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Abstract 8 

With surging global demand for increased SARS-CoV-2 testing capacity, clinical laboratories 9 

seek automated, high-throughput molecular solutions, particularly for specimen types which do 10 

not rely upon supply of specialized collection devices or viral transport media (VTM).  Saliva 11 

was evaluated as a diagnostic specimen for SARS-CoV-2 using the cobas® SARS-CoV-2 Test 12 

on the cobas® 6800 instrument.  Saliva specimens submitted from various patient populations 13 

under investigation for COVID-19 from March-July 2020 were processed in the laboratory with 14 

sterile phosphate-buffered saline in a 1:2 dilution and vortexed with glass beads.  The processed 15 

saliva samples were tested using a commercial assay for detection of the SARS-CoV-2 E gene 16 

(LightMix®) in comparison to the cobas® SARS-CoV-2 Test.  22/64 (34.4%) of the saliva 17 

samples were positive for SARS-CoV-2.  Positive and negative concordance between the 18 

LightMix® and cobas® assays were 100%.  There was no cross-contamination of samples 19 

observed on the cobas® 6800.  The overall invalid rate for saliva on the cobas® 6800 (1/128, 20 

0.78%) was similar to the baseline invalid rate observed for nasopharyngeal swabs/VTM and 21 

plasma samples.  Saliva is a feasible specimen type for SARS-CoV-2 testing on the cobas® 22 

6800, with potential to improve turnaround time and enhance testing capacity. 23 
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Introduction 24 

The global public health response to the COVID-19 pandemic highlighted the critical need for 25 

diagnostic testing which is sustainable, practical, rapid and scalable(1).  With an increasing 26 

worldwide demand for SARS-CoV-2 molecular testing, supply-chain issues for high-quality, 27 

flocked nasopharyngeal (NP) swabs have created significant challenges for testing capacity in 28 

clinical and public health laboratories.  Alternate specimen types, such as saliva, have been 29 

reported in some studies to have nearly comparable sensitivity to nasopharyngeal swabs for the 30 

detection of SARS-CoV-2, and may be an appropriate supplemental or alternate diagnostic 31 

specimen(2–4).  Although a variety of methods for saliva collection have been described(2, 5, 6), 32 

we have previously shown the utility of testing saliva in the absence of transport media, which 33 

enables a simple collection technique that avoids the introduction of potential inhibitors(7, 8) and 34 

dependence on supply of specialized saliva collection devices. 35 

In addition to potentially obviating supply shortages, saliva has been increasingly described as a 36 

useful sample for the diagnosis of COVID-19 to overcome certain pre-analytical collection 37 

challenges.  Flocked NP swabs have been the preferred specimen type due to established 38 

sensitivity, but may occasionally result in false-negative test results due to poor specimen 39 

collection quality(9) or timing of testing relative to symptom onset(10–12).   Lower respiratory 40 

tract specimens such as a bronchoalveolar lavage are often obtained from severely ill patients, 41 

but require aerosol-generating medical procedures and thus have the potential for aerosolization 42 

and transmission of SARS-CoV-2.  Furthermore, only a minority of patients with COVID-19 are 43 

able to produce expectorated sputum(13).  Saliva is a convenient alternate sample to collect for 44 

SARS-CoV-2 detection, particularly for patients with high clinical suspicion for COVID-19 but 45 
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repeatedly negative test results by NP swabs(14, 15) or for individuals unwilling or unable to 46 

tolerate NP swab collection. 47 

Within our clinical laboratory, processing and testing of saliva is currently a manual process 48 

requiring extraction (MagNA Pure Compact or MagNA Pure 96, Roche Molecular Diagnostics, 49 

Pleasanton, CA) followed by amplification (LightCycler 480, Roche).  Post-analytical reporting 50 

into the electronic medical records system is also a manual process.  As a result, capacity for 51 

saliva testing in our laboratory is limited, with delays in turnaround time compared to 52 

nasopharyngeal swabs which are processed entirely on the automated cobas® 6800 (Roche).  We 53 

sought to evaluate the potential utilization of the cobas® 6800 for SARS-CoV-2 detection from 54 

saliva. 55 

 56 

Materials and Methods 57 

From March-July 2020, saliva was ordered by clinicians from both hospitalized and ambulatory 58 

patients for the diagnosis of COVID-19.  Briefly, >1mL of saliva was collected in a sterile 59 

screw-top container (Starplex Scientific Inc., Etobicoke, Canada) without the addition of 60 

transport media, and then processed in the virology laboratory with phosphate-buffered saline 61 

(PBS) in a 1:2 dilution and glass beads.  Samples were tested using the LightMix® ModularDx 62 

SARS-CoV (COVID19) E-gene assay (TIB Molbiol, Berlin, Germany), with use of the MagNA 63 

Pure Compact or MagNA Pure 96 and LightCycler 480.  The remaining volume of processed 64 

saliva samples was stored at –70°C.  Processed saliva samples were then tested with the cobas® 65 

SARS-CoV-2 Test (Roche Molecular Diagnostics, Laval, QC) on the cobas® 6800.  Prior to 66 

cobas® SARS-CoV-2 testing, a software upgrade (Assay Specific Analysis Package [ASAP]) 67 

was required on the cobas® 6800 to prevent viscous specimens from mistakenly being 68 
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interpreted as clotted/invalid by the instrument.  Samples known to be positive for SARS-CoV-2 69 

based on results from the LightMix® assay were alternated with negative samples in a 70 

checkerboard pattern on the 96-well processing plate, and tested in duplicate. 71 

 72 

Results 73 

A total of 64 clinical saliva samples were included and tested in duplicate for SARS-CoV-2 on 74 

the cobas® 6800.  Twenty-two (34.4%) of the samples were known to be positive for SARS-75 

CoV-2 based on prior results from the LightMix® assay, and 42 (65.6%) had no detectable 76 

SARS-CoV-2.  Compared to the LightMix® assay, positive percent agreement and negative 77 

percent agreement on the cobas® 6800 were 100%.  The median cycle threshold (Ct) values for 78 

detection of the Envelope (E) gene were comparable between the cobas® 6800 (28.82, 79 

interquartile range [IQR] 7.29) and the LightMix® assay (26.63, IQR 7.61) (Figure 1).  No 80 

carryover or cross-contamination of samples was observed, even with strongly positive samples 81 

(Ct values 13 to 24) directly adjacent to negative samples.  One saliva sample produced an error 82 

which was reported by the cobas 6800® instrument as ‘Invalid’; this sample was successfully 83 

tested on the duplicate run.  In total, the observed error rate for saliva samples tested on the 84 

cobas® 6800 was 0.78% (1/128). 85 

 86 

Discussion 87 

In our evaluation of the cobas® 6800 for saliva testing, we demonstrated complete concordance 88 

in comparison to the LightMix® assay, which is the current assay utilized in our laboratory for 89 

clinical testing of specimens other than NP swabs such as saliva. 90 
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Previous studies have evaluated the feasibility of saliva for SARS-CoV-2 detection on 91 

commercial instruments such as the Cepheid GeneXpert® System(16) and cobas® 8800(12).  92 

However, there are technical challenges associated with processing saliva for automated, high-93 

throughput testing.  As a highly viscous sample compared to viral transport media, there is 94 

potential for pipetting errors or instrument contamination.  In our laboratory, saliva is pre-95 

processed with sterile PBS and glass beads in order to decrease the viscosity of the sample.  The 96 

samples utilized in the study were from a variety of clinical situations, including long-term care 97 

residents, inpatients at a tertiary care hospital, and outpatient contacts of known COVID-19 98 

patients; these samples would be broadly representative of saliva ordered and collected for 99 

clinical testing in the future.  Reassuringly, testing with this specimen type did not result in a 100 

significant number of invalid results (1/128, 0.78%), and was comparable to the rate of invalid 101 

results observed in our laboratory from nasopharyngeal swabs with the SARS-CoV-2 Test 102 

(0.20%) and plasma used with other cobas® 6800 assays (0.30%) (unpublished data).  We also 103 

assessed the potential for carryover during pipetting on the cobas® by testing positive samples 104 

alternated with negative samples in a checkerboard pattern, and did not identify any cross-105 

contamination of samples. 106 

This study is limited by the retrospective testing of stored saliva samples.  Clinical testing was 107 

performed in real time on the LightMix® assay, and samples were stored for subsequent testing 108 

on the cobas® after the software had been upgraded.  Although testing was not performed in 109 

parallel, there was high concordance of testing despite sample storage.  Furthermore, testing of 110 

retrospective samples was necessary to ensure a sufficient number of saliva samples with 111 

detectable SARS-CoV-2 RNA were included. 112 
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Due to limited remnant sample volume in some cases, five of the twenty-two saliva samples 113 

positive for SARS-CoV-2 (22.7%) underwent additional dilution with sterile PBS in order to test 114 

on the cobas® 6800.  The Ct values in these cases cannot be directly compared to those from the 115 

LightMix® assay as a measure of assay performance; however, the dilution factor in these cases 116 

(1:3 to 1:5) would have had a negligible effect on the Ct values, and the aim of this study was to 117 

assess the technical feasibility of saliva samples for automated, high-throughput SARS-CoV-2 118 

testing on the cobas® 6800. 119 

Transitioning to an automated platform for saliva testing is critical for enhancing SARS-CoV-2 120 

testing capacity, particularly in preparation for a potential resurgence of COVID-19 cases or 121 

mass testing of defined populations.  Automated testing reduces errors in the pre-analytical and 122 

post-analytical phases, and improves turnaround time by enabling saliva to be processed on 123 

multiple runs per day (including overnight testing).  Our evaluation confirmed the feasibility of 124 

saliva as a suitable specimen type for SARS-CoV-2 testing on the cobas® 6800 platform. 125 

 126 
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 205 

Figure 1: No significant difference in median cycle threshold (Ct) values for the Envelope (E) 206 

gene was observed in saliva samples positive for SARS-CoV-2, using the LightMix® 207 

ModularDx SARS-CoV (COVID19) E-gene assay (TIB Molbiol, Berlin, Germany) and the 208 

cobas® SARS-CoV-2 Test (Roche Molecular Diagnostics, Laval, QC) on the cobas® 6800 209 

platform. 210 
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