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Abstract 
 
Introduction: Non-pharmaceutical interventions (NPIs) are used to reduce transmission of SARS coronavirus 2 
(SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). However, empirical evidence of the 
effectiveness of specific NPIs has been inconsistent. We assessed the effectiveness of NPIs around internal 
containment and closure, international travel restrictions, economic measures, and health system actions on 
SARS-CoV-2 transmission in 130 countries and territories. 
 
Methods: We used panel (longitudinal) regression to estimate the effectiveness of 13 categories of NPIs in 
reducing SARS-CoV-2 transmission with data from January - June 2020. First, we examined the temporal 
association between NPIs using hierarchical cluster analyses. We then regressed the time-varying reproduction 
number (​R​t​) of COVID-19 against different NPIs. We examined different model specifications to account for 
the temporal lag between NPIs and changes in ​R​t​, levels of NPI intensity, time-varying changes in NPI effect 
and variable selection criteria. Results were interpreted taking into account both the range of model 
specifications and temporal clustering of NPIs. 
 
Results: There was strong evidence for an association between two NPIs (school closure, internal movement 
restrictions) and reduced ​R​t​. Another three NPIs (workplace closure, income support and debt/contract relief) 
had strong evidence of effectiveness when ignoring their level of intensity, while two NPIs (public events 
cancellation, restriction on gatherings) had strong evidence of their effectiveness only when evaluating their 
implementation at maximum capacity (e.g., restrictions on 1000+ people gathering were not effective, 
restrictions on <10 people gathering was). Evidence supporting the effectiveness of the remaining NPIs 
(stay-at-home requirements, public information campaigns, public transport closure, international travel 
controls, testing, contact tracing) was inconsistent and inconclusive. We found temporal clustering between 
many of the NPIs.  
 
Conclusion: Understanding the impact that specific NPIs have had on SARS-CoV-2 transmission is 
complicated by temporal clustering, time-dependent variation in effects and differences in NPI intensity. 
However, the effectiveness of school closure and internal movement restrictions appears robust across different 
model specifications taking into account these effects, with some evidence that other NPIs may also be effective 
under particular conditions. This provides empirical evidence for the potential effectiveness of many although 
not all the actions policy-makers are taking to respond to the COVID-19 pandemic. 
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Introduction 
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). The virus is easily transmittable between humans, with a basic reproduction 
number around 2-4 depending on the setting ​(1,2)​. To date, no vaccine or highly effective pharmaceutical 
treatment exists against COVID-19. Countries have used a range of non-pharmaceutical interventions (NPIs) 
such as testing suspected cases followed by isolation of confirmed cases and quarantine of their contacts, 
physical distancing measures such as schools and workplaces closures, income support for households affected 
by COVID-19 and associated interventions, as well as domestic and international travel restrictions ​(3)​. These 
interventions aim to prevent infection introduction, contain outbreaks, and reduce peak epidemic size so that 
healthcare systems do not become overwhelmed. However, these interventions come at a cost. Testing and 
contact tracing require laboratory and public health resources to be successful at scale, government subsidies 
affect national budgets, while physical distancing interferes with economic activities ​(4)​. Hence, the 
psychological, social, and economic cost of interventions needs to be balanced against the potential effectiveness 
in reducing SARS-CoV-2 spread. 

Modelling studies suggest that travel restrictions ​(5,6)​, contact tracing and quarantine ​(7,8)​ and physical 
distancing ​(9,10)​ may delay SARS-CoV-2 spread. However, the effectiveness of such interventions depends on 
factors such as societal compliance (e.g., the extent to which people reduce their daily contacts following 
government restrictions) that are difficult to prospectively measure. Empirical evidence about the effectiveness 
of specific policy interventions has been limited ​(11–13)​. While several countries have seen disease incidence 
peak and fall ​(14)​, ascribing changes in transmission to particular interventions is difficult since countries tend 
to impose combinations of policy changes at different levels of stringency in close temporal sequence. 

Several global databases of COVID-19-related policy interventions have been compiled ​(15)​. Here, we used the 
regularly updated Oxford COVID-19 Government Response Tracker (OxCGRT) ​(3)​ and conducted panel 
analysis to understand the association between policy interventions and time-varying reproduction numbers 
(​R​t​), a measure of the rate of transmission of an infectious disease in a population. We also explore whether this 
relationship is modulated by definitions of policy interventions, temporal lags, and population characteristics in 
different countries.  

Methods 

Data on NPIs and Rt  

Data on COVID-19-related NPI intensity from 1 January to 22 June 2020 was extracted on 5 July 2020 from 
version 5 of OxCGRT ​(3)​, based on the codebook version 2.2 (22 April 2020). This version contains publicly 
available information from 178 countries and territories on 18 NPI categories. We further divided these 
countries and territories into seven regions according to the World Bank classification ​(16)​. Note that these 18 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.20172643doi: medRxiv preprint 

https://www.zotero.org/google-docs/?P5VBdp
https://www.zotero.org/google-docs/?k4AgSD
https://www.zotero.org/google-docs/?270EeT
https://www.zotero.org/google-docs/?WhFwP9
https://www.zotero.org/google-docs/?muHpKy
https://www.zotero.org/google-docs/?JO8Z7a
https://www.zotero.org/google-docs/?Hpbf1p
https://www.zotero.org/google-docs/?atbwLZ
https://www.zotero.org/google-docs/?wvZQr3
https://www.zotero.org/google-docs/?0iCkYY
https://www.zotero.org/google-docs/?mxf4iV
https://www.zotero.org/google-docs/?m5Lnit
https://doi.org/10.1101/2020.08.11.20172643
http://creativecommons.org/licenses/by/4.0/


4 

NPI types are relatively generalised, thus more detailed policy interventions (e.g., facial covering mandate) is not 
considered in this study. 

From this database, we removed (i) “miscellaneous” policies as they contained no data at the time of our data 
extraction; (ii) “giving international support” and “investment in vaccines” policies as they did not on face 
validity have a causal pathway to influence local SARS-CoV-2 transmission within the timescale of the analysis; 
(iii) “fiscal measures” and “emergency investment in healthcare” policies as both the start and the duration of 
their effect is often unclear (e.g., the announcement of an investment may be implemented weeks later; funding 
that is allocated may be spent over a long time); (iv) data after 22 June 2020 because >10% of countries and 
territories have missing data after this date (see Appendix 1). Missing data fields on or before 22 June 2020 were 
imputed by (a) carrying forward or backwards the next or last non-missing observation when missingness occur 
at the two tails of the time-series, or (b) linearly interpolating using non-missing observations when missingness 
does not occur at the two tails of the time series.  We divided the remaining 13 policy interventions into four 
policy groups roughly corresponding to the original database (Table 1).  

Table 1​. Thirteen types of NPIs from OxCGRT, their general categorisations, and the coding schema used in 
our analysis to quantify their intensity.  

NPI groups  Specific NPIs  Coding schema 

Internal 
containment and 
closure 

School closure; workplace closure; 
cancellation of public events; limits on 
gathering sizes; closure of public transport; 
stay-at-home requirement; internal 
movement restriction.  

Any effort scenario​:  
NPIs are binary variables, considered 
“present” as long as any (non-zero) 
effort is made. 
 
Maximum effort scenario​: 
NPIs are binary variables, considered 
“present” only if the maximum effort is 
made.   
 
E.g., An intervention X has levels 0-3. A 
record at level 2 is converted to 1 under 
any​ and 0 under ​maximum scenarios. 

International travel 
restrictions 

International movement restriction. 

Economic policies  Income support; debt/ contract relief for 
households 

Health systems 
policies 

Public information campaign; testing 
policy; contact tracing 

 

Most NPIs in the database are measured on ordinal scales that capture intensity (e.g. 0 - no contact tracing; 1- 
limited contact tracing; 2 - comprehensive contact tracing). Since the intervals between categories are not 
necessarily equally spaced, we converted NPIs history into binary variables under: (i) ​any effort scenario​: all zero 
records were converted to 1, non-zero records were converted to 0; and (ii) ​maximum effort scenario​: all 
non-maximum records were converted to 0, all records at maximum levels were converted to 1 (see Table 1).  

Transmission of SARS-CoV-2  is routinely measured using the time-varying reproduction number (​R​t​), a 
metric which represents the mean number of secondary cases that one index case will infect. We used the 
median ​R​t​ estimates available through EpiForecast. The estimation process is based on reported incidence while 
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accounting for a range of uncertainties surrounding the incubation period, the delays between symptom onset 
and reporting ​(17)​. The underlying method has been detailed in Cori et al ​(18)​. In short, the transmission rate of 
an infectious disease is approximated by the ratio between new infections at time ​t​ and the infectious individuals 
at time ​t - w​ where ​w​ is the associated time window. In EpiForecast, a weekly time window is used. This measure 
is expected to fall when effective NPIs reduce the rate of SARS-CoV-2 transmission. Since the effects of some 
NPIs may take time to become evident, we explored a range of temporal lag effects between NPI 
implementation and ​R​t​ changes. 

Between 1 January and 22 June 2020, data on NPIs and ​R​t​ are simultaneously available for 130 countries and 
territories, all of which are used in the panel analysis described below. 

Understanding the Temporal Patterns 
The effect of an NPI may vary as a result of the evolving epidemic dynamics (e.g., decreasing number of 
susceptibles) or time-varying factors such as public compliance (e.g., the proportion of shoppers wearing facial 
covering after government mandate). To examine this effect, we split up the time series of NPIs and ​R​t​ values 
into two parts: before and after peak NPI stringency. This can be considered a sensitivity analysis to examine the 
robustness of NPIs’ effectiveness in reducing COVID-19 transmission across time.  
 
We used OxCGRT’s stringency index (SI), a combined metric of several behaviour-related NPI measures, as a 
proxy to the overall constraint on people’s day-to-day life. We then fitted a Gaussian generalised additive model 
(GAM) with cubic splines, using SI as the response variable and date as the sole explanatory variable for each 
World Bank region (i.e., the predicted regional SI is informed by all stringency index time-series within it). The 
peak of the predicted SI splines for each region was then examined to derive an average peak across all the 
regions. We then constructed two time-series: (i) the ​full ​time series, and (ii) the ​truncated ​time series up to the 
time of peak SI. 
 
We also examined temporal clustering among different NPIs. This is important because the impact of two NPIs 
that are highly temporally clustered may not be independently identifiable. During variable selection in panel 
regression, one of the two NPIs may be removed due to multicollinearity, but this does not mean for certain 
that the NPI removed is not associated with the observed effects. To investigate the potential temporal 
clustering, we conducted hierarchical cluster analysis using Ward’s method ​(19)​ under the ​any effort scenario 
and the ​maximum effort scenario​. We then used multi-scale bootstrapping (n = 10,000) to test the statistical 
significance of the identified clusters, defined using approximate unbiased p-values less than 0.05 ​(20)​.  

Panel analyses 

We used panel (or longitudinal) regression to study the association between NPI intensity and , treating the Rt  
time-series of NPI intensity and ​R​t ​in each country as observations of an individual in a panel. A linear fixed 
effects model: 

,  X  Rit = αi + β it + uit  
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where  is the time-varying reproduction number of location  at time ​t​; is a location-specific intercept Rit i αi  
(assumed to remain constant over the timescale of the analysis);  represents the 13 NPIs and theirXβ it  
corresponding coefficients; and  is the error term. The decision of using a fixed-effect model with individualuit  
intercept (as opposed to a random effect model) is based on the results of Hausman test ​(21)​. 

We investigated the appropriate temporal lag between NPI intensity and ​R​t​. To do this, we calculated the 
deviance (logarithm of the sum of squared residuals divided by the number of data points) assuming errors are 
normally distributed for temporal lags of 1 to 21 days. Smaller deviances indicate temporal lags that give better 
fits to data. A temporal lag of ​k​ days regresses the on a particular day with NPIs implemented ​k​ days before Rt  
(i.e. ). This analysis was carried out on both the regional and the global level. Data from North AmericaX i,t−k  
and South Asia were excluded from region-specific temporal lag analyses due to small sample sizes.  

Stepwise backwards variable selection based on Akaike or Bayesian Information Criterion (AIC or BIC) was 
then used to choose the most parsimonious model. Beginning with the full model (13 independent variables, 
one for each NPI), independent variables were removed one at a time sequentially. 

Statistical Interpretation 

For both the ​any effort​ and the ​maximum effort scenarios, ​we examined a range of model specifications 
consisting of (i) different variable selection criteria: AIC and BIC, (ii) different temporal lags between the 
timing of NPIs and changes in ​R​t​ (selected based on deviance from the analysis of temporal patterns discussed 
above), and (iii) different time series lengths: one ending on 22 June 2020 and the other truncated to 13 April 
2020, when NPI intensity peaked (on average). We then defined categories of ‘evidence strength’ behind each 
association according to Table 2. Allocating each NPI to an evidence category was done independently by two 
authors (YL and MJ), with differences resolved by discussion.   
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Table 2.​ Expert interpretation of evidence behind the statistical associations of each NPI with reductions in ​R​t​.  

Evidence Strength  Effect estimates   Temporal Cluster 

Strong 
 

Selected and significant with intended effect 
signs (i.e. negative) regardless of model 
specifications (i.e., variable selection criteria, 
temporal lags, and time-series lengths). 

 
 
Not in a temporal cluster with any 

NPI with significantly positive 
effect estimates. 

Moderate  Selected and significant with intended effect 
sign (i.e negative) in two of three model 
specification dimensions (i.e., variable selection 
criteria, temporal lags, and time-series lengths), 
and non-selected or non-significant in the 
remaining dimension.* 

Weak   Not strong or moderate 

* For the moderate category, all the model specifications that were non-significant or non-selected were examined to see if 
they had a value in common across one of the three criteria e.g. all of them had a lag of 10 days​. 

Software  

All analyses were conducted using R version 4.0.0 ​(22)​, with packages `plm` and `pvclust` ​(23,24)​. Code is 
available at ​https://github.com/yangclaraliu/COVID19_NPIs_vs_Rt​. 

Results 

Trends in NPI intensity 
Temporal trends in COVID-19-related NPI intensity measured using the OxCGRT SI are relatively consistent 
across regions (Figure 1). Following the initial NPIs in China, almost all regions experienced an initial increase in 
policy stringency in early February 2020. The East Asia & Pacific region had the highest SI up to mid-March, 
but by April had the lowest SI. From March, other regions registered rapid increases in their stringency index. 
The stringency index peaked in mid-April for all regions, and so 13 April 2020 was used as the time of peak NPI 
intensity (see Appendix 2). All regions and nearly all countries had a higher stringency index in June compared 
to February. 
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Figure 1.​ Temporal changes in NPI stringency index (range = 0-100) by region. Countries with available data 
are assigned corresponding geographical regions based on the World Bank classification scheme. Although Asia 
increased policy stringency first (observed in Feb), the highest stringency achieved was the lowest (observed in 
April). Countries become less stringent in terms of COVID-19 response at approximately the same time 
worldwide. 
 
Figure 2 shows how the intensity of specific NPI groups varies in each region relative to the time of peak 
intensity. Under both ​any​ and ​maximum effort scenarios​, ‘Health System Policies’ was the first NPI group to 
increase across all regions. It was also the most commonly used NPI group. This was followed by ‘Internal 
Containment and Closures’ and then ‘Economic Policies’, although ‘International Travel Restrictions’ 
sometimes came before ‘Internal Containment and Closures’. NPI intensity increased only as the first case was 
detected in each region, except for Sub-Saharan Africa where many countries took action before the first case. 
While SIs have decreased across all regions (Figure 1), this is not very apparent in most NPI groups apart from 
International Travel Restrictions (Figure 2). 
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Figure 2. ​The proportions of countries implementing NPIs in each group by region. Colours indicate different 
NPI groups, as defined in Table 1; ​n​ values represent the total number of countries and territories in each region 
per definitions of the World Bank; the y-axis shows the proportion of countries and regions implementing given 
NPIs, e.g., proportion of one means everyone within the region are implementing the NPI; turning point is 
selected based on the region-specific peaks of predicted Stringency Index, shown in Figure 1.  
 
Hierarchical cluster analysis shows that, given the ​any effort scenario​, all the NPIs are contained in two 
significant temporal clusters (Figure 3). These temporal clusters align well with the broad categorisations 
defined in the OxCGRT, i.e. countries tend to start implementing the same categories of NPI simultaneously. 
However, under the ​maximum effort scenario​, there are three significant temporal clusters and several NPIs are 
not in any cluster, i.e. countries reach their maximum level of intensity for NPIs at very different times. 

 
Figure 3. ​Hierarchical cluster analysis of NPIs time-series by scenario. Blues and greens are used to describe the 
corresponding NPI groups; red boxes indicate statistically significant temporal clusters. Hierarchical clustering 
was carried out using Ward’s method;the statistical significance of temporal clusters identified was obtained via 
bootstrapping.  

Panel analyses 

We examined the goodness-of-fit (based on deviance) of the panel regression model in all scenarios both at the 
regional and global level to identify the most appropriate temporal lag (Appendix 3). For both the  ​full ​and 
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truncated​ time series (ending on 22 June and 13 April 2020, respectively), we identified temporal lags to be 
longest in East Asia & Pacific (between 5 and 10 days), followed by Europe & Central Asia (approximately 5 
days), and the shortest in Latin America & Caribean (below 5 days) (see also A3). The results from the Middle 
East & North Africa and Sub-Saharan were not consistent, implying dependency on the scenario used, and 
there was not a clear indication of the most appropriate temporal lag when countries were all combined in a 
global analysis. Due to the observed heterogeneity in the temporal lags, we examined three different lag values 
(1, 5, and 10 days) in the regression analyses for both ​full ​and ​truncated ​time-series. 

Figure 4. ​Variable selection results. Optimal models are based on a backward step-process using AIC/BIC. 
NPIs are colour coded based on their respective NPI categories. 

The NPIs in the models selected based on AIC and BIC are shown in Figure 4. Under the ​any effort scenario​, 
the most consistently excluded NPIs are contact tracing, restrictions on gatherings, and international travel 
restrictions. Public information campaigns and testing policies were excluded using the ​truncated ​but not the 
full​ time-series; stay at home requirements was excluded using the ​full​ but not the ​truncated ​time-series. Under 
the ​maximum effort scenario​, the most consistently excluded NPIs are contact tracing, international travel 
restrictions, and closure of public transportation. Public information campaigns were excluded by one model 
using the ​truncated​ time series but were always included by models using the ​full​ time-series. NPIs may be 
excluded from models either because (i) they do not affect  or (ii) their effects were fully captured by other Rt  
NPIs in the same temporal clusters and thus they were removed by the variable selection process. 
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Figure 5.​ Effect sizes for each NPI from the selected models. Points and lines indicate mean and 95% 
confidence intervals.  

Effect size estimates for the selected models in Figure 4 are shown in Figure 5. A few NPIs have significantly 
positive effects, indicating that they are associated with increased ​R​t​. While it is not inconceivable that some 
NPIs may be transiently associated with increased ​R​t​ (e.g. increased testing efforts may be associated with 
increased ​R​t​ because they result in better detection of COVID-19 cases), variables with positive effects are likely 
capturing residual non-random errors for other NPIs in the same temporal cluster. Hence they are likely biasing 
effect size estimates of other temporal cluster members, likely away from the null hypotheses. Hence, NPIs that 
are temporally related need to be interpreted within the context of the respective clusters rather than as 
individual measures (see also Figure 3). 

Interpretation 

Of the 13 NPIs in the OxCGRT, we found strong evidence for the association between two of them (school 
closure, internal movement restrictions) and ​R​t​, under both ​any effort ​and ​maximum effort ​scenarios. Another 
three NPIs (workplace closure, income support and debt/contract relief) had strong evidence for the association 
under the ​any effort ​scenario only, meaning that the reductions in ​R​t​ were associated with the initiation of these 
interventions, with no evidence of an effect as they were intensified. Two other NPIs (public events 
cancellation, restriction on gathering) had strong evidence under the ​maximum effort ​scenario only, meaning 
that evidence for a reduction in ​R​t ​was only seen when they reached their maximum intensity. 

It is probable that in some cases, interventions occurring with certain sequential order may make it more or less 
likely candidates to capture the effects of other NPIs. For example, the method used in Abbott et al. ​(17)​, which 
relies on back sampling to convert onset to confirmation timing, may move incidence back in history more than 
reality. This shifts the time series of ​R​t​ and NPIs, increasing the probability that NPIs occurring later in the 
COVID-19 to be associated with reduced ​R​t​. Thus, we verify NPIs supported by strong statistical evidence by 
checking their sequential orders in COVID-19 response strategies. Most of these NPIs were not implemented 
particularly early or late (Appendix 4). Complete school closure and mandatory public events cancellations are 
moderately skewed earlier, indicating that they tend to occur first. Some (non-maximum) levels of income 
support and debt/ contract relief are skewed later, making it possible their observed effects are statistical 
artefacts. 

Evidence for the rest of the NPIs was decidedly mixed. Stay-at-home requirements had moderate evidence 
under the ​any effort ​scenario, while public information campaigns had moderate evidence under the ​maximum 
effort​ scenario. Among all NPIs, some (non-maximum) levels of stay-at-home requirements tend to occur later 
in the overall COVID-19 response strategy. Most public places people would like to visit have already closed - 
thus making the relevant effects minimum. The remaining four (public transport closure, international travel 
controls, testing, contact tracing) had only weak evidence for an association with ​R​t​. Detailed interpretation on 
the statistics, through which these conclusions were reached, is presented in Appendix 3. Similar methods were 
applied to the original raw data, without converting to ​any​ or ​maximum effort scenarios​. However, as no 
statistical conclusion can be reasonably drawn, we only show the results in Appendix 5.  
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We observed variability in effect estimates due to differences in terms of time-series and temporal lags used 
(Figure 5). For example, the effect sizes of internal movement restrictions are smaller using the truncated 
time-series compared to using the full time-series. This suggests that the general adherence to movement 
restrictions may have decreased over time. However, this variability may also be explained by the fact that 
full-time series include more observations. The effect sizes of public events cancellation is higher for longer 
temporal lags - indicating its impacts on ​R​t​ may take time to be noticeable. These hypotheses need further 
validation using empirical evidence. 

Discussion 
Our study used panel regression to examine the temporal association between NPIs that countries introduced in 
response to the COVID-19 pandemic, and its rate of transmission in populations, represented by ​R​t​. We 
explored the influence of different model specifications on the association: (i) whether NPIs could be at the 
minimum intensity or had to take their maximum intensity values to effectively reduce ​R​t​, (ii) whether the effect 
of NPIs was different at the start of the pandemic compared to after NPI intensity had peaked globally, (iii) 
different temporal lags between NPIs and their effects and (iv) different criteria for selecting NPIs as 
explanatory variables.  

We found the strength of evidence behind an association between NPIs and ​R​t​ depended on these model 
specifications. Only two NPIs (school closure, internal movement restrictions) showing unequivocal evidence 
of being associated with a decrease in ​R​t​ regardless of the assumptions made. Whether schools should stay closed 
has drawn debates. Keeping schools closed could potentially hurt children’s educational development and 
general wellbeing. Resuming schools, on the other hand, may increase COVID-19 transmission risks for both 
students and teachers. Our findings are consistent with much existing literature - although school closures 
cannot single-handedly suppress an outbreak, they are generally effective in terms of reducing transmission 
(25,26)​. 

We found evidence that internal movement restrictions reduced ​R​t​, but no evidence of a similar effect for 
international travel restrictions. The latter is consistent with Russell et al., which shows international movement 
restrictions have limited impacts on the epidemic dynamics of COVID-19 for most countries ​(27)​. This 
difference may be explained by the different decision thresholds (e.g., real-time expected ​R​t​ at which 
governments implement travel restrictions). It may relate to the types of movement interrupted - internal 
movement restrictions interrupt trips of all lengths whereas international movement restrictions may have 
disrupted more longer trips. Last but not least, these NPIs were likely used in different epidemic contexts - 
internal movement restrictions used more often to prevent outbreaks from escalating whereas international 
travel restrictions to prevent infection introduction ​(28)​. The latter was not necessarily captured by ​R​t​, which 
could only be estimated in settings with existing COVID-19 outbreaks (i.e., after introduction).  

There are differences in the strength and direction of the effects of some NPIs (such as public transport closure 
and stay-at-home requirements) depending on whether the whole time series of data was used, or only data up 
to the date of peak NPI stringency (13 April 2020). This may indicate that these NPIs might have different 
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effects at the start of the pandemic compared to later on, so when the NPIs were removed (likely after the peak), 
R​t​ did not return to its original level before the introduction of the NPIs.  

The best-fitting models also support a considerable delay between NPIs and their effect on transmission. This 
delay is about a week on average but differs widely between regions. It could reflect delays between policies 
being put in place and actual behaviour change. It could also reflect delays in reporting; although these are 
explicitly accounted for in the ​R​t​ estimation in EpiForecasts - the same onset-to-delay distribution is applied in 
all countries ​(29)​, and hence may not reflect differences between settings. Delays of up to 3 weeks between 
policy changes and changes in reported cases have been documented ​(30)​. 

We were not able to uncover evidence that supports the effectiveness of contact tracing and testing policies. 
This may be explained by the fundamental differences in nature to these NPIs - both contact tracing and testing 
policies, besides interrupting onward transmission, could lead to more cases being reported. While calculating 
the ​R​t​, EpiForecasts does not explicitly account for changes in reporting rate ​(17)​. The estimated effects are the 
sum of opposing effects. Another potential explanation is the way NPIs are reported in the OxCGRT, which 
largely relies on publicly available data sources, such as news articles. Contact tracing and test policies are both 
classic public health intervention tools and have minimal impacts on those who are not potentially infected. 
Thus, they may be less likely to receive media coverage, compared to more interruptive NPIs such as workplace 
closures. 

Many other papers have explored the impact of physical distancing measures on SARS-CoV-2 transmission. 
Prospective mechanistic transmission models have explicitly modelled contacts relevant to viral transmission 
between individuals in different subgroups (e.g. ages), as well as the impact that NPIs may have on these 
contacts. Such studies mainly use data from a single location only such as Wuhan ​(9)​, Hong Kong ​(31)​, the 
United States ​(32)​ and the United Kingdom ​(26)​. They suggest that physical distancing interventions can have a 
large impact on transmission. While the impact of income-related interventions have been less well studied, 
country reports suggest that they often play an important role in ensuring adherence to distancing measures 
(33)​. 

Another group of studies have used empirical data to retrospectively examine whether NPIs have been effective 
in reducing transmission, using either statistical methods or mechanistic epidemiological models. Many such 
studies look at single interventions such as travel restrictions ​(34)​ or “lockdowns” ​(35,36)​. Hence they are less 
useful to policy-makers wanting to establish which of a basket of NPIs are most effective. 

Only a small number have looked at multiple interventions across multiple countries. These relate NPIs from 
databases to proxies of transmission such as ​R​t​ estimated from cases and/or deaths ​(11,12)​, or the rate of change 
in cases directly ​(13,37,38)​. Our work demonstrates the major challenges that all such studies (including ours) 
face - NPI introductions are highly temporally correlated in time, so it is difficult to independently identify the 
effect of each NPIs.  

Our study extends previous work to address this problem in several ways. Firstly, we use data across a larger 
number of countries and territories and longer time series (January - June 2020), enhancing the power to detect 
independent effects even when there is partial collinearity. Second, instead of assuming that all NPIs tested have 
an effect like previous work, we conduct variable selection to identify only those NPIs that are retained in 
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parsimonious models. Third, we conduct cluster analysis to explicitly identify temporal correlations, and use 
this in our interpretation of the strength of evidence behind each intervention. Fourth, we have conducted 
sensitivity analyses across a range of model specifications around the variable selection criteria, temporal lag 
between NPIs and change in transmission, temporal truncation, as well as the way NPI intensity is coded. 

Nonetheless, our study also has several limitations. First, besides the information bias in the NPIs database 
discussed above, the coding scheme may also introduce potential bias. NPIs coded as “comprehensive contact 
tracing for all identified cases'' may have different implications in different countries. Effectiveness of contact 
tracing in places like Singapore ​(39)​ may be masked by seemingly similar but realistic non-comparable contact 
tracing programs. Second, compared to daily incidence, ​R​t​ estimates are much more suitable to compare across 
countries and thus is used as the metric for COVID-19 transmission in this study. However, these estimates are 
based on a series of assumptions (e.g., distribution of onset to confirmation delay) that may not always be 
appropriate. Our current model also does not factor in uncertainty around ​R​t​ estimates. Last but not the least, 
although we examined a wide range of NPIs, we did not include any potential interactions in the current model. 
Such interaction is a possibility, e.g., more people may comply with workplace closures when receiving income 
support. Future research should look into these relationships. 

Conclusions 

In conclusion, evidence from a panel of 130 countries and territories, provides evidence about the effectiveness 
of school closure, public events cancellations, and household income support in reducing SARS-CoV-2 
transmission. Despite the inherent limitations of observational and ecological data, our study provides the 
broadest empirical evaluation so far that NPIs can work. 
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Technical Appendix 

A1. Missingness in data 
The figure below shows the number of countries and regions each day between 1 January - 5 July 2020 with at 
least one non-missing entry in Oxford COVID-19 Government Response Tracker ​(3)​. Vertical solid line 
indicates the cutoff threshold of 22 June 2020 used in this study. 
 

 
Figure S1. ​Number of countries and regions with available data in the Oxford COVID-19 Government 
Response Tracker.    
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A2. Peak timing of stringency indices by region 
Region  Peak Date 

East Asia & Pacific  2020-04-13 

Europe & Central Asia  2020-04-11 

Latin America & Caribbean  2020-04-13 

Middle East & North Africa  2020-04-11 

North America  2020-04-15 

South Asia  2020-04-11 

Sub-Saharan Africa  2020-04-13 

Table S1.  
* Peak date is defined as the date corresponding to the highest predicted stringency index on the regional level 
based on the general additive models. 
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A3. Temporal Lags 
The original Oxford COVID-19 Government Response Tracker contains NPIs information in the format of 
ordinal categorical variables ​(3)​. Take “Restrictions on Gatherings” for example, there are five levels: 

0 - No restrictions; 
1 - Restrictions on very large gatherings (the limit is above 1000 people) 
2 - Restrictions on gatherings between 101-1000 people 
3 - Restrictions on gatherings between 11-100 people 
4 - Restrictions on gatherings of 10 people or less. 

 
As discussed in the main text, we analysed two key scenarios:  

● Any effort scenario​: NPIs are binary variables, considered “present” as long as any (non-zero) effort is 
made; 

● Maximum effort scenario​: NPIs are binary variables, considered “present” only if the maximum effort 
is made. 

 
For a hypothetical country’s, the NPI time-series regarding “Restrictions on Gathering” such as {0, 0, 0, 1, 1, 2, 
3, 4, 4} is converted to: 

● Any effort scenario​ as {0, 0, 0, 1, 1, 1, 1, 1, 1}  
● Maximum effort scenario​ as {0, 0, 0, 0, 0, 0, 0, 1, 1} 

 
An additional scenario - ​multilevel effort scenario​, which preserves the original time series without conversion, 
was originally explored but had to be excluded due to severe temporal clustering and biased effect size estimates. 
However, here in the appendix we still showed some of these results, showcasing why they have not been 
included in the main discussion. For more details, please also see Appendix 5.   
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Figure S2. ​Deviance from panel analyses using different temporal lags between effective reproduction number 
and policy interventions. Models include all 13 interventions available. Deviance is defined as the logarithm of 
the sum of squared residuals divided by the number of data points. Full time-series from 1 Jan to 22 June 2020 
were used. Dashed vertical lines indicate minimum deviances. 
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Figure S3. ​Deviance from panel analyses using different temporal lags between effective reproduction number 
and policy interventions. Models include all 13 interventions available. Deviance is defined as the logarithm of 
the sum of squared residuals divided by the number of data points. Truncated time-series from 1 Jan to 13 April 
2020 were used. The turnpoint on 13 April 2020 was identified using stringency indices. Dashed vertical lines 
indicate minimum deviances. 
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A4. Interpretation of Panel Analyses Results 
Non-pharmaceutical Interventions  Any Efforts Scenario  Maximum Efforts Scenario 

School closures  Strong  Strong 

Workplace Closure  Strong  Weak 

Public Events Cancellation  Weak  Strong 

Restriction on gathering  Moderate  Strong 

Public Transportation Closures  Weak  Weak 

Stay-at-home requirements  Moderate  Weak 

Internal Movement Restrictions  Strong  Strong 

International Travel Controls  Weak  Weak 

Income Support  Strong  Weak 

Debt/ Contract Relief  Strong  Weak 

Public Information Campaign  Weak  Moderate 

Testing  Weak  Weak 

Contact tracing  Weak  Weak 

Table S2. 
Statistical interpretation worksheets by YL and MJ detailing how these conclusions are reached can be 
downloaded from 
[​https://docs.google.com/spreadsheets/d/1lZUuxgXc6ZPCx4I_A56iYwokuDgU2if9nJySfDwqi50/edit?usp=
sharing​]. 
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A4. Implementation Sequence of Non-pharmaceutical 
Interventions 
A new ranking variable was created for each NPI in each scenario. For example, the NPI implemented first is 
ranked 1. The distributions of the sequential order for each NPI is shown below for both ​any​ and ​maximum 
efforts ​scenarios. 
 

 
Figure S4. ​The sequential order of different NPIs under any effort scenario.   
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Figure S5. ​The​ ​sequential order of different NPIs under maximum effort scenario. 
 
 

   

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.20172643doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.11.20172643
http://creativecommons.org/licenses/by/4.0/


29 

A5. The ​Multi-level Scenario 
Besides the ​any​ and ​maximum efforts scenarios​ described in the main text, we also investigated if intermediate 
levels of NPIs led to any meaningful interpretation in terms of the impacts of NPIs. In this case, original data 
from the Oxford Government Response Tracker is preserved, with no additional conversion. We identify two 
temporal clusters that cover all 13 NPIs available for the analysis. 

Figure S6. ​Hierarchical cluster analysis of NPIs time-series using the ​multilevel scenario​. Blues and greens are 
used to describe the corresponding NPI groups; red boxes indicate statistically significant temporal clusters. 
Hierarchical clustering was carried out using Ward’s method; the statistical significance of temporal clusters 
identified wasobtained via bootstrapping. 
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Figure S7. ​Effect sizes for each NPI from the selected models. Points and lines indicate mean and 95% 
confidence intervals. 
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Upon examining the effect sizes, we identify at least two NPIs with positive effect estimates, which indicates 
estimates for all NPIs are susceptible to statistical bias, preventing us from drawing reasonable conclusions. 
Thus, we do not include this analysis in the discussion in the main text. Current data available does not seem to 
allow us to examine the impacts of NPIs to this level of details. 
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