with high outdegree and low betweenness, where typically, a young male was the nidus. The largest and 167 168 second-largest components illustrate this difference in transmission (Figure 5). The largest 169 component had 75 nodes and 76 links, and the second-largest component had 45 nodes and 50 links. The largest cluster originated in the district of Mysuru; its source node was a male with 170 high outdegree who spread the infection to many contacts. However, secondary transmission 171 from those contacts was limited. This cluster is star shaped. The second-largest component 172 resembles a spiderweb with multiple interconnected nodes and many female actors. This cluster 173 174 was in Belagavi, and its network density was nearly twice that of the largest cluster (.025 vs. .014), with a shorter average path length (1.314 vs. 1.321). 175

176 Discussion

Our study reveals that most cases of COVID-19 in Karnataka were young and middle-aged men. Deaths, however, occurred overwhelmingly among elderly patients. Close to one-third of those aged ≥ 60 years (35/112, 31.25%) were secondary cases who had contracted COVID-19 from younger contacts, and for another 25% (28/112), the source of infection was unknown with no history of travel to or from hotspots. It is plausible that these latter were also contacts of SARS-CoV-2 carriers. The age and sex profile of our study set matches nationwide surveillance data

9

from India, reported by Abraham et al., with median age and age-distribution close to our
sample, and a similar high attack rate in males[17].
Bangalore, the capital of Karnataka, is a densely populated metropolis, housing one-sixth of
Karnataka's population in one per cent of its area[18,19]. The city airport is a major transit point

- 187 for domestic and international travelers. These factors may explain Bangalore's relatively heavy
- burden (229/1147) of COVID-19 cases. Despite accounting for nearly a fifth of the state's
- caseload, however, our network analyses (Figure 1 and Supplementary Tables S3 and S4) show
- 190 that Bangalore did not have notably large clusters compared to other districts. Most of the cases
- 191 detected here were isolated nodes, many of whom were returnees from abroad. Bangalore's low
- 192 transmission may be due to the disciplined observance of lockdown measures, and rigorous
- 193 contact tracing and quarantine activities by its healthcare workforce[20,21].
- 194 The presence of two large nodes (where size denotes outdegree) in districts that had a minor
- 195 contribution to the total caseload (Figure 1) points to the risk of cluster formation even in
- 196 relatively unaffected areas if distancing measures are not followed scrupulously.
- 197 Shortly after the World Health Organization confirmed the novel Coronavirus as the cause of the
- 198 outbreak in China[22], health authorities started precautionary screening at Bangalore's
- international airport, and quarantining passengers arriving from areas of concern[23]. These
- 200 early steps may explain why we found no major clusters originating from international travelers.
- 201 Conversely, we noted several clusters comprised of people with a history of travel to the national
- 202 capital, Delhi (Figure 4 and Supplementary Tables S3 and S4). By 19 April 2020, the entire city
- of Delhi had been declared a COVID-19 hotspot[24] in the wake of a mass religious gathering
- that was found to be linked to nearly a third of the country's caseload earlier in the month[25].
- 205 Our second-largest cluster was traced to a patient who had a history of attending this religious

10

206	gathering in Delhi. Clusters of cases that originated from Delhi tended to be closely
207	interconnected, with women playing an active transmission role. This could reflect close
208	community ties between these individuals, or residence in underprivileged areas where strict
209	social distancing may not have been observed.
210	Most of the clusters in our network showed a man with high outdegree as the nidus. Women, on
211	the other hand, played an important role in transmission by bridging multiple nodes within
212	clusters, even though men outnumbered women in the 95 th percentile region of betweenness.
213	Further study is warranted into the behavioral characteristics of men and women that drive these
214	differences.
215	The low density of our network, the presence of 948 nodes with zero outdegree, and the fact that
216	only 34 source cases had infected close to two-thirds of all target cases, indicate that community
217	transmission was negligible. Bi et al. reported a similar transmission pattern from Shenzhen,
218	China. In their cohort, 8.9% of the cases had caused 80% of all infections[26]. Network analysis
219	of COVID-19 patients in Henan, China, by Wang et al.[7] revealed a similar non-uniform pattern
220	of clustering (208/1105 patients in clusters) with a skewed distribution of patients in different
221	cities. Their findings also indicate a strong correlation of confirmed cases with travel to Wuhan
222	(the epicentre of the pandemic), which is concordant with our observation that a significant
223	proportion (17.44%) of the Karnataka patients had traveled to Delhi.
224	Limitations
225	Our SNA findings may not universally reflect field realities. Some findings such as eccentricity
226	and mean path length are theoretical constructs computed by software algorithms, but in practice,
227	these metrics remain indeterminate as our network had very few inter-district connections and

228 many isolated nodes and components. Our dataset included many patients with contact tracing

11

still under investigation at the time of analysis. We were not able to analyze the role of type andduration of contact, as the data for these were not available for many patients.

231 Conclusion

Our conventional analysis indicates that senior citizens, due to their high mortality risk with 232 COVID-19, should be advised strict social distancing, and older patients from rural or 233 234 underserved areas should be preemptively transferred to tertiary centres with intensive care facilities. Our network analysis suggests that geographical, demographical, and community 235 236 characteristics could be influencing the spread of COVID-19. Gender influences cluster morphology, with men seeding the clusters and women propagating them. Furthermore, our SNA 237 highlights the need to maintain an accurate database with ongoing recording of contact tracing 238 data using a uniform format. Tools for real-time visualization of social networks can provide 239 actionable information on the evolution and spread of the disease. Such methods could aid local 240 government bodies in formulating control measures tailored to network characteristics of each 241 242 locality. Social network analysis can flag evolving networks with high densities and pinpoint nodes with high outdegree, betweenness, and closeness scores, which imply an active role in the 243 transmission and bridging of infection. Public health authorities could prioritize these clusters 244 245 and individuals for rigorous containment, which could help minimize resource outlay and potentially significantly reduce the spread of COVID-19. 246

- 247
- 248 Author Contributions
- 249 S. Saraswathi: Conceptualization, Study Design, Data Collection
- 250 A. Mukhopadhyay and H. Shah: Data Analysis
- 251 All authors: Writing, Editing, Review and Final Approval of Manuscript

proper acknowledgment. We received no financial support for this study.
interest to declare.
References
1. The New Indian Express. Karnataka fares well in war against COVII
(https://www.newindianexpress.com/states/karnataka/2020/apr/14/karn
war-against-covid-19-2129751.html). Accessed 17 May 2020.
2. The Times of India. New tech solutions aiding Karnataka's battle aga
Bengaluru News - Times of India. (https://timesofindia.indiatimes.com/
tech-solutions-aiding-karnatakas-battle-against-covid-19/articleshow/7
Accessed 17 May 2020.
3. Health Department Bulletin - COVID-19 INFORMATION PORTAL.
(https://covid19.karnataka.gov.in/new-page/Health%20Department%20
Accessed 18 May 2020.
4. Newman MEJ. The Structure and Function of Complex Networks. SIA
167–256.
5. O'Malley AJ, Marsden PV. The Analysis of Social Networks. Health
research methodology 2008; 8 : 222–269.

Disclaimer, Funding, and Conflict of Interest

- We used anonymized secondary data available in the public domain, from a government website,
- the copyright policy of which indicates that the data may be used for publication subject to
- We have no conflict of

- D-19.
- ataka-fares-well-in-
- inst Covid-19 |
- /city/bengaluru/new-
- 5782619.cms).

- OBulletin/en).
- AM Review 2003; 45:
- services & outcomes

272 6.273	Yum S. Social Network Analysis for Coronavirus (COVID-19) in the United States. <i>Social Science Quarterly</i> Published online: doi:10.1111/ssqu.12808.
274 7. 275	Wang P , <i>et al.</i> Statistical and network analysis of 1212 COVID-19 patients in Henan, China. <i>International Journal of Infectious Diseases</i> 2020: 95 : 391–398.
276 8.	Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and
277 278	Manipulating Networks. International AAAI Conference on Web and Social Media; Third International AAAI Conference on Weblogs and Social Media 2009; Published online: 2009.
279 9.280281	Bhatia R. Top 7 Network Analysis Tools For Data Visualisation. Analytics India Magazine. 2018(https://analyticsindiamag.com/top-7-network-analysis-tools-for-data-visualisation/). Accessed 18 May 2020.
282 10. 283 284	 Shannon P, <i>et al.</i> Cytoscape: a software environment for integrated models of biomolecular interaction networks. <i>Genome research</i> Cold Spring Harbor Laboratory Press, 2003; 13: 2498–2504.
285 11 286 287	Degree Centrality - an overview / ScienceDirect Topics. (https://www.sciencedirect.com/topics/computer-science/degree-centrality). Accessed 14 May 2020.
288 12 289 290	Betweenness Centrality - an overview / ScienceDirect Topics. (https://www.sciencedirect.com/topics/computer-science/betweenness-centrality). Accessed 14 May 2020.

- 291 13. Closeness Centrality an overview / ScienceDirect Topics.
- 292 (https://www.sciencedirect.com/topics/computer-science/closeness-centrality). Accessed 3
- 293 June 2020.

14. Girvan M, Newman MEJ. Community structure in social and biological networks.

- 295 Proceedings of the National Academy of Sciences of the United States of America The
- 296 National Academy of Sciences, 2002; **99**: 7821–7826.
- 297 15. Ouyang F, Reilly C. Terminology Social Network Analysis.
- 298 (https://sites.google.com/a/umn.edu/social-network-analysis/terminology). Accessed 3 June

299 2020.

- 300 16. Hanneman RA, Riddle M. Introduction to Social Network Methods: Chapter 8: More
 301 Properties of Networks and Actors.
- 302 (https://faculty.ucr.edu/~hanneman/nettext/C8_Embedding.html). Accessed 3 June 2020.
- 17. Abraham P, et al. Laboratory surveillance for SARS-CoV-2 in India: Performance of
- testing & descriptive epidemiology of detected COVID-19, January 22 April 30, 2020.
- 305 *Indian Journal of Medical Research* Published online: doi:10.4103/ijmr.IJMR_1896_20.
- 18. Bangalore (Bengaluru) District : Census 2011-2020 data Corona Virus / Covid 19 Data.
- 307 (https://www.census2011.co.in/census/district/242-bangalore-.html). Accessed 1 June 2020.
- 308 19. Karnataka Population 2011-2020 Census Corona Virus / Covid 19 Data.
- 309 (https://www.census2011.co.in/census/state/karnataka.html). Accessed 1 June 2020.

20. The Times of India. Welcome indicator: Only 2% of Covid-19 beds occupied in Karnataka |

311	Bengaluru News - Times of India.
312	(https://timesofindia.indiatimes.com/city/bengaluru/welcome-indicator-only-2-of-covid-19-
313	beds-occupied-in-karnataka/articleshow/75653647.cms). Accessed 2 June 2020.
314	21. News18. Trace, Test and Treat: Armed with 3Ts, How Bengaluru is on Course to Flattening
315	the Curve of Covid-19. 2020(https://www.news18.com/news/india/trace-test-and-treat-
316	armed-with-3ts-how-bengaluru-is-on-course-to-flattening-the-curve-of-covid-19-
317	2619117.html). Accessed 2 June 2020.
318	22. World Health Organization. WHO Statement Regarding Cluster of Pneumonia Cases in
319	Wuhan, China. (https://www.who.int/china/news/detail/09-01-2020-who-statement-
320	regarding-cluster-of-pneumonia-cases-in-wuhan-china). Accessed 3 June 2020.
321	23. The News Minute. Screening begins at Bengaluru airport over Coronavirus scare.
322	2020(https://www.thenewsminute.com/article/screening-begins-bengaluru-airport-over-
323	coronavirus-scare-116502). Accessed 3 June 2020.
324	24. Business Insider. No lockdown relaxation in Delhi as all 11 districts are Coronavirus
325	hotspots. (https://www.businessinsider.in/india/news/no-lockdown-relaxation-in-delhi-as-all-
326	11-districts-are-coronavirus-hotspots/articleshow/75232679.cms). Accessed 2 June 2020.
327	25. The Times of India. 1,445 cases linked to Tablighi Jamaat event; total cases rise to 4,281,
328	death toll 111. (https://timesofindia.indiatimes.com/india/1445-cases-linked-to-tablighi-
329	jamaat-event-total-cases-rise-to-4067-death-toll-109/articleshow/75010939.cms). Accessed 2
330	June 2020.

331	26. Bi Q, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their
332	close contacts in Shenzhen, China: a retrospective cohort study. The Lancet Infectious
333	Diseases Published online: doi:10.1016/S1473-3099(20)30287-5.
334	
335	
336	
337	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	

17

348 Figures

Figure 1 legend: Arrowheads indicate direction of transmission from source node to target node.

352 Node size reflects outdegree. Edges inherit color from parent nodes.

353

Figure 2: Major Network Components Organized by Size, Created in Cytoscape

357 Figure 2 legend: Arrowheads indicate direction of transmission from source node to target node.

359

360

361

19

363 Figure 3: Age-Sex attributes of Nodes and Clusters, Created in Cytoscape

Figure 3 legend: Node size indicates outdegree centrality. Arrowheads indicate direction of
transmission from source node to target node. The thickness and color intensity of edges reflect
edge betweenness.

368

369

370

20

372 Figure 4: Network Analysis by Sources of Infection (Cytoscape)

Figure 4 legend: Node size indicates betweenness centrality. Arrowheads indicate direction of
transmission from source node to target node. The thickness and color intensity of edges reflect
edge betweenness.

377

378

379

381 Figure 5: Comparing the Two Largest Components (Cytoscape)

382

Figure 5 legend: Node size indicates betweenness centrality. Arrowheads indicate direction of
transmission from source node to target node. The thickness and color intensity of edges reflect
edge betweenness.

386

387

388

390 391	Epidemiology and Infection
392	Social Network Analysis of COVID-19 Transmission in Karnataka, India
393	S. Saraswathi, A. Mukhopadhyay, H. Shah, T.S. Ranganath.
394	Supplementary Material
395	Contents
396	Figure S1: Age-Sex Distribution of Cases and Deaths
397	Figure S2a: Network Analysis by Phases of Lockdown (Cytoscape)
398	Figure S2b: Time Trend of Cases (March 9 to May 17, 2020)
399	Table S1: Network Parameters 26
400	Table S2: Mean Outdegree and Betweenness by Sex and Age-Group
401	Table S3: District-wise Caseload, and Sources of Infection
402	Table S4: Distribution of the 37 Largest Case Clusters by District and Source of Infection 29
403	
404	

405 Figure S1: Age-Sex Distribution of Cases and Deaths

410 Figure S2a: Network Analysis by Phases of Lockdown (Cytoscape)

This figure shows the incidence of clusters during each phase of the preventive lockdown
implemented by the government. Phase 1, with the most stringent curbs on travel and
socialization, was from March 24 to April 14. The second phase spanned 19 days from April 15
to May 3, and the third phase was from May 4 to May 17. Several clusters evolved during the
first lockdown phase as those infected in the pre-lockdown period turned symptomatic and tested
positive. Many of these clusters comprised returnees from Delhi and their contacts.

419 Figure S2b: Trend of Cases (March 9 to May 17, 2020)

This graph shows the number of cases detected every week. Week 1 begins on 9 March and

423 week 10 ends on 17 May 2020. Cases spiked in the second half of April and continued to rise as

424 lockdown regulations were relaxed and migrant workers returned from other states. However,

these were mostly isolated nodes with few instances of cluster formation (Figure S2a), probably

426 due to the effective implementation of quarantine measures.

- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434

435 Table S1: Network Parameters

	Network		C1	C2
Nodes	1147		75	45
Edges	706		76	50
Node attributes	Range Mean		Range (Mean)	
Outdegree	0-47	0.616	0-47 (1.013)	0-15(1.111)
Indegree	0-5	0.616	0-2 (1.013)	0-3 (1.111)
Degree	0-47	1.231	1-47 (2.027)	1-15 (2.222)
Betweenness	0-87	0.469	0-9 (0.426)	0-12 (1.133)
Harmonic Closeness	1 (n=143)			
	>0 and <1 (n=56)	0.161	0-1 (0.231)	0-1 (0.263)
	0 (n=949)			
Eccentricity	0-4	0.242	0-3 (0.307)	0-3 (0.4)
Network attributes	Value			
Diameter	4		3	3
Radius	1		1	1
Mean path length	1.623		1.321	1.314
Mean no. of	1.231		2.027	2.222
neighbors				
Density	0.001		0.025	0.014
Clustering coefficient	0.004		0.011	0.000

436 C1: Largest component, C2: Second-largest component

Mean outdegree	F	Μ	Total
000-10	0.000	0.140	0.079
011-20	0.463	0.368	0.407
021-30	0.655	0.289	0.396
031-40	0.500	0.994	0.822
041-50	0.870	0.480	0.601
051-60	1.158	1.145	1.150
061-70	0.467	1.083	0.846
071-99	0.667	1.263	1.000
Total	0.593	0.628	0.616
			1
Mean betweenness	F	М	Total
Mean betweenness 000-10	F 0.000	M 0.233	Total 0.132
Mean betweenness 000-10 011-20	F 0.000 0.179	M 0.233 0.242	Total 0.132 0.216
Mean betweenness 000-10 011-20 021-30	F 0.000 0.179 1.561	M 0.233 0.242 0.095	Total 0.132 0.216 0.527
Mean betweenness 000-10 011-20 021-30 031-40	F 0.000 0.179 1.561 0.114	M 0.233 0.242 0.095 1.159	Total 0.132 0.216 0.527 0.795
Mean betweenness 000-10 011-20 021-30 031-40 041-50	F 0.000 0.179 1.561 0.114 0.783	M 0.233 0.242 0.095 1.159 0.216	Total 0.132 0.216 0.527 0.795 0.392
Mean betweenness 000-10 011-20 021-30 031-40 041-50 051-60	F 0.000 0.179 1.561 0.114 0.783 0.474	M 0.233 0.242 0.095 1.159 0.216 0.210	Total 0.132 0.216 0.527 0.795 0.392 0.310
Mean betweenness 000-10 011-20 021-30 031-40 041-50 051-60 061-70	F 0.000 0.179 1.561 0.114 0.783 0.474 0.033	M 0.233 0.242 0.095 1.159 0.216 0.210 0.406	Total 0.132 0.216 0.527 0.795 0.392 0.310 0.263
Mean betweenness 000-10 011-20 021-30 031-40 041-50 051-60 061-70 071-99	F 0.000 0.179 1.561 0.114 0.783 0.474 0.033 1.572	M 0.233 0.242 0.095 1.159 0.216 0.210 0.406 0.000	Total 0.132 0.216 0.527 0.795 0.392 0.310 0.263 0.694

437 Table S2: Mean Outdegree and Betweenness by Sex and Age-Group

District	F	М	Total	%
Bengaluru	75	154	229	19.97
Belagavi	46	61	107	9.33
Kalaburagi	45	60	105	9.15
Mysuru	11	79	90	7.85
Davanagere	37	52	89	7.76
Bagalkote	27	52	79	6.89
Mandya	24	47	71	6.19
Others	140	237	377	32.87
Total	405	742	1147	100.00
Source type	F	M	Total	%
International travel	24	66	90	7.85
Domestic travel	59	150	209	18.22
Delhi hotspot	70	130	200	17.44
Karnataka hotspot	23	90	113	9.85
Secondary cases	193	240	433	37.75
Unknown	36	66	102	8.89
Total	405	742	1147	100

439 Table S3: District-wise Caseload, and Sources of Infection

Source	Unknown	Karnataka	Delhi	Domestic	International	Total
District		hotspot	hotspot	travel	travel	
Bengaluru	3	2	2		1	8
Belagavi			5			5
Kalaburagi	3		1	1		5
Mysuru		1				1
Davanagere	5					5
Bagalkote	3					3
Mandya			1			1
Others	5		3	1		9
Total	19	3	12	2	1	37

Table S4: Distribution of the 37 Largest Clusters by District and Source of Infection

446 Cell values indicate count of clusters.

447 Bengaluru, the major transit point for international passengers, had only one cluster traced to a

returnee from abroad. It is notable that 11 of the 37 clusters (29.73%) originated in Delhi. All the

Belagavi clusters (including the 2nd largest cluster with 45 nodes) were traced to travelers from

450 Delhi.

451

- 452
- 453
- 454