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Abstract 14 

Background 15 

An accurate measure of the impact of COVID-19 is the infection fatality ratio, or the 16 

proportion of deaths among those infected, which is independent of variable testing rates 17 

between nations. The risk of mortality from COVID-19 depends strongly on age and current 18 

single estimates of the infection fatality ratio do not account for differences in national age 19 

profiles. In addition, it is unclear whether age influences cumulative death trajectories, or if 20 

differences between regions are because of the effect and timing of public health 21 

interventions. 22 

Our objective is to determine whether (1) infection fatality ratios and (2) death trajectories are 23 

clustered into more than one group due to differences in national age profiles. 24 

Methods 25 

National age standardised infection fatality ratios were derived from age stratified estimates 26 

from China and population estimates from the World Health Organisation. The infection 27 

fatality ratios were clustered into groups using Gaussian mixture models. Trajectory analysis 28 

clustered cumulative death rates at two time points, 50 and 150 days after the first reported 29 

death.  30 

Findings 31 

Infection fatality ratios from 201 nations were clustered into three groups: young, middle and 32 

older, with corresponding means (SD) of 0.20% (0.03%), 0.38% (0.11%) and 0.93% (0.21%).  33 
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At 50 and 150 days, there were two and three clusters, respectively, of cumulative death 34 

trajectories from 122 nations with at least 25 deaths reported at 100 days. The first cluster had 35 

steadily increasing or stable cumulative death rates, while the second and third clusters had 36 

moderate and fast increases in rates, respectively. Fifty-eight nations changed cluster group 37 

membership between time points. There was an association between the infection fatality 38 

ratio clusters and the change in trajectory clusters between 50 and 150 days (p=0.014). 39 

Conclusion 40 

Differences in national age profiles created three clusters in the COVID-19 infection fatality 41 

ratio, with the impact on younger nations less than the current estimate 0.5-1.0%. National 42 

cumulative death rates were clustered into steady, moderate or fast trajectories. Changes in 43 

death rate trajectories between 50 and 150 days were associated with the infection fatality 44 

ratio clusters, however evidence for the influence of age on death trajectories is mixed. 45 
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Introduction 46 

The disease COVID-19 caused by the coronavirus SARS-CoV-2 was first described in 47 

Wuhan, China in December 2019 [1-2]. The impact the disease will have on the global 48 

population has been estimated through the case fatality rate (CFR), or the proportion of 49 

deaths among confirmed cases. Since the number of cases depends on testing rates which 50 

may include only symptomatic or severe cases, the CFR may be an over-estimate of the 51 

impact of the disease.  52 

In contrast, the infection fatality ratio (IFR) is the proportion of deaths among infected 53 

individuals and is a more accurate estimate of disease mortality. However, it is difficult to 54 

determine the true number of infections in a population. Recent antibody prevalence studies 55 

have attempted to establish infection rates in the USA, Spain and elsewhere [3-5]. 56 

Studies have shown that the risk of death from COVID-19 depends strongly on age [6-10]. A 57 

recent meta-analysis calculated an IFR of 0.68 % (95% CI 0.53-0.82%), but with significant 58 

heterogeneity between regions [6]. The authors concluded that different regions may 59 

experience different IFRs due to age structure and underlying co-morbidities and called for 60 

more research on age stratified IFRs. A further meta-analysis on the age specificity of 61 

COVID-19 IFRs [7] confirmed the exponential dependence of mortality on age also found in 62 

studies from China [8] and Italy [9]. Overall IFRs varied from 0.66% (95% credible interval 63 

0.39-1.33%) in China to 1.29 % (95% crI 0.89-2.01%) in Italy, because Italy has an older 64 

population than China. Differences in age structure and age specific prevalence were found to 65 

account for up to 90% of the geographic variation in population IFR [7] and an IFR of below 66 

0.5% was ruled out in populations with more than 30% over 60 years old [9]. Due to this 67 

strong age dependence, the US Centre for Disease Control and Prevention now publishes age-68 

specific estimates of IFR [10]. 69 
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The IFR summarises the expected mortality risk in a population at a single point in time. In 70 

addition to the IFR, the rate at which the disease spreads throughout a population and the 71 

death rate also has a significant impact on health resources. While age is a significant risk 72 

factor for mortality, the spread of infection also depends on public health interventions such 73 

as physical distancing measures, mask wearing, testing, contact tracing, quarantine and 74 

border controls [11]. It is unclear what effect age has on increases in COVID-19 death rates 75 

over time. Clustering groups of countries with similar cumulative death rate trajectories at 76 

different time points enables comparisons of the timing and effectiveness of mitigation 77 

strategies. Comparisons of death trajectory clusters with and without adjusting for differences 78 

in national age profiles may inform whether age influences the spread of the disease 79 

throughout a population.  80 

 81 

Methods 82 

Age standardisation of IFRs estimated from China by Verity et al [8] was performed using a 83 

weighting method (see Supporting Material).  The overall estimate of the IFR from China 84 

(0.66% [8]) was multiplied by each nation’s weight to obtain a point estimate of the age 85 

adjusted IFR. 86 

Model based clustering with Gaussian mixture models was used to cluster groups of nations 87 

with IFRs arising from the same normal distribution, using the ‘mclust’ R package version 88 

5.4.6 [12]. Estimates of the mean IFR, SD and bootstrapped 95% confidence intervals of the 89 

mean were determined for each distribution. 90 

To investigate factors related to death rates that are independent of national age profiles, such 91 

as public health interventions, the next stage was to analyse death rate trajectories.  If 92 
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infection rates are assumed to be equal across groups and age stratified IFRs relative to those 93 

in the 80+ age group are assumed to be the same for every nation, then the IFR weights can 94 

be used to age standardise death rates per population. The age stratified IFRs in China [8] are 95 

broadly in agreement with those estimated by a meta-analysis [7] and in Italy [9] (S1 Table in 96 

the Supporting Material). To remove any potential effect of age on the death trajectories, 97 

cumulative death rates were weighted. Trajectory analysis of cumulative death rates per 98 

population was used at two time points: 50 and 150 days after the first reported death from 99 

COVID-19. Since trajectory analysis is sensitive to outliers in the data [13], to ensure stable 100 

trajectories, only countries with at least 25 deaths reported by 100 days after the first death 101 

were included in the analysis. Rolling 14-day averages of weighted cumulative deaths rates 102 

were smoothed using splines to reduce the effect of outlying data points. The R package ‘traj’ 103 

version 1.2, which combines principal components of statistical measures of growth and 104 

cluster analysis, was used to cluster cumulative death rate trajectories into groups, without 105 

requiring the number of clusters to be determined a priori [13]. A sensitivity analysis was also 106 

conducted using unweighted trajectories.  107 

To test whether age may be associated with death rate trajectories, Fisher’s exact test was 108 

used to test for differences in the IFR cluster group membership and any change in trajectory 109 

group membership between the two time points. 110 

The R package ‘rworldmap’ version 1.3-6 [14] was used to visualise the IFR and trajectory 111 

clusters on a global scale. R software version 4.0.2 (R foundation for Statistical Computing, 112 

Vienna, Austria) was used for all analyses. 113 

 114 

Data 115 
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Estimates of national populations in 2020 by five-year age groups from the World Health 116 

Organisation were available from [15]. Daily cumulative death rates compiled by the 117 

European Centre for Disease Control were obtained from the Our World in Data website 118 

[16]. All datasets and R code used to produce the results are available from 119 

https://github.com/lan-k/COVID19. 120 

 121 

Results 122 

Age adjusted IFRs were calculated for 201 countries. If the national IFRs were assumed to be 123 

from one normal distribution, the mean IFR would be 0.54% (SD 0.34%); however, a 124 

histogram of the estimated IFRs showed that these may not be represented by a single normal 125 

distribution (Fig 1).  126 

Figure 1: Histogram of global IFR estimates 127 

 128 

Clustering of the IFRs produced three groups of nations with young, middle and older age 129 

profiles. Model fit diagnostics can be found in the Supporting Material (S1 and S2 Figs). 130 

Mean IFRs (SD) from the three distributions are 0.20% (0.03%), 0.38% (0.11%) and 0.93% 131 

(0.21%) (Table 1). Bootstrapped 95% CIs for the mean and SD of the three normal 132 

distributions and the minimum and maximum IFR in each cluster are also presented in Table 133 

1. The countries included in each cluster are displayed in Fig 2. After excluding countries in 134 

the ‘Young’ cluster, the mean IFR (95% CI) from the remaining countries, assuming the data 135 

were from a single normal distribution, was 0.67% (0.62-0.72%), which is very close to the 136 

meta-analysis estimate in middle aged and older nations of 0.68% (95% CI 0.53-0.82%) [6]. 137 

Table 1: Characteristics of the three IFR clusters. 138 
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 139 

Cluster (N) Mean IFR (%)  

(95% CI)  

SD of 

distribution (%) 

(95% CI) 

IFR range (%) 

(min, max)  

Young (55) 0.20 (0.18-0.23) 0.03 (0.02-0.05) (0.14-0.25) 

Middle (75) 0.38 (0.30-0.48) 0.11 (0.05-0.15) (0.25-0.61) 

Older (71) 0.93 (0.78-1.03) 0.21 (0.13-0.28) (0.62-1.51) 

 140 

Figure 2: National membership of three IFR clusters. Countries with missing data are 141 

shown in white. 142 

For the trajectory analysis, cumulative death rates were available for 122 countries with at 143 

least 25 deaths 100 days after the first reported death, as of October 13, 2020. Trajectory 144 

analysis clustered countries based on the growth of weighted cumulative death rates over 145 

time and the groups are independent of the IFR clusters in Fig 2. Two and three clusters were 146 

found at 50 and 150 days, respectively; ‘Steady’, ‘Moderate’ and a third cluster ‘Fast’ at 150 147 

days (Table 2). Cluster group membership was based on the shape of the trajectory rather 148 

than the value of cumulative death rates at the end of the period. The first cluster, ‘Steady’, 149 

had cumulative death rates which had plateaued or slowly increased towards the end of the 150 

time window, while the second and third clusters, ‘Moderate’ and ‘Fast’, showed death rates 151 

which were moderately or rapidly increasing, respectively. Details of the statistical measures 152 

which defined the clusters at each time window and diagnostics can be found in S2 Table and 153 

S3 and S4 Figs in the Supporting Material. The median trajectories and interquartile ranges 154 

for each group at 50 and 150 days after the first reported death are shown in Fig 3. Since 155 

clusters were defined by the shape of the trajectories, cluster group membership did not 156 
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change in a sensitivity analysis using unweighted trajectories. Fig 4 shows national group 157 

membership of the trajectory clusters at 50 and 150 days after the first reported death.  158 

 159 

Table 2: Median cumulative death rate and interquartile range for clusters at 50 and 160 

150 days after the first reported death. 161 

Cluster  50 days 

(N) 

150 days 

(N) 

Median cumulative 

death rate at 50 days 

(IQR) (per 100k) 

Median cumulative 

death rate at 150 days 

(IQR) (per 100k) 

Steady 75 61 8.63 (4.10-18.0) 30.3 (12.3-55.0) 

Moderate 47 38 18.2 (3.9-48.0) 70.6 (37.3-189) 

Fast - 23 - 372 (295-492) 

 162 

Figure 3: Median cluster trajectories. Median trajectories (solid line) and interquartile 163 

range (dashed line) for the ‘Steady’ (blue), ‘Moderate’ (orange) and ‘Fast’ (red) clusters at 164 

(A) 50 days and (B) 150 days after the first reported death. 165 

 166 

Figure 4: National trajectory cluster group membership. Cluster group membership of the 167 

‘Steady’ (blue), ‘Moderate’ (orange) and ‘Fast’ (red) clusters at (A) 50 days and (B) 150 days 168 

after the first reported death. Countries excluded from the analysis are shown in white. 169 

 170 

Between the two time points, 58 out of 122 nations (48%) changed cluster group membership 171 

(Fig 5). Forty-four countries in the ‘Worse’ group moved to faster death trajectories, either 172 

from ‘Steady’ at 50 days to ‘Moderate’ or ‘Fast’ at 150 days; or from ‘Moderate’ at 50 days 173 
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to ‘Fast’ at 150 days. There were 14 countries in the ‘Improved’ group which changed from 174 

‘Moderate’ at 50 days to ‘Steady’ at 150 days.  175 

 176 

Figure 5: Change in trajectory cluster group membership over time. Change in group 177 

membership of trajectory clusters between 50 and 150 days after the first reported death. The 178 

‘Steady’ (blue) and ‘Moderate’ (orange) groups remained unchanged between time points. 179 

Between 50 and 150 days, ‘Improved’ (green) changed from ‘Moderate to ‘Steady’, while 180 

‘Worse’ (red) increased death rates to ‘Moderate’ or ‘Fast’.  181 

 182 

 Despite the trajectory clusters remaining unchanged between the weighted and unweighted 183 

analyses, there was evidence of an association between the IFR clusters and the change in 184 

cluster group membership of the death rate trajectories (Table 5, p=0.014). Middle aged 185 

countries were more likely to be ‘Worse’ between 50 and 150 days, while older nations were 186 

more likely to be ‘Steady’.  Young nations showed mixed patterns of change; they were just 187 

as likely to be ‘Moderate’ as ‘Improved’, or ‘Steady’ as ‘Worse’. Compared with Table 2, 188 

there were 20/55 (36%) young, 39/75 (52%) middle and 4/71 (6%) older nations which were 189 

excluded due to low numbers of reported deaths at 100 days. 190 

 191 

Table 5: Association between the IFR clusters and the change in trajectory membership 192 

between 50 and 150 days. Cells show N and row % for 122 nations. Row percentages may 193 

not add to 100% due to rounding. P-value from Fisher’s exact test. 194 

 Trajectory Change between 50 and 150 days p=0.014 

IFR cluster Steady Moderate Improved Worse Row Total 
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Young  14 (40%) 4 (11%) 4 (11%) 13 (37%) 35 

Middle 8 (22%) 8 (22%) 1 (3%) 19 (53%) 36 

Older 25 (49%) 5 (10%) 9 (18%) 12 (24%) 51 

 195 

Discussion 196 

The risk of death from COVID-19 is highly dependent on age. Current estimates of the IFR 197 

are between 0.5-1.3%, are difficult to calculate and assume a single value will describe the 198 

global impact of the disease. There have been few studies reporting IFRs for younger nations 199 

such as in Africa, possibly due to difficulties in testing, measuring the number of 200 

asymptomatic infections and reporting accurate death rates. It has been suggested the 201 

different regions will experience different IFRs due to age structure and co-morbidities [6, 202 

17-18]. A single estimate of the IFR for all nations may not capture the true global 203 

distribution. Other studies have predicted COVID-19 IFRs are reduced in low to middle 204 

income countries, even after adjusting for limited health system capacity [18-19]. Conversely, 205 

older nations experience higher IFRs, even those with more advanced health systems. 206 

Our study has shown that national IFRs estimated using direct age standardisation of Chinese 207 

data are not drawn from a single normal distribution, but from a mixture of three distributions 208 

with different means and standard deviations. This would explain some of the heterogeneity 209 

in the IFRs reported [6]. When countries from the ‘Young’ cluster were excluded, the mean 210 

of the remaining national IFRs, assuming a single normal distribution, is very close to the 211 

meta-analysis estimate in middle aged and older nations. If data from younger countries 212 

become available, they may confirm our findings. While younger nations may have lower age 213 

standardised IFRs, these countries may have less developed health systems and poorer health 214 
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status, so the actual infection fatality ratio in these nations may be higher than that estimated 215 

due to age alone [18]. 216 

While mortality risk increases exponentially with age, other factors may influence the spread 217 

of the disease and death rates over time. Trajectory analysis clustered nations depending on 218 

the growth in death rates at 50 and 150 days after the first reported death. At 50 days, North 219 

America, most of Europe and Asia, parts of Central and South America and Australia were 220 

experiencing moderately increasing death rates. By 150 days, parts of South-East Asia, 221 

Eastern Europe and Australia (the ‘Improved’ group in Fig 5) had stabilised their death 222 

trajectories through public health interventions such as lockdowns, increasing testing rates, 223 

mask wearing, contact tracing and border controls. In contrast, there were accelerating death 224 

rates in the USA, parts of Central and South America, the Middle East and Africa at 150 days 225 

(the ‘Worse’ group), while the ‘Moderate’ group included regions in South and East Asia, 226 

North Africa, Canada, Argentina and Russia which had not slowed their trajectories. The time 227 

window at 150 days may indicate that some nations were experiencing subsequent waves of 228 

infections due to the easing of restrictions or other factors, including those who had 229 

successfully suppressed the disease previously. 230 

 We found mixed evidence for the influence of age on death rate trajectories. The trajectory 231 

clusters were the same in the weighted and unweighted analyses at both time points and each 232 

trajectory cluster included a mixture of young, middle and older nations from the IFR 233 

clusters. However, we found an association between the IFR clusters and a change in the 234 

trajectory cluster group membership between 50 and 150 days.  The young and middle aged 235 

IFR clusters are very similar to the low- and middle-income nations discussed in Walker et al 236 

[19], so this apparent association may be due to other factors. For example, low income 237 

(younger) nations acted earlier with suppression strategies due to limited health system 238 

capacity [19] and nations which successfully suppressed the disease had too few deaths to 239 
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appear in the trajectory analysis. Apart from relatively immutable risk factors in a population, 240 

such as gender and co-morbidities [17-19], implementation of public health measures can 241 

make an important difference to the increase in deaths. Further investigation is required to 242 

determine the effect of age on death rate trajectories. 243 

In addition to age, mortality also depends on gender, co-morbidities, ethnicity, obesity and 244 

other risk factors such as smoking [20-21], as well as access to health services. Increased risk 245 

of severe COVID-19 requiring hospitalisation due to underlying health conditions has been 246 

calculated at the national level [17]. As an extension to our analysis, the risk models 247 

developed for infection hospitalisation ratios by Clark et al [17] could be adapted to the age 248 

standardised national IFR point estimates before clustering. However, Levin et al [7] found 249 

that age profiles and age-related prevalence accounted for up to 90% of geographic variation 250 

in national IFRs. 251 

Our study has some limitations. Age stratified IFRs relative to the 80+ age group may differ 252 

from those in China or Italy, particularly in countries where health system support is limited, 253 

overwhelmed or inequitable.  The assumption that infection rates are equal across age groups 254 

may be met only in nations with large outbreaks and high death rates or with high inter-255 

generational mixing [19, 22-23]. However, cluster group membership in the trajectory 256 

analysis did not depend on weighting for age adjustment. COVID-19 mortality data may be 257 

under-reported and the calculated IFRs may be under-estimates or lower bounds [18]. 258 

Conversely, mortality from COVID-19 may reduce throughout the pandemic as more 259 

effective treatments for the disease are discovered [24] and the calculated IFRs may become 260 

upper bounds. The IFR estimates were produced from data that was available in February 261 

2020, before large scale seroprevalence studies had been conducted [3-6]. If more up to date 262 

age stratified IFR estimates become available, the analysis can be updated. The spread of 263 

disease through a population may also depend on international mobility, climate or regional 264 
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susceptibility [25]. Finally, the association between the IFR clusters and the change in death 265 

rate trajectories between time points may be biased by socioeconomic factors or missing 266 

death rate trajectories in countries excluded due to low numbers of reported deaths. 267 

 268 

Conclusion 269 

Age standardised COVID-19 IFRs were clustered into three groups depending on national 270 

age profiles. A cluster of younger nations, predominantly in Africa, had a lower mean IFR 271 

than older nations. However, these countries may have less developed health systems and 272 

poorer overall health status, so the actual IFR in these nations may be higher than that 273 

estimated from age alone. The change in death rate trajectories over time was associated with 274 

age but may also be due in part to other factors such as public health interventions.  275 

It is important to consider the national age structure in planning for the impact of COVID-19 276 

on overall mortality, however public health interventions are important in reducing the spread 277 

of the disease and hence death rates in a population over time. 278 

 279 
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Supporting information captions 367 

S1 Table: Comparison of global age specific and relative IFRs. Confidence limits for 368 

IFR/IFR 80+ were estimated using the upper and lower limits for IFR and dividing by the 369 

point estimate for IFR 80+ (IFR 81+ for Italy). 370 

 371 

S1 Figure: Probability density function and histogram. Probability density function of 372 

fitted distributions from three clusters (solid line) and histogram of observed IFRs. 373 

 374 

S2 Figure: Model diagnostics. Quantile-Quantile plots to test normality (left) and estimated 375 

and empirical cumulative density functions (CDF) (right). 376 

 377 

S2 Table: Statistical measures of trajectory clusters. Statistical measures selected by 378 

factor analysis to describe the 50 and 150 day trajectories by cluster. 379 

 380 

S3 Figure: Criteria used to determine optimal number of clusters for 50 day 381 

trajectories. Cubic clustering criterion (ccc) criteria for 2-15 clusters (left) and within groups 382 

sum of squares for 1-15 clusters (right). 383 

 384 

S4 Figure: Criteria used to determine optimal number of clusters for 150 day 385 

trajectories. Cubic clustering criterion (ccc) criteria for 2-15 clusters (left) and within groups 386 

sum of squares for 1-15 clusters (right). 387 
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