
Emulated Clinical Trials from Longitudinal 
Real-World Data Efficiently Identify 
Candidates for Neurological Disease 
Modification: Examples from Parkinson's 
Disease 
Authors: Daphna Laifenfeld, PhD1,a,†, Chen Yanover, PhD2,b,†, Michal Ozery-Flato, PhD3,†, Oded 
Shaham, PhD2,c, Michal Rozen-Zvi, PhD3,4,*, Nirit Lev, MD/PhD1,d,‡ , Yaara Goldschmidt, PhD2,e,‡, 
Iris Grossman, PhD1,f,‡ 

Affiliations: 1Formerly Teva Pharmaceuticals Research & Development, Petach Tikva, Israel; 
2Formerly IBM Research – Haifa; 3IBM Research – Haifa; 4Faculty of Medicine, The Hebrew 
University, Jerusalem, Israel; aPresent Address: Ibex Medical Analytics, Tel Aviv, Israel; bPresent 
Address: KI Research Institute, Kfar Malal, Israel; cPresent Address: MeMed Dx, Haifa, Israel; 
dPresent Address: Meir Medical Center and Sackler Faculty of Medicine Tel Aviv University, Tel 
Aviv, Israel; ePresent Address: K Health, Tel Aviv, Israel; fPresent Address: Camp4 Therapeutics, 
Cambridge, MA, USA;  
† These authors contributed equally and share first authorship. 
‡ These authors contributed equally to this work. 

 
*Corresponding author: Michal Rosen-Zvi, rosen@il.ibm.com 

Haifa University Campus, Mount Carmel Haifa, 3498825, Israel 

Tel: (972) 04-8296517 

 

Conflict of Interest:  The authors declared no competing interests for this work. 

Funding:  No funding was received for this work. 

Key words: Real World Data; Clinical Evidence; Parkinson’s disease; Artificial Intelligence; Causal 
Inference; Rasagiline; Zolpidem; Disease Modifying Therapeutics; Repurposing. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.11.20171447doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.08.11.20171447


Abstract  
Real-world healthcare data hold the potential to identify therapeutic solutions for 

progressive diseases by efficiently pinpointing safe and efficacious repurposing drug candidates. 
This approach circumvents key clinical development challenges, particularly relevant for 
neurological diseases, concordant with the vision of the 21st Century Cures Act. However, to-
date, these data have been utilized mainly for confirmatory purposes rather than as drug 
discovery engines. Here, we demonstrate the usefulness of real-world data in identifying drug 
repurposing candidates for disease-modifying effects, specifically candidate marketed drugs that 
exhibit beneficial effects on Parkinson’s disease (PD) progression. We performed an 
observational study in cohorts of ascertained PD patients extracted from two large medical 
databases, Explorys SuperMart (N=88,867) and IBM MarketScan Research Databases 
(N=106,395); and applied two conceptually different, well-established causal inference methods 
to estimate the effect of hundreds of drugs on delaying dementia onset as a proxy for slowing PD 
progression. Using this approach, we identified two drugs that manifested significant beneficial 
effects on PD progression in both datasets: rasagiline, narrowly indicated for PD motor 
symptoms; and zolpidem, a psycholeptic. Each confers its effects through distinct mechanisms, 
which we explored via a comparison of estimated effects within the drug classification ontology. 
We conclude that analysis of observational healthcare data, emulating otherwise costly, large, 
and lengthy clinical trials, can highlight promising repurposing candidates for common, late-onset 
progressive diseases for which disease-modifying therapeutic solutions are scarce. 

 

Introduction 
Repurposing of marketed drugs is an increasingly attractive prospect for drug developers 

and patients alike, given the ever-increasing costs of de novo drug development1. The rationale 
underlying the practice of drug repurposing is supported by the demonstration, in a multitude of 
disease areas, of a drug’s mechanistic and clinical utility for multiple indications, ranging from 
migraine to autoimmune diseases2–4. While the majority of repurposed drugs have been 
identified through serendipity, recent years have witnessed a growth in systematic efforts to 
identify new indications for existing drugs. These efforts include experimental screening 
approaches5–7 and in silico approaches in which existing data are used to discover repurposing 
candidates (see Ref. 2 for in depth review of these methods). Yet, key challenges in translating 
repurposing ideas into clinical application have hampered progress along this otherwise 
promising avenue.  

Validating the efficacy of a drug for any indication ultimately requires data from humans 
treated with said drug, traditionally acquired through clinical trials. In the last decade, new 
opportunities have emerged for acquiring clinical evidence in manners complementing clinical 
trials, with the growing availability of real-world data (RWD), specifically electronic health records 
(EHRs) and medical insurance claims data, together with the advent of state-of-the-art 
computational methodologies. EHRs record multiple health-related data types over time, 
including drug prescriptions, lab test results of varying nature, physician visits, and 
symptomology, allowing the relationships between these different features to be assessed. 
Medical insurance claims data, another form of health related RWD, capture complementary and 
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partially overlapping information, including medical billing claims, enabling research of 
hospitalizations, doctor’s visits, drug prescription and purchasing, and clinical utilization. In the 
context of drug repurposing, there have been isolated attempts to use RWD in a confirmatory 
capacity, to support clinical incidental findings. For example, EHRs have been used to 
demonstrate an association between metformin and decreased cancer mortality8, and combined 
EHRs and claims data have been used to support the protective potential of L-DOPA against age-
related macular degeneration (AMD)9.  Here, we propose a novel approach in which, for the first 
time, retrospective RWD is used to “industrialize serendipity”. We therefore systematically 
emulate Phase IIb studies for all concomitant medications used in a disease (for other than 
disease modifying purposes), in order to identify potential unexpected beneficial effects. Further, 
investigating the effects of related drugs, e.g., sharing target profile or mechanism of action, 
allows the extraction of mechanistic explanations for drug effect. These effects, once validated 
in multiple independent sources of RWD, provide robust evidence on drug efficacy, tolerability, 
and safety, as well as mechanistic insight on disease modification. It is therefore envisaged that 
drug candidates identified in this manner will leapfrog into the registration trial phase, confirming 
aims stated in the USA’s 21st Century Cures Act10, and extending the European Medicines Agency 
(EMA) current use of RWD as an external control arm in rare disease clinical trials11.  

The complex nature and organ-inaccessibility of diseases related to the central nervous 
system (CNS) render them particularly attractive for an RWD-based approach of drug 
repurposing. For most CNS disorders, our understanding of pathophysiology and underlying 
etiology is still limited, resulting in poor availability of appropriate, mechanistically-relevant, 
animal models. Furthermore, clinical trials testing disease-modifying agents require lengthy and 
large studies, burdening the patient population and incurring high costs of development. 
Together, these limitations constrain the ability of field experts to rationally design drugs that 
target these devastating diseases. Thus, using RWD to robustly explore the relationship between 
various drugs and co-morbidities for which they are not prescribed can help mitigate the risk of 
lack of predictive animal models, alongside the lengthy clinical studies required to determine 
outcome in the human setting. An example of such an approach is described in Mittal et al.12 The 
authors used the Norwegian Prescription Database to demonstrate that individuals prescribed 
salbutamol (Beta2-adrenoceptor agonist) had a lower incidence of Parkinson’s disease (PD), 
while those prescribed propranolol (Beta2-antagonist) exhibited higher PD incidence. However, 
investigation of disease progression or severity was not pursued.  

PD is one of the most common neurodegenerative disorders, affecting 1 to 2 in 1,000 
individuals worldwide and 1% of the population above 60 years of age13. To-date, no disease-
modifying agents are approved for PD14, highlighting the need and potential for novel approaches 
utilizing RWD to bring new therapies to PD patients. One of the hallmark clinical pathologies of 
PD progression is PD dementia (PDD)15. An estimated 50-80% of PD patients experience dementia 
as their disease progresses, typically within 10 years of disease onset. It is therefore imperative 
to identify effective disease-modifying therapeutic agents. In this study, we used, for the first 
time, RWD from both EHRs and claims data to identify drugs associated with decrease in 
progression into PDD, as candidates for disease modification of PD. We applied a novel analytical 
framework of multiple, hierarchical “emulated clinical trials”, an approach that inherently 
proposes mechanistic rationale for these drugs. 
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Methods 
Study design 

We used the drug repurposing framework16, emulating a randomized controlled trial 
(RCT) for each candidate drug, combining subject matter expertise with data-driven analysis, and 
applying a stringent correction for multiple hypotheses. Specifically, it follows the target trial 
emulation protocol described by Hernán and Robins17, which includes the following steps: define 
the study eligibility criteria; assign patients to treatment and control cohorts; list and extract a 
comprehensive set of per-patient baseline covariates; list and extract follow-up disease-related 
outcome measures; and, finally, use causal inference methodologies18 to retrospectively 
estimate drug effects on disease outcomes, correcting for confounding and selection biases. We 
next elaborate on each of these protocol components.  
Eligibility Criteria  

Patients were included in the PD cohort based primarily on diagnosis codes (Table S1), 
using the International Classification of Diseases (ICD) system (ICD-9 and ICD-10). We required a 
repeated PD diagnosis on two distinct dates and excluded patients with secondary parkinsonism 
or non-PD degenerative disorders. We further excluded early-onset (age <55) PD, and patients 
with metastatic tumors or those ineligible for prescription drugs through their medical insurance 
plans. PD initiation date was set to the earliest date of first PD diagnosis or a levodopa 
prescription within the year preceding the first diagnosis of the disease. Since PD is likely present 
latently before the first diagnostic or prescription record, we retracted the disease initiation date 
by additional six months.  
Treatment Assignment 

Each emulated RCT compared PD patients who initiated treatment with either the studied 
drug (treatment cohort) or an alternative drug (control cohort), comprising at least two 
prescriptions. The date of treatment initiation (first prescription) was termed index date. To avoid 
confounding by indication, we considered alternative drugs that shared the same (or similar) 
therapeutic class. Specifically, we first compared each studied drug to drugs taken from its 
second level Anatomical Therapeutic Chemical (ATC)19 class. Then, for top candidates, we 
expanded the analysis to control cohorts corresponding to ATC classes of all levels.  

We only included patients whose PD initiation date preceded the index date and had data 
history of at least one year prior to the index date. The effect of the drug was measured by the 
change in the prevalence of newly diagnosed dementia during a follow-up period of two years. 
Patients with a dementia-related diagnosis at baseline were excluded, as were control cohort 
patients who were prescribed the trial drug. 
Covariates and Outcomes 

We extracted hundreds of pre-treatment patient characteristics20 (throughout the one 
year preceding the index date). A subject matter expert then identified those potentially 
associated with confounding or selection bias. These included demographic attributes, co-
morbidities and PD progression measures, prescribed drugs, healthcare services utilization and 
socioeconomics parameters (Table 1). The primary endpoint was newly diagnosed dementia as 
proxy for PD progression; other endpoints considered were fall and psychosis prevalence (see 
Table S3 for defining ICD codes). 
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Data Sources 
We analyzed two individual-level, de-identified medical databases. The IBM Explorys 

Therapeutic Dataset (“Explorys”; freeze date: August 2017) includes medical data of >60 million 
patients, pooled from multiple healthcare systems, primarily clinical EHRs. The IBM MarketScan 
Research Databases (“MarketScan”; freeze date: mid 2016) contain healthcare claims 
information from employers, health plans, hospitals, Medicare Supplemental insurance plans, 
and Medicaid programs, for ~120 million enrollees between 2011 and 2015.  
Statistical Analysis  

The effect of the trial drug on disease progression was evaluated as the difference 
between the expected prevalence of the outcome event for drug-treated patients and that in 
control patients during a complete follow-up period. Briefly, we corrected for potential 
confounding and selection biases, using two conceptually different causal inference approaches: 
(i) balancing weights, via Inverse Probability Weighting (IPW)21, which reweighs patients to 
emulate random treatment assignment and uninformative censoring; and (ii) outcome model, 
using standardization22 to predict counterfactual outcomes. We analyzed Explorys and 
MarketScan separately and report the overlapping candidates. This stringent approach bypasses 
the need to arbitrarily set aside one database as “confirmatory” and it extends more 
straightforwardly to >2 data resources. Finally, we used Benjamini and Hochberg’s23 method to 
correct for multiple hypothesis testing  and considered adjusted P-values ≤ 0.05 as statistically 
significant. For a full description of the RWD-based drug repurposing framework see our 
methodological paper16. Ground truth effects (that is, RCT-validated) are, typically, unavailable 
for drug repurposing candidates; notably, however, the estimated effects showed significant 
correlation across different algorithms and data sources (adjusted P-value < 0.05 for all 
comparisons across outcomes, databases, and causal inference algorithms), attesting to the 
robustness of the framework.  

Results 
We first extracted cohorts of late-onset PD patients comprising 106,000 and 89,000 

patients in MarketScan and Explorys, respectively, representing 0.09% and 0.15% of the total 
databases and consistent with recent epidemiological surveys13. Key characteristics of these 
separate cohorts (Table 2) exhibit high similarity in the average and range of age at first recorded 
diagnosis, the percentage of women, the fraction of patients with public insurance, and the 
baseline Charlson comorbidity index24. Notable dissimilarities between the two cohorts include 
the average total patient time in database, which was more than double in Explorys compared 
to MarketScan (Table 2). This dissimilarity stems from the different timespan covered in general 
by the two databases (average total patient timeline of 4.7±17.4 years in Explorys vs. 2.2±1.6 
years in MarketScan).  

Overall, 218 drugs were prescribed to at least 100 PD patients in both the MarketScan 
and Explorys PD cohorts. We used this lower bound since many Phase III clinical trials, including 
those pursued in neurological indications, find 100 or less patients per arm to be satisfactory. Of 
these, we were able to balance the treatment and control cohorts (using IPW, see Methods) for 
205 drugs (94%). Consequently, for each such drug we emulated an RCT, estimating its effect on 
the population-level prevalence of newly diagnosed dementia, in comparison to the level-2 
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Anatomical Therapeutic Chemical (ATC) control cohort. Using two independent causal inference 
methods, outcome model and balancing weights, our analysis identified, in both data sources, 
two candidate drugs estimated to significantly reduce dementia prevalence: rasagiline and 
zolpidem (see cohort characteristics in Tables S4-S7).  

Details of the emulated RCTs, estimating the effect of these drugs compared to their 
corresponding control ATC level-2 class, are shown in Table 3,4, S8 and S9. Figure 1 shows the 
prevalence of newly diagnosed dementia in the treatment and control cohorts throughout the 
follow-up period. Consistently, rasagiline is estimated to decrease the prevalence of newly 
diagnosed dementia by 7-9%, compared to symptomatic PD drugs. Zolpidem, compared to the 
class psycholeptics drugs, reduces dementia prevalence by 8-12%.  

 

 
Figure 1: Rasagiline and Zolpidem significantly delay the onset of dementia in PD 

patients in two independent datasets. Kaplan-Meier plots comparing the prevalence of newly 
diagnosed dementia in the treatment and control cohorts, corrected with inverse probability 
weighting (IPW, dark color), or uncorrected (light color). Red and blue lines show the expected 
percentage of patients not yet diagnosed with dementia at each time point among the patients 
who take the drug and among the patients who take other ATC level 2 drugs (N04: symptomatic 
PD drugs; N05: Psycholeptics), respectively. The difference between each pair of red and blue 
lines correspond to the expected effect of the drug. 
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Next, we expanded the analysis to consider all four ATC levels that include each drug, 
corresponding to anatomical main group (level 1), therapeutic subgroup (level 2), 
pharmacological subgroup (level 3), and chemical subgroup (level 4). Specifically, we compared 
each drug against all its encompassing ATC classes and additionally, each encompassing ATC class 
against all upper-level classes in the ATC hierarchy. The resulting  set of RCTs estimates the effect 
of a target drug against drugs sharing its mechanism of action (MoA; e.g., rasagiline versus other 
monoamine oxidase B inhibitors, ATC class N04BD), as well as drugs conferring different MoAs 
(e.g., monoamine oxidase B inhibitors, N04BD, versus other dopaminergic agents, N04B), thus 
testing a set of related mechanistic hypotheses. This can be viewed as sensitivity analyses for the 
effect of a target drug. Table S11 shows the complete results of these emulated RCTs.  

ATC level-4 class N04BD, monoamine oxidase (MAO) B inhibitors, included only two 
drugs: rasagiline and selegiline. Therefore, the rasagiline versus N04BD emulated trial is 
essentially a head-to-head comparison between these two drugs. The results of the emulated 
trials in both MarketScan and Explorys suggest that the use of rasagiline reduces the prevalence 
of dementia compared to selegiline (Table 3; estimations using outcome model are significant). 
When compared to higher level ATC classes – specifically, dopaminergic agents, symptomatic PD 
drugs, and nervous system medications – all dominated by levodopa (77-82% of first 
prescriptions), rasagiline is estimated to significantly decrease dementia prevalence by 5-9% in 
both databases, using either causal inference approach (Table 3, and Table S8). We also 
estimated the effect of rasagiline on the prevalence of falls and psychosis: In MarketScan, 
rasagiline is estimated, by both causal inference algorithms, to decrease the population 
prevalence of falls compared to all its encompassing ATC classes; In Explorys, rasagiline is 
estimated to have a beneficial effect on the prevalence of psychosis (but only a subset of these 
estimands were significant).  

Zolpidem was estimated to have significant and beneficial effects on the prevalence of 
dementia only in comparison to its level-2 ATC class, psycholeptics (Table 4, and Table S9). The 
analysis in MarketScan suggests that zolpidem has a beneficial effect compared to other 
hypnotics and sedatives (N05C), but the different composition of the N05C control cohort in 
Explorys (dominated by midazolam) hinders conclusive results. Zolpidem was also estimated to 
have beneficial effects on the prevalence of falls and psychosis, compared to psycholeptics, but 
these effects were not significant.  

Discussion 
The present study used both EHRs and insurance claims data to assess the effects of 

hundreds of concomitant drugs on PD-associated dementia as one of the more common 
hallmarks of PD progression. Only those drugs for which a statistically significant effect was found 
independently in both EHR and claims data were further considered for their repurposing 
potential. Given the different nature of the data collected with each health data source and 
stringent statistical approach, the resultant repurposing candidates have a high likelihood of 
success in a Phase III prospective study. Our analysis unraveled therapeutic benefits of two drugs 
in decreasing the population-level incidence of PDD, representing slowing of PD disease 
progression. Thus, long-term treatment (24 months) with rasagiline, a MAO-B inhibitor narrowly 
indicated for PD motor symptoms, or with zolpidem, a gamma-aminobutyric acid (GABA)-A 
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receptor modulator indicated for insomnia, is strongly associated with decreased PDD incidence 
in two separate large cohorts (N=195,262 in total). Indeed, the mechanistic, and at times clinical, 
support for the identified associations, as described below, not only provides support for the 
approach in identifying new drug repurposing candidates, but also a vehicle to bolster otherwise 
ambiguous results from RCTs.  

Cognitive impairment is highly prevalent in patients with progressive stages of PD and is 
associated with adverse health outcomes and increased mortality25. Cognitive deficits vary in 
quality and severity in different stages of disease progression in PD, ranging from subjective 
cognitive decline to mild cognitive impairment and to subsequent PDD. The latter is defined as 
acquired objective cognitive impairment in multiple domains, including attention, memory, 
executive and visuospatial ability26, and results in adverse alteration of activities of daily life27. A 
78% eight-year cumulative prevalence of PDD development was reported in Norwegian PD 
patients28, and 83% over 20 years in Australia29. A single choline esterase inhibitor, rivastigmine, 
is approved by the US Food and Drug Administration (FDA) for the treatment of PDD, with modest 
efficacy30 resulting in a significant unmet medical need for additional pro-cognitive therapies31.  

Our finding that rasagiline slows PD progression is consistent with mechanistic evidence 
and extends prior clinical data. Clinical trials of rasagiline in PD patients implied possible disease-
modifying effects, albeit inconclusively. Indeed, none of the studies reported to-date had the 
statistical power to support or refute slowing the progression of the disease. The largest study to 
assess disease-modifying effects of rasagiline was ADAGIO32, which failed to demonstrate a dose-
dependent effect on the Unified Parkinson’s Disease Rating Scale (UPDRS) scores. This failure 
may be partly due to insufficient statistical power: the total number of participants in the ADAGIO 
study was N=1,176, much smaller than in our study (N=13,562 in Explorys; N=13,373 in 
MarketScan; See Table 3). Additionally, the ADAGIO study did not directly assess effects of 
rasagiline on cognition. Several recent studies addressed this hypothesis more directly, but were 
small (N=34-151) and short (3-6 months), yielding mixed results33-34. Importantly, many of the 
prior reports sought to demonstrate disease prevention/protection in as-yet-to-be-diagnosed 
patients, while we studied patients with confirmed PD diagnosis. Due to this important 
distinction, it can be expected that the class and specific agents reported, e.g., by Mittal et al35, 
to decrease (or increase) PD incidence did not show, in our analysis, similar effects. Overall, 
inadequate power and diverse study designs hampered conclusive therapeutic interpretation of 
the role of rasagiline, and the monoamine B class, as PD disease modifiers. Indeed, our approach 
directly resolved these shortcomings, dramatically increasing sample size and follow-up duration 
by virtue of the use of RWD, facilitating the discovery of rasagiline’s robust and consistent 
disease-modifying effects. Importantly, our analysis of proxy parameters supports the beneficial 
effects of rasagiline on PD progression beyond PDD, as reflected by a decrease in the population 
prevalence of falls and the trend reduction of psychosis (data not shown). 

Mechanistically, rasagiline has been suggested to have neuroprotective effects mediated 
by its ability to prevent mitochondrial permeability transition36. In addition, rasagiline induces 
anti-apoptotic pro-survival proteins, Bcl-2 and glial cell-line derived neurotrophic factor (GDNF) 
and increases expression of genes coding for mitochondrial energy synthesis, inhibitors of 
apoptosis, and the ubiquitin-proteasome system. Finally, systemic administration of selegiline 
and rasagiline increases neurotrophic factors in cerebrospinal fluid of PD patients and non-
human primates37. 
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The association between zolpidem, a non-benzodiazepine hypnotic drug used for the 
treatment of sleeping disorders, and decreased PDD incidence identified herein is a novel finding. 
In fact, a single prior report published more than two decades ago speculated that zolpidem 
would not be efficacious for PD, based on the limited clinical experience with the drug at the 
time, without specific consideration for cognition38. However, recent publications demonstrate 
Zolpidem’s ability to treat a large variety of neurologic disorders, most often related to 
movement disorders and disorders of consciousness, and suggest zolpidem induces transient 
effects on UPDRS39. Of note, several cross-sectional reports have raised concerns for increased 
risk of reversible dementia or Alzheimer’s diseases in the general population when exposed to 
zolpidem40 41. However, these reports considered only a handful of potential confounding biases, 
and applied regression-based methods, which unlike IPW, do not allow one to determine 
whether treatment and control biases were successfully eliminated21. Furthermore, neither 
report assessed impact on specific patient subsets, such as those diagnosed with PD. Indeed, a 
proof-of-concept clinical study is currently recruiting subjects in order to assess the benefits of 
low-dose zolpidem in late-stage PD (NCT03621046), supporting the findings reported herein. Yet 
again, the limited sample size (N=28) in the recruiting study, together with the inclusion of 
cognition as a secondary (rather than primary) endpoint both pose a high risk for insufficient 
power and thus inconclusive results. Finally, latest literature reports on beneficial effects of 
zolpidem on renal damage and akinesia42 support a high benefit-risk profile of repurposing 
zolpidem for slowing or reversal of PD. 

Mechanistically, a structural relationship between the antioxidant melatonin and 
zolpidem suggests possible direct antioxidant and neuroprotective properties of zolpidem. 
Garcia-Santos et al43 demonstrated that zolpidem prevented induced lipid peroxidation in rat 
liver and brain homogenates, showing antioxidant properties similar to melatonin. Bortoli et al42 
investigated in silico the antioxidant potential of zolpidem and identified it as an efficient radical 
scavenger similar to melatonin and Trolox. Although the mechanisms involved in the 
pathogenesis and progression of PD are not fully understood, there is overwhelming evidence 
that oxidative stress plays an important role in dopaminergic neuronal degeneration. Since the 
maintenance of reduction-oxidation reaction potential is an important determinant of neuronal 
survival44, its disruption ultimately leads to cell death. Accumulating evidence from patients and 
disease models indicate that oxidative and nitrative damage to key cellular components is 
important in the pathogenesis of PD progression45. Oxidative stress plays an important role in 
dopaminergic neuronal degeneration, triggering a cascade of events, including mitochondrial 
dysfunction, impairment of nuclear and mitochondrial DNA, and neuroinflammation, which in 
turn cause more reactive-oxygen species (ROS) production46. Genetic forms of PD, including 
those caused by mutations in PARK7, PINK1, PRKN, SNCA and LRRK2, also demonstrate the 
fundamental role that mitochondrial function plays in disease etiology45. Thus, the protective 
effects of zolpidem on the development of dementia could be explained by the antioxidant and 
neuroprotective capacities of the drug. 

In a preliminary method development study16, we validated the drug repurposing 
framework used here. We demonstrated that treatment effects estimated across different data 
sources and causal methodologies showed a high degree of agreement (P-value < 0.05 for all 
comparisons). Yet, the retrospective design of the study, combined with the use of RWD, 
introduces some limitations. Specifically, proxies with reliable representation in the data are 
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required to emulate the endpoints in prospective clinical trials and need to be further assessed 
and refined in a controlled clinical environment47. Conversely, the mechanistic nature of the drug 
effects, and therefore potential utility in combination therapy for synergistic effects, require 
further assessment in a dedicated prospective study, consistent with the drug development 
paradigm. In addition, while RWD used in a retrospective manner enables the assessment of 
chronic processes, without the need for lengthy studies, they are bound by the length of follow-
up data per individual. Finally, local healthcare practice may at times confound the analysis and 
requires in-depth understanding of such practices in data interpretation48.  

Notwithstanding these limitations, discoveries stemming from RWD of large, well-
characterized patient populations can provide valuable clues to effective mechanisms and 
existing medications that may be beneficial in slowing disease progression, or potentially 
preventing it altogether. In the realm of CNS-related diseases, the extensive follow-up integral to 
medical-record tracking presents a well-suited setting for investigating the effects of concomitant 
interventions. The EMA has already employed RWD in lieu of control arms to support regulatory 
decisions either at authorization or for indication extension, in the context of rare, orphan 
diseases11. Similarly, the 21st Century Cures Act10 requires that the FDA establish a framework to 
evaluate the potential use of RWD in support of approval of new indications for approved drugs. 
In fact, successful examples are already being implemented49. Accordingly, the FDA allotted $100 
million to build an EHR database of 10 million people as a foundation for more robust 
postmarketing studies. The current study provides evidence in support of such uses for RWD, 
accelerating the availability of solutions for patients in need. 

In conclusion,  we demonstrated that emulating clinical trials based on observational 
healthcare data identifies promising repurposing drug candidates, efficiently relieving the 
societal burden of costly, large, and lengthy clinical trials. This approach is particularly relevant 
as a therapeutic discovery engine for common, late-onset progressive CNS diseases for which 
disease-modifying therapeutic solutions are scarce. The two drugs identified herein, rasagiline 
and zolpidem, both hold great promise as disease-modifying agents for PD, in general, and 
specifically in addressing aspects of cognitive impairment in PD. Further, these cognitive benefits 
may extend to other neurodegenerative diseases. The ability to systematically compare effects 
between various drug classes, as well as within classes, in patients in real-world settings is a 
significant step in accelerating patients’ access to safe and efficacious therapies.  
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Tables 
Table 1. Pre-treatment patient characteristics at baseline period. 

Characteristic Description 

Age At index date 

Gender Male, Female, unknown 

Co-Morbidities 
Charlson’s comorbidity index 22; an indicator per each of its 
underlying comorbidity category; and an indicator per each 
diagnosis class, using the Clinical Classification Software 46 

PD progression over 
the baseline period 
(Table S3) 

Dementia, measuring progression along the cognitive axis; falls, 
as a proxy to advanced motor impairment and dyskinesia; and 
psychosis, measuring progression along the behavioral axis. 

Drugs 

Indicators for prescriptions of PD indicated drugs (Table S2) 
during the baseline period, excluding the index-date; indicators 
for anti-cholinergic (ATC N04A), dopaminergic (ATC N04B), anti-
psychotics (ATC N05A) and anti-dementia (ATC N06D) drugs; 
indicators for Level 2 ATC class of all prescribed drugs. 

Healthcare services 
utilization 

Counts of distinct visit dates per provider place and type 
(MarketScan only); total days of admission per encounter type 
(Explorys only); indicator for index date drug prescription during 
inpatient hospitalization (Explorys only). 

Socioeconomics Indicators for commercial, Medicare-Supplemental, and Medicaid 
insurance (MarketScan only). 
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Table 2. PD cohort characteristics.  

 MarketScan Explorys 

Patient count 106,395 88,867 

Patient timeline [years]   

 Totala 3.0 (1.6) [1.7; 3.0; 5.0] (5.7) [2.9; 6.5; 11.6] 

 Before first PD diagnosisa 0.7 (1.1) [0.0; 0.0; 1.0] (5.0) [0.0; 2.4; 7.3] 

 After first PD diagnosisa 2.3 (1.4) [1.1; 2.0; 3.2] 3.3 (2.7) [1.2; 2.7; 4.7] 

No. of unique prescribed drugsa 14.5 (10.4) [7.0; 13.0; 20.0] 13.1 (18.7) [0.0; 5.0; 19.0] 

Insurance   

 Medicare, Medicaid, other public 90280 (84.9%) 65146 (73.3%) 

 Commercial, private only 16115 (15.1%) 10810 (12.2%) 

 Other or unknown 0% 12911 (14.5%) 

Baseline characteristics (during £1 year before diagnosis)  

 Age at first diagnosisa 74.8 (10.0) [66.2; 75.6; 82.7] 74.3 (8.1) [68.6; 75.3; 80.7] 

 Women 49,693 (46.7%) 37,958 (42.7%) 

PD progression   

 Falls 1746 (1.6%) 3604 (4.1%) 

 Psychosis 2368 (2.2%) 1209 (1.4%) 

 Dementia 9761 (9.2%) 6716 (7.6%) 

Comorbidities (during £1 year before diagnosis)  

 Charlson's Comorbidity Indexa 0.7 (1.6) [0.0; 0.0; 1.0] 0.6 (1.3) [0.0; 0.0; 1.0] 

 Diabetes mellitus    

 with no complications  12,573 (11.8%) 9193 (10.4%) 

 with chronic complications 4035 (4%) 1970 (2.2%) 

 COPD 8513 (8%) 5806 (6.5%) 

 Cerebrovascular disease 8231 (7.7%) 4839 (5.5%) 

 Peripheral vascular disease 6078 (5.7%) 3144 (3.5%) 

 Congestive heart failure 5786 (5.4%) 3908 (4.4%) 

 Kidney disease 4430 (4.2%) 3628 (4.1%) 

 Malignancy 4377 (4.1%) 3493 (3.9%) 

 Dementia 3401 (3.2%) 2311 (2.6%) 
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 Myocardial infarction 1600 (1.5%) 1717 (1.9%) 

 Rheumatic disease 1233 (1.2%) 1025 (1.2%) 

 Mild liver disease 878 (0.8%) 648 (0.7%) 

 Hemiplegia paraplegia 785 (0.7%) 412 (0.5%) 

 Peptic ulcer disease 482 (0.5%) 398 (0.5%) 

 Metastatic solid tumor 395 0.37% 276 0.31% 

 Severe liver disease 134 0.13% 91 0.10% 

 AIDS 28 0.03% 18 0.02% 

Follow-up characteristics (during £2 years following diagnosis) 

PD progression   

 Dementiab 43806, 45% (41.2%) 25446, 32% (28.6%) 

 Charlson's Comorbidity Indexa 2.8 (2.8) [1.0; 2.0; 4.0] 1.8 (2.4) [0.0; 1.0; 3.0] 

a Mean, standard deviation (in parentheses), and the first, second (median), and third quartile (in 
brackets). 

 b Population-level follow-up prevalence of dementia corresponds to the Kaplan-Meier estimator, 
which adjust for censoring, with the non-adjusted prevalence given in parentheses. 
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3. Rasagiline significantly attenuates PD progression.  

Control cohorta 
(ATC, level) 

Control cohort index-date 
drugsb 

N 
Treatmentc 

N 
Controlc 

Effectd  
(adjusted P-value) 

Weight balancing Outcome 
model 

MarketScan 

Monoamine 
oxidase B 
inhibitors 
(N04BD, 4) 

Selegiline 99% 

3,094 428 -0.009 -0.06 

(100%) (100%) (0.386) (0.016) 

Dopaminergic 
Agents (N04B, 3) 

Levodopa 81%, Ropinirole 
7%, Pramipexole 7% 

3,094 10,279 -0.09 -0.07 

(100%) (100%) (8.3E-09) (1.2E-05) 

Anti-Parkinson 
Drugs (N04, 2) 

Levodopa 80%, Ropinirole 
7%, Pramipexole 7% 

3,094 10,289 -0.09 -0.07 

(100%) (100%) (1.2E-10) (4.7E-06) 

Nervous System 
(N, 1) 

Levodopa 77%, Pramipexole 
8%, Ropinirole 7% 

3,022 3,469 -0.09 -0.07 

(98%) (63%) (8.3E-09) (4.3E-07) 

Explorys 

Monoamine 
oxidase B 
inhibitors 
(N04BD, 4) 

Selegiline 100% 

1,988 414 -0.06 -0.08 

(97%) (78%) (0.131) (0.011) 

Dopaminergic 
Agents (N04B, 3) 

Levodopa 80%, Ropinirole 
10%, Pramipexole 10%, 
Entacapone 7%, 
Amantadine 6% 

896 12,666 -0.09 -0.07 

(44%) (66%) (3.8E-06) (2.7E-04) 

Anti-Parkinson 
Drugs (N04, 2) 

Levodopa 78%, Ropinirole 
10%, Pramipexole 9%, 
Entacapone 7%, 
Amantadine 6% 

885 12,408 -0.08 -0.07 

(43%) (64%) (1.2E-05) (2.6E-04) 

Nervous System 
(N, 1) 

Levodopa 81%, Aspirin 
14%, Pramipexole 12%, 
Ropinirole 12%, 
Acetaminophen 11%, 
Entacapone 10% 

887 5,909 -0.09 -0.09 

(43%) (37%) (5.2E-06) (2.4E-05) 

Each row corresponds to an emulated RCT estimating the effect of rasagiline on population-level 
prevalence of newly diagnosed dementia, serving as proxy for PD progression, in PD patients in 
the MarketScan (top panel) and Explorys (bottom panel) cohorts.  
a Control cohorts comprise patients prescribed any drug sharing rasagiline’s (ATC) class at various 
levels.  
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b Distribution of index-date drugs within the ATC class control cohort; shown are at most the six 
top drugs, prescribed to ³ 5% of the cohort patients. For the complete distribution, see Table 
S10. 
c Patient counts in each cohort, as well as their percentage out of the corresponding initial cohorts 
(prior to positivity enforcement; see Methods for details). 
d Effects (and FDR-adjusted P-values), estimated using either weight balancing or an outcome 
model, are colored green if beneficial; dark-shaded cells indicate significant effects (adjusted P-
value £ 0.05). The reported effect is the difference between the expected prevalence of dementia 
in the treatment and control cohorts; see Covariates and Outcomes for more details.  
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Table 4. Zolpidem significantly attenuates PD progression.  

Control cohort 
(ATC, level) Control cohort index-date drugs N 

Treatment 
N 

Control 

Effect (P-value)a 

Weight balancing Outcome model 

MarketScan 

Benzodiazepine 
related drugs 
(N05CF, 4) 

Eszopiclone 64%, Zaleplon 33% 
847 107 -0.03 -0.1 

(100%) (100%) (0.391) (0.189) 

Hypnotics and 
Sedatives 
(N05C, 3) 

Temazepam 56%, Scopolamine 13%, 
Eszopiclone 12%, Zaleplon 7% 

847 505 -0.13 -0.13 

(100%) (100%) (0.043) (0.016) 

Psycholeptics 
(N05, 2) 

Alprazolam 23%, Lorazepam 20%, 
Quetiapine 19%, Diazepam 9%, 
Temazepam 5% 

847 3,116 -0.12 -0.1 

(100%) (100%) (2.7E-04) (0.004) 

Nervous System 
(N, 1) 

Levodopa 48%, Rasagiline 9%, 
Acetaminophen 7%, Pramipexole 5% 

847 6,501 -0.09 -0.04 

(100%) (100%) (0.004) (0.109) 

Explorys 

Benzodiazepine 
related drugs 
(N05CF, 4) 

 
1,828 98 

Control cohort too small 
  

Hypnotics and 
Sedatives 
(N05C, 3) 

Midazolam 76%, Temazepam 12%, 
Melatonin 9% 

1,828 3,992 0.01 0.006 

(100%) (100%) (0.281) (0.386) 

Psycholeptics 
(N05, 2) 

Midazolam 30%, Lorazepam 21%, 
Alprazolam 12%, Quetiapine 10%, 
Zolpidem 8%, Diazepam 7% 

1,828 9,067 -0.08 -0.08 

(100%) (100%) (3.7E-04) (9.4E-05) 

Nervous System 
(N, 1) 

Acetaminophen 43%, Levodopa 
37%, Midazolam 25%, Lorazepam 
23%, Fentanyl 22%, Aspirin 21% 

1,804 3,321 -0.02 -0.01 

(99%) (21%) (0.180) (0.295) 

a The reported effect is the difference between the expected prevalence of dementia onset, used 
as proxy for PD progression, in the treatment and control cohorts. Beneficial effect is highlighted 
in green and non-beneficial effect is highlighted in Red. See the Table 2 footnotes for more 
details. 
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