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Worldwide, we are currently in an unprecedented situation with regard to the SARS-Cov-2 epidemic, where countries
are using isolation and lock-down measures to control the spread of infection. This is a scenario generally not much
anticipated by previous theory, and in particular, there has been little attention paid to the question of extinction
as a means to eradicate the virus; the prevailing view appears to be that this is unfeasible without a vaccine. We
use a simple well-mixed stochastic SIR model as a basis for our considerations, and calculate a new result, using
branching process theory, for the distribution of times to extinction. Surprisingly, the distribution is an extreme
value distribution of the Gumbel type, and we show that the key parameter determining its mean and standard
deviation is the expected rate of decline ρe = γ(1−Re) of infections, where γ is the rate of recovery from infection
and Re is the usual effective reproductive number. The result also reveals a critical threshold number of infected
I† = 1/(1 − Re), below which stochastic forces dominate and need be considered for accurate predictions. As
this theory ignores migration between populations, we compare against a realistic spatial epidemic simulator and
simple stochastic simulations of sub-divided populations with global migration, to find very comparable results to
our simple predictions; in particular, we find global migration has the effect of a simple upwards rescaling of Re
with the same Gumbel extinction time distribution we derive from our non-spatial model. Within the UK, using
recent estimates of ≈ 37, 000 infected and Re ≈ 0.9, this model predicts a mean extinction time of 616 ± 90
days or approximately ∼ 2 years, but could be as short as 123 ± 15 days, or roughly 4 months for Re = 0.4.
Globally, the theory predicts extinction in less than 200 days, if the reproductive number is restricted to Re < 0.5.
Overall, these results highlight the extreme sensitivity of extinction times when Re approaches 1 and the necessity
of reducing the effective reproductive number significantly (Re . 0.5) for relatively rapid extinction of an epidemic
or pandemic.
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INTRODUCTION

The SIR model has remained a popular paradigm to un-
derstand the dynamics of epidemics1,2, despite its simplifica-
tions compared to real world epidemics, which have spatial
structure3,4 and heterogeneity5,6 in connection between re-
gions. But it is this simplicity that distills the course of
an epidemic down to a few key parameters that gives it its
power. One such parameter is the reproductive number,
which is a dimensionless number that describes whether an
epidemic is growing (Re > 1) or shrinking (Re < 1) in
a population, and encapsulates the number of secondary
infections within the period of infectivity (1/γ). Simple
models can therefore be very instructive on qualitative be-
haviour, particularly when the parameters of such models are
interpreted as effective and coarse-grained representations
of more detailed models. These detailed models are neces-
sary for quantitative accurate predictions, but such highly
parameterised models can suffer from a lack of transparency
in understanding the effect on the dynamics of changing
different parameters6,7. For this reason, simplified coarse-
grained models, such as the SIR model, have the major
advantage of being highly transparent, particularly when
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analytical solutions are available. Both approaches used
together provide a powerful approach to prediction in epi-
demics.

This paper examines the SIR model, but fully accounting
for the discreteness of individuals, that leads to stochasticity
in the progress of an epidemic. Why do we need to worry
about stochastic effects in an epidemic, and in particular,
to understand extinction? A key danger of deterministic
models, whether we treat as continuous the number of in-
fected individuals or the density of infected individuals, is
the infinite indivisibility of a population. Particularly, in the
latter case, if we consider a continuous model of isolation or
lockdown and potential rebound (second wave), then there
is danger of the model giving densities that actually cor-
respond to much less than 1 individual in the population
— a physical impossibility; unchecked this model will in-
correctly predict regrowth of infections once restrictions are
relaxed7. In a continuous model, the problem is what to
do when the number of infected corresponds to less than
1 individual, and what is really required is a full stochastic
description, as we do in this paper; in a stochastic model
there can be exactly 0 individuals in a population, so unless
there is migration of cases, the epidemic will be extinct in
that population once there are 0 infected, and there can be
no rebound or second wave.

There has been a considerable amount of work done
to understand stochastic aspects of epidemics8 from un-

1

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.10.20171454doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.08.10.20171454
http://creativecommons.org/licenses/by/4.0/


derstanding critical community sizes in diseases such as
measles9,10, stochastic phases in the establishment of
epidemics11, to stochastic extinction. With regard stochas-
tic extinction most results have been focussed on un-
derstanding the time to extinction either through the
whole course of an epidemic12,13 or assuming a quasi-
equilibrium has been reached through herd immunity in
the population14. However, the situation currently faced in
many countries has not been considered in previous mod-
elling, that is the situation where significant herd-immunity
has not been achieved in the population, and isolation mea-
sures have led to the reproductive number being reduced to
less than 1, the critical threshold for growth.

It is with this scenario in mind, where a population still
has many more susceptible (& recovered), compared to in-
fected, where the main results of the paper are focussed, and
we find the stochastic dynamics tractable within a simple
birth-death branching process framework. Our main theo-
retical result is the distribution of the times to extinction of
an epidemic, which surprisingly, we find is a Gumbel-type ex-
treme value distribution. Key to this result is a new thresh-
old I† = 1/(1 − Re), where † indicates extinction, below
which stochastic changes dominate; when Re > 0.6 and ap-
proaches one, we show this gives significantly shorter mean
extinction times compared to deterministic predictions. As
this result ignores spatial structure and heterogeneity of an
epidemic, we then compare to simple and more complex spa-
tial epidemic simulations, and find our theory captures the
extinction time distribution very well, as long as Re is ap-
propriately rescaled to account for migration. We then use
this theory to make broad predictions of extinction times
within the UK, and globally to serve as a guide to more
complex and detailed models. Our key message is that for
reproductive numbers Re > 0.6 and approaching one, ex-
tinctions times increase very rapidly, and are of order many
years, but can very quickly drop to times much less than a
year or a few months if restricted to Re < 0.5.

SUSCEPTIBLE–INFECTED–RECOVERED (SIR)
MODEL OF EPIDEMIOLOGY

The SIR model divides the population of N individuals
in a region into 3 classes of individuals: susceptible S (not
infected and not immune to virus), I infected and R recov-
ered (and immune, so cannot be re-infected). If we assume
a rate β of an infected individual infecting a susceptible
individual (S + I → I), and a rate γ that an infected per-
son recovers from illness (S → R), the ordinary differential
equations describing the dynamics of this process are:

dS

dt
= −βI(S/N) (1)

dI

dt
= βI(S/N)− γI (2)

dR

dt
= γI. (3)

The most important thing about this model is that it al-
lows a simple characterisation of when number of infections
will grow or decline: whatever the previous history of the
epidemic, for growth we need dI

dt > 0 and this happens for
the following condition on RHS of the 2nd equation above:

βS(t)/N − γ > 0, or equivalently, Re = βS(t)/N
γ > 1,

where we have defined the dimensionless number Re as the
combination shown, and will in general be time-dependent,
as the number of susceptible individuals in a population
change. Re represents the average number of individuals an
infected person infects through the duration of the infection
τ = 1/γ. It is important to understand that this interpreta-
tion of Re is within the context of a well-mixed model. In
reality, locally there may be deviations from the global den-
sity of susceptible individuals (S(t)/N) and also differences
in connectivity between different regions causing differing
rates of infection locally. The parameter β is the rate per
infectious individual of causing a successful secondary infec-
tion. It is useful to decompose this parameter as β = να,
where ν is the rate of making contacts per individual and α
is the probability of each contact causing an infection; the
probability of infection α is largely controlled by the biology
of the virus/pathogen, whilst the rate of making contacts ν
is mainly controlled by human behaviour, and so interven-
tions like social distancing, lock-downs and track, trace and
isolate will have an aggregate effect on ν, by reducing the
rate of contacts between individuals.

ASSUMPTION OF CONSTANT Re WITH SMALL
FRACTION OF INFECTED INDIVIDUALS IN SIR
MODEL

In an idealised SIR epidemic, if β does not change due to
behaviourial changes, the reproductive number is in general
a constantly decreasing number, due to the susceptible pool
of individuals diminishing — this is what would eventually
lead to herd immunity as the decreasing susceptible fraction
brings Re < 1. However, changes in social behaviour can
also bring Re < 1 by controlling β, before any significant
herd immunity is established, which is currently the case in
many countries. In this case, if we assume that the fraction
of the population that have been infected is small, we can
assume that the effects of herd immunity are negligible.

Estimates by the UK Office for National Statistics15

(June 12th 2020), estimate from serological testing in
England that 6.8% of the population have been infected
(≈ 4.6 × 106) and from random PCR testing a current in-
cidence of 0.055% (≈ 3.7 × 104 actively infected in UK)
– in which case, extrapolating to a UK population size of
≈ 67× 106, the total number of susceptibles (≈ 62× 106)
is much greater than the number currently infected (as of
9th Aug 2020 there are more recent estimates but these
numbers have not changed significantly).

In this case, as long as Re isn’t very close to 1, it is reason-
able to assume that the population of susceptible individuals
S(t) = S0 is roughly constant and the reproductive number
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unchanging Re = βS(t)/N
γ ≈ βS0/N

γ ; although each time an

individual is infected, we loose exactly one susceptible the
relative change of the susceptible pool is negligible, since
the total number of susceptible individuals is very large. It
can be shown that this approximation is good as long as
1 − Re �

√
(I0/S0), which corresponds to when the de-

cline is sufficiently rapid, for the initial value of Re, that
the error due to ignoring the change in the susceptible pool
is negligible; for I0 = 3.7 × 104 and S0 = 62 × 106, we
expect this approximation to be good for 1− Re � 0.024.
The last differential equation involving R is really only there
for book-keeping, as there is no direct effect of R on the
dynamics of S and I – even with a more complicated model
where immunity only lasts a finite time (SIRS), thereby in-
creasing the susceptible pool again, if we assume the total
number of susceptibles is very large in comparison, these ef-
fects will be negligible. This means for the case where only
a small fraction of the population are ever infected, the SIR
dynamics results in a single differential equation for I(t):

dI

dt
= (βS0/N − γ)I. (4)

The solution to this is of course an exponential function:

I(t) = I0e
(βS0/N−γ)t = I0e

ρet,

where ρe = γ(Re−1) is the effective growth rate forRe > 1,
and decay rate when Re < 1, and I0 = I(0) the initial
number of infected individuals. Note that Re is not a rate,
it does not, in absolute terms, tell you anything about the
time scales of change; however, ρe is a rate, and if it could
be measured empirically, it would give information in the
speed of spread of the infection, as well as having the same
sign information for the direction of change (ρe > 0 the
epidemic spreads, while ρe < 0 means the epidemic cannot
spread).

We are interested in understanding extinction of an epi-
demic and so from here on we define the rate ρe = γ(1−Re)
to be a positive quantity, making the assumption that
Re < 1. In this case we can make a simple determinis-
tic prediction for the time to extinction, by calculating the
time for the infected population to reach I(t) = 1:

t† =
1

ρe
ln (I0), (5)

Of course, we want to know the time to complete elimi-
nation I(t) = 0, but we cannot answer this question with
a deterministic continuous approximation, since the answer
would be∞; the time it takes to go from 1 infected individ-
ual to 0 cannot be handled in a deterministic approach, since
it ignores the discreteness of individuals and the stochastic-
ity that lies therein. In fact, without understanding the
stochasticity of the extinction process, it is difficult a priori
to say anything about the goodness of this deterministic cal-
culation, since in general we would expect stochasticity to
be important far before there remains only a single infected
individual.

STOCHASTIC EXTINCTION OF AN EPIDEMIC

The above analysis assumes deterministic dynamics with
no discreteness – it ignores any randomness in the events
that lead to changes in number of infected individuals; an
infected person might typically take the tube to work, po-
tentially infecting many people, whilst on another day decide
to walk or take the car, reducing the chances of infecting
others. When the epidemic is in full flow with large num-
bers of individuals infected, all the randomness of individual
actions, effectively average out to give smooth almost de-
terministic behaviour. However, at the beginning of the
epidemic, or towards the end, there are very small numbers
of individuals that are infected, so these random events can
have a large relative effect in how the virus spreads and
need a stochastic treatment to analyse. We are interested
in analysing the stochasticity of how the number of infected
decreases when Re < 1 and eventually gives rise to extinc-
tion, i.e. when there is exactly I = 0 individuals; in particu-
lar, we are primarily interested in calculating the distribution
of the times to extinction.

We can initially confirm that the assumptions of a con-
stant Re due to a negligibly changing susceptible popula-
tion of the previous section are accurate, by running multi-
ple replicate stochastic continuous time simulations with
Poisson distributed events (known as Gillespie or kinetic
Monte Carlo simulations)16 of the SIR model with Re = 0.7,
γ = 1/7 days−1, I0 = 3.7 × 104 and an initial recovered
population of R(0) = 6 × 106 (for simplicity we take 10%
infected and recovered as a more conservative estimate than
from the serological surveillance data in the UK15). Fig.1
plots the decline in number of infected over time I(t). Each
of the trajectories from the Gillespie simulations is a grey
curve, whilst the deterministic prediction (Eqn.5) is shown
as the solid black line. We see that for I(t)� 1 the stochas-
tic trajectories are bisected by the deterministic prediction,
indicating that the assumption of a constant Re is a good
one.

Heuristic treatment

We can see from Fig.1 that as I(t) approaches extinction,
as expected the trajectories become more and more varied
as the number of infected becomes small. A simple heuristic
treatment inspired from population genetics19 would define
a stochastic threshold I†, below which stochastic forces are
more important than deterministic; the time to extinction is
then a sum of the time it takes to go deterministically from
I0 to I† ( 1

ρe
ln(I0/I

†)) and the time it takes to go from I†

to I = 0 by random chance.
Assuming such a threshold I† exists, this latter stochastic

time can be approximated as follows: if there are I† individ-
uals and changes are mainly random, then we are randomly
drawing individuals from a pool of I† infected individuals
and N − I† non-infected individuals — a binomial random
walk — which when I† � N has standard deviation ≈

√
I†

per random draw, which means we need k = I† random
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FIG. 1. Simulation trajectories on log-linear scale (inset: linear-linear scale) for a decay rate of ρe = 0.043/day, corresponding
to Re = 0.7, 1/γ = 7 days, I0 = 3.7 × 104 and an initial recovered population of R(0) = 6 × 106. The solid black line is the
deterministic prediction from Eqn.5, grey trajectories are 100 replicate Gillespie simulations of a standard SIR model, whilst the
yellow trajectories are from 50 replicates using the spatial epidemic simulator GleamViz17,18 restricted to the United Kingdom
with a gravity model between heterogeneous sub-populations as shown in the inset map of the UK.

draws, such that the standard deviation over those k draws
is
√
kI† ≈ I†; a single random draw corresponds to one

infection cycle of the virus, which is τ = 1/γ days, so the
time to extinction starting with I† individuals is approxi-
mately I†/γ.

How do we estimate I†? It is given by the size at which
random stochastic changes, change the number of infected
by the same amount as the deterministic decline. In one
cycle or generation of infection, if there was no stochastic-
ity, the number of infected would decline by ≈ ρeI

†/γ, so
equating this to the expected standard deviation of purely

random changes,
√
I†, we find I† = 1/(1 − Re). As dis-

cussed below, and in more detail in the Appendix, a more
exact calculation of these considerations, using branching
processes, gives exactly the same expression for I†. This
means the typical stochastic phase lasts I†/γ = 1

ρe
days

and so adding the deterministic and stochastic phases, the
mean time to extinction ≈ 1

ρe
(1 + ln(I0/I

†)) (see Eqn.8

below for a more exact expression of the mean).

Exact branching process analysis

The branching process framework used to calculate the
distribution of extinction times is standard, but detailed,
and so we will sketch the derivation here and leave details
for Appendix 1. The first step is to recognise that there
are two independent stochastic events that give rise the net
change in the numbers of infected individuals, as depicted in
Eqn. 4 for the continuum deterministic limit: 1) a suscep-
tible individual is infected by an interaction with a infected
individual, such that I → I+1 and 2) an infected individual
recovers spontaneously such that I → I − 1. This is a sim-
ple birth death branching process for which it possible to
write down differential equations (dpI(t)/dt) for how the
probability of I infected individuals changes with time in
terms of the birth and death events just defined. It is possi-
ble to find after some calculation the probability generating
function G(z, t) of the birth-death process, from which the
probability of having exactly I = 0 individuals as a function
of time is given by:

p0(t) = G(z = 0, t) =

(
1− e−ρet

1−Ree−ρet

)I0
. (6)
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If p†(t) is the distribution of times to extinction (i.e. the
probability of an extinction occuring between time t and
t + dt is p†(t)dt), then clearly the integral of this distribu-
tion, between time 0 and t is exactly Eqn.6, and hence the
distribution of times to extinction is simply the derivative of
p0(t) with respect to time. Doing this and also taking the
limit that I0 � I†, we find:

p†(t) =
dp0(t)

dt
≈ ρee−ρe(t−τ

†) exp(−e−ρe(t−τ
†)) (7)

where τ † = 1
ρe

ln(I0/I
†), which is the time it takes for

number infected to change from the initial number I0 to
the critical infection size, which this calculation shows is
given by I† = 1

1−R0
, which is the same result as arrived by

the heuristic analysis above. Fig.2 shows a histogram (grey
bars) from Gillespie simulations of the SIR model with 5000
replicates of the number of infected individuals for Re = 0.7,
γ = 1/7 days, I0 = 3.7× 104 and an initial recovered pop-
ulation of R(0) = 6× 106 and the corresponding prediction
from Eqn.7 (solid black line) — we see that there is an
excellent correspondence.

Surprisingly, the extinction time distribution is a Gumbel-
type extreme value distribution20,21; it is surprising as an
extreme value distribution normally arises from the distri-
bution of the maximum (or minimum) of some quantity, al-
though here it is not clear how this relates to the extinction
time. There are number of standard results for the Gumbel
distribution Eqn.7, so we can write down (or directly cal-
culate) the mean and standard deviation of the extinction
time:

〈t〉 =
1

ρe

(
Υ + ln

(
I0
I†

))
(8)

√
〈〈t2〉〉 =

π/
√

6

ρe
, (9)

where Υ ≈ 0.577 is the Euler-Mascheroni constant. We
see that the heuristic calculation overpredicts the stochastic
part of the extinction time by a factor of ≈ 2. Note that
the standard deviation or dispersion of the distribution only
depends on the inverse of the rate of decline ρe and as
expected not on the initial number of infected individuals
I0; hence as ρe decreases (Re gets closer to 1), we see
that the distribution of extinction times broadens (as we
see below in Figs.4&6).

We can also calculate the cumulative distribution function

P †(t) =

∫ t

0

p†(t′)dt′ = exp(−e−ρe(t−τ
†)), (10)

from which the inverse cumulative distribution function
T † = (P †)−1 can be calculated:

T †(p) = τ † − 1

ρe
ln (− ln (p)), (11)

which enables direct generation of random numbers drawn
from the extinction time distribution, by drawing uniform
random u on the unit interval and calculating T †(u). It
also allows calculation of arbitrary confidence intervals,
for example, the 95% confidence intervals, by calculating
T †(0.025) and T †(0.975), as well as the median T †(1/2) =
τ † − 1

ρe
ln (ln (2)).

Finally, it is important to stress that the distribution of
extinction times Eqn.7 and the following results all assume
that I0 � I†, so that there is a clear separation of the
deterministic and stochastic phases of the decline in infec-
tions. A more general and exact result for the distribution
of extinction times is given in Appendix 1.

EXTINCTION TIME DISTRIBUTION WITH
SPATIAL STRUCTURE AND HETEROGENEITY

National level (United Kingdom)

A potentially valid criticism is that real populations have
spatial structure and heterogeneity of contacts between re-
gions. To make comparison to our simple predictions, we
used a complex epidemic simulator GleamViz (v7.0)17,18,
which includes a gravity model of migration, where rates
of migrations between sub-populations are proportional to
their population sizes (see Fig.1 inset map of UK), and each
sub-population based on accurate census data within a grid
of 25 km. We ran 50 replicate simulations for an SIR epi-
demic within the United Kingdom and with zero air travel to
other countries, with the same parameters as the stochas-
tic SIR simulations in the previous section (Re = 0.7,
γ = 1/7 days, initial recovered population R(0) = 6× 106

– in addition, each definable sub-population in the UK was
given a current infection incidence of 0.06% giving a to-
tal I0 ≈ 3.7× 104). We see the trajectories (Fig.1 – yellow
lines) and histogram of extinction times (Fig.2 – yellow bars)
compare very favourably to the predictions of the stochastic
SIR model (black solid line and grey histogram bars); the
mean and standard deviation including the gravity migra-
tion model is 211 ± 16 days, which is slightly smaller than
the prediction of the stochastic SIR model which has no
migration or spatial structure (231 ± 30 days). This sug-
gests that heterogeneity and migration might together have
the net effect of reducing extinction times, as below we
see increasing migration uniformly, has the opposite effect;
nonetheless within the UK it would seem the overall effect
of heterogeneity and migration is of second order to predic-
tions of a well mixed model. Overall, at a national level, we
find the results of our simple model are accurate to within
the width of the distributions of the extinction times.

Global

It was not possible to repeat these simulations on a global
scale as GleamViz does not record individual level changes
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FIG. 2. Probability density of extinction times for the same parameters as in Fig.1. Grey bars are a histogram of 5000
replicate simulations of Gillespie simulations normalised to give an estimate of the probability density, and the black curve is
the prediction of the analytical calculation given in Eqn.7, which we see matches the simulations extremely well. The yellow
bars are histograms from the GleamViz spatial epidemic simulator with 50 replicates, which we see gives similar results to the
predictions of the stochastic SIR model.

in infections and deaths in its global output. Here instead
we first consider the total extinction time distribution for
a number of isolated regions (countries) with no migration
between, but each with the same Re. As we show in Ap-
pendix 2, in fact, the extinction time distribution of the
whole region (i.e. the distribution of the maximum time of
all the groups) is exactly the same distribution as assuming
a single unstructured/undivided population for the region.
We verify this by Gillespie simulation of a simple birth-death
model with growth rate γRe and death rate γ for n isolated
populations; the grey histogram in Fig.3 is the estimate of
the extinction time distribution for isolated sub-populations
and this matches the grey solid line, which is exactly the
solid black line in Fig.2.

We now look at the effect of migration, where we ex-
amine the same Gillespie simulations of birth and death,
but with a probability of global migration per individual of
φ. As we increase φ we see that the extinction time distri-
bution shifts to longer times, yet still maintains the same
form as given by Eqn.7 – fitting to this equation using only
Re as a free parameter, we find for φ = {0.01, 0.05, 0.1},
R̂e = {0.709±0.001, 0.732±0.001, 0.760±0.001}, respec-
tively (minimum R-sqd statistic of 0.975). These fits are
shown as the blue and red solid lines in Fig.3 for φ = 0.05

and φ = 0.1, respectively, and we see that the fits follow
the data very closely (the histogram and fits for φ = 0.01
are not shown in Fig.3 for clarity, as they overlap closely
with φ = 0). We can see that can predict these esti-

mated reproductive numbers R̂e by simply rescaling the
base Re to Re → (1 + φ)Re = {0.707, 0.735, 0.77} for
φ = {0.01, 0.05, 0.1}, respectively. This finding is closely
related to the literature on the group level reproductive
number R∗

3–5, except here we are studying the decline and
extinction of an epidemic/pandemic as opposed to its es-
tablishment, which has not been previously studied in this
context. Overall, these results suggest that under the as-
sumption that each national region has the same Re, that
the extinction time distribution is given by the stochastic
SIR model (Eqn.7) but with a rescaled Re to account for
air traffic or migration between regions/countries.

EXTINCTION TIME PREDICTIONS

United Kingdom

We first consider what this model predicts for the extinc-
tion of the SARS-Cov-2 epidemic within the United King-
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FIG. 3. Probability density of extinction times for the same parameters as in Fig.1, but including migration and sub-division
into equal sized populations. Each histogram comprises 1000 replicates for n = 5 regions connected by uniform migration with
probability φ. Grey bars are φ = 0 (complete isolation), blue correspond to φ = 0.05 and φ = 0.1 are the red bars. For φ = 0
the solid line grey line is exactly the solid black line in Fig.2, showing that the extinction time distribution of identical to the
single global well-mixed population of same aggregate size. The solid blue and red lines are fits to the histogram using Eqn.7
with a single free parameter Re (with γ and I0 constrained to the values used to run the simulations.

dom, given an incidence of 0.055% (12th June 2020 — a
more recent estimate show this incidence has not changed
significantly) or I0 ≈ 37 × 104 were infected at the begin-
ning of June15. In Fig.4 we have plotted the estimates of
mean (solid lines), median (dashed lines) and deterministic
(Eqn.5 – dots) extinction times, together with 95% confi-
dence intervals (shaded region), given an initial number of
infected I0 for various reproductive numbers Re between
0 < Re < 1, and for various values of γ.

We see three broad trends: 1) for R >≈ 0.6 the extinc-
tion times are very long of order years, whilst at the same
time the 95% confidence intervals becomes increasingly
broad (of order years themselves); 2) also for Re >≈ 0.6,
the deterministic prediction increasingly and significantly
overestimates the mean extinction time; 3) for Re < 0.5
the extinction times plateau with diminishing returns for
further decreases in the reproductive number; and 4) as the
mean infection duration 1/γ increases the extinction times
increase and the 95% confidence intervals go up in propor-
tion. Regarding point 3), we see that there is minimum time
to extinction, given by Re = 0; from Eqn.8 in the limit that
Re → 0, the mean time to extinction 〈t〉 → 1/γ(ln(I0)+Υ),
which shows the extinction process is ultimately limited by

the rate of recovery γ, imposing a maximum speed limit on
the rate of decline of infections.

To make specific predictions, we need to estimate the re-
covery rate γ. Current direct estimates for the mean or me-
dian infection durations are quite broad, and also in need of
careful interpretation; different individuals will have very dif-
ferent disease progressions and also very different transmis-
sion potentials, from those that are asymptomatic to indi-
viduals that are hospitalised. A recent comprehensive survey
of the literature22 looked at three different types of infection
durations: 1) asymptomatic (T2); 2) pre-symptomatic (T3)
and 3) symptomatic (T5). Their survey suggest a median
T2 of ≈ 7 days (4−9.5), a mean T3 of 2 days, and a median
T5 of 13.4 days. On the other hand an early study of time to
recovery of patients within and outside of China, suggests
1/γ ∼ 20 days23. Overall, it is arguable that the T2 time is
likely to be most relevant, since infection events are likely to
be dominated by asymptomatic carriers, and symptomatic
times T5 in hospital are likely to be an overestimate of the
duration for which an individual has high transmission po-
tential. In addition, as suggested by this study the T5 time
is typically estimated by time to a negative RT-PCR test,
but the time when the individual had viral loads sufficient
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FIG. 4. Prediction of the extinction times from analytical theory of the epidemic within the United Kingdom as a function of
Re with an initial infected population of I0 = 3.7× 104 for various values of the recovery rate: 1/γ = 7 days (yellow); 1/γ = 10
days (red); 1/γ = 20 days (green). Solid lines are the predictions of the mean (Eqn.8), dashed lines the median, the dots
correspond to the deterministic prediction (Eqn.5), whilst each shaded region corresponds to the 95% confidence interval; the
median and confidence intervals are calculated directly from Eqn.11.

to infect is likely to much shorter. However, the scope of
this paper is not to make very precise predictions, but to
demonstrate broad trends, and so as well as plotting predic-
tions for what seems to be the most likely infection dura-
tion 1/γ = 7 days (yellow), we have plotted predictions for
1/γ = 10 days (red) and 1/γ = 20 days (green). In general,
we see that longer infection durations give rise to longer ex-
tinction times, since as mentioned above the recovery rate
sets the overall tempo for the decline in infections.

Assuming a duration of 1/γ = 7 days, we see that the
simple stochastic SIR model predicts that extinction or elim-
ination of the epidemic can occur within the United King-
dom of order about 100 days or a few months, if Re can
be kept to below about 0.5. More precisely, if Re = 0.4,
the mean time is 123 ± 15 days with 95% confidence
intervals:(102, 160) days. However, as of the end of June,
both the UK government’s own estimate (SPI-M modelling
group)24 and the MRC Biostatistics Unit, Cambridge25 es-
timated a reproductive number put Re ≈ 0.9 for the re-
gion of England, which gives a mean time of 616± 90 days
(484, 832), or roughly two years; as Re = 0.9 is close to a
value of the reproductive number where would expect our
underlying assumptions of an unchanging susceptible pop-
ulation to be less good (Re = 1−

√
I0/S0 = 1− 0.024 =

0.976), we checked this prediction by Gillespie simulation of
the SIR model, and find a mean extinction time of 592±85
days, which is slightly less than our prediction, but with a
difference which is still within the spread of times we would
expect in reality.

Estimating extinction times from direct estimate of ρe

Precise predictions of extinction times based on Eqn.7,
as shown in Fig.4, require knowledge of both Re and γ,
which are generally quite difficult to estimate. However,
Eqn.7 is mainly dependent on the rate of decline of the
epidemic ρe, with weak dependence separately on Re and γ.
ρe can be determined more straightforwardly if we assume
current daily deaths are proportional to the number infected;
if infections are declining exponentially at a rate ρe then so
will the number of daily deaths, so a curve fit will give an
accurate measure of ρe even if we cannot determine the
proportionality constant to translate deaths to infections.
An alternative, could be to look at time-series of number of
daily infections per number of tests performed, to remove
biases due to testing, however, here the aim is to illustrate
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FIG. 5. Data from NHS England26 on daily deaths within hospitals in England and different regions within England. Each
region is fit using a simple decaying exponential from 40 days after the 1st March 2020, where each region first shows a clear
decline in number of daily deaths.

why a direct estimate of ρe is useful, rather than to estimate
this number very accurately.

As shown in Fig.5, fitting decaying exponentials to daily
number of deaths (date of death, not date of report-
ing) from the NHS UK26, from the moment of decline to
13th July 2020, shows a very good fit (showing deaths
are declining as a simple exponential and giving further
weight to our simple model), giving an England wide es-
timate of ρe = 0.043 ± 0.001 days−1, with a range of
ρe = 0.036±0.001 days−1 (slowest decline) for North York-
shire and ρe = 0.069±0.001 days−1 (most rapid decline) in
London. Using the rate of decline of England, we estimate
a mean extinction time in the UK as 231±30 days (95% CI:
(187, 303) days), for Re = 0.7, 1/γ = 7 days and 238± 30
days (95% CI:(195, 310) days), for Re = 0.57, 1/γ = 10
days; as we can see changing Re and γ for a fixed ρe does
not change the predictions significantly, and we suggest in
general, determining ρe could be a more robust way to es-
timate extinction times.

These estimates are much shorter than the approximately
2 years estimated above using separate estimates of Re and
γ to calculate ρe. It is clear that in some of the regions,
there is relatively poor fit at later times, with an indication
that overall in England the rate of decline ρe is decreas-
ing, which could account for the difference in estimates.
However, a more careful probabilistic analysis6 is required

to support such a conclusion, which is outside the scope of
this paper; as the above stochastic calculation and simula-
tions show, as the number of infections — or deaths in this
case — is small, trajectories become more stochastic and
varied, and importantly, can’t be simply treated as a de-
terministic trend plus (Gaussian) noise, which is reasonable
when numbers are large. Trying to fit a more complicated
model could result in fitting noise; in other words we might
be wrongly concluding a decrease in ρe due to a trajectory
in a region which just happens to randomly decline slightly
less quickly. It is likely that the UK government’s advisory
SPI-M modelling group24 does exactly this in its direct es-
timates of ρe (as far as the author is aware details are not
publicly available), which do indicate an overall slower rate
of decline with a range quoted of ρe = 0.01 → 0.04; as-
suming 1/γ = 7 days, we would arrive at the same estimate
above for the extinction time, for Re with ρe ≈ 0.014, which
is consistent with the range quoted.

Global extinction time predictions

We can also use our calculation to make approximate pre-
dictions of global extinction times of SARS-Cov-2 , with
all the same broad caveats, given the simplifications of
the model. However, as argued above at a global level,
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FIG. 6. Prediction of the extinction times from analytical theory of the pandemic globally as a function of Re, for various values
of the recovery rate and initial infected corresponding to 5000 deaths globally per day (as described in main text): 1/γ = 7
days & I0 = 3.6 × 106 (yellow); 1/γ = 10 days & I0 = 5 × 106 (red); 1/γ = 20 days & I0 = 107 (green). Solid lines are the
predictions of the mean (Eqn.8), dashed lines the median, the dots correspond to the deterministic prediction (Eqn.5), whilst
each shaded region corresponds to the 95% confidence interval; the median and confidence intervals are calculated directly from
Eqn.11.

we can have confidence that the predictions of the extinc-
tion time distribution Eqn.7 can be quantitatively correct,
when the Re value is effectively rescaled to account for
migration/air-traffic between nations. The current global
death rate is approximately 5000 deaths per day (9th Au-
gust), and so with an approximate infection fatality rate
η ≈ 0.01,23,27 the rate of change of deaths would be roughly
d(deaths)/dt = ηγI(t); inverting this gives a crude esti-
mate of the current number of actively infected globally as
I0 ≈ 3.5 × 106, or roughly 3.5 million. More precise esti-
mates would require understanding the age structure of the
infection fatality rate, which is highly biased to older popu-
lations. Given a global population of 7.8 billion this corre-
sponds to a global incidence of ≈ 0.05%, which is very simi-
lar to that measured more directly within the UK. In Fig.6 we
plot how the predicted extinction time changes with effec-
tive reproductive numbers between 0 < Re < 1 for 1/γ = 7
days (yellow), given I0 = 3.5× 106, and also for 1/γ = 10
days (red) and 1/γ = 20 days, where we correct our initial
estimate of I0 for different values of γ, giving I0 = 5×106,
and I0 = 107, respectively. As would be expected, the re-
sults mirror the predictions for within the United Kingdom;
for sufficiently small values of Re (Re < 0.5), the theory

predicts global extinction on a timescale of approximately
200 days or 6 to 7 months, whilst Re > 0.6 lead to very long
extinction times (∼years). More precisely, for Re = 0.4 and
assuming 1/γ = 7 days, we find a mean extinction time of
177± 15 days (95% CI: (155, 213) days).

DISCUSSION & CONCLUSIONS

We have presented a new analysis of extinction in the
stochastic SIR model in the context of populations with very
little herd immunity and yet a significant number of infected
individuals. Using heuristic analysis we calculate the mean
time to extinction and show that there is a critical threshold
I† = 1/(1 − Re), below which random stochastic changes
are more important, which suggests that for Re < 1, but ap-
proaching 1, a simple deterministic prediction will be poor.
With a more exact branching process analysis, we then cal-
culate in closed form the extinction time distribution of an
epidemic, which, surprisingly, is an extreme value distribu-
tion of the Gumbel type, and is mainly dependent on the
rate of decline of the epidemic ρe = γ(1 − Re), with a
weak logarithmic dependence on Re explicitly. A key ad-
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vantage of a closed form solution for the distribution is that
we can discern broad trends very quickly without doing a
large number of complex simulations over a large parameter
space. Given the simplicity of SIR well-mixed model, we
compared our results to a complex spatial epidemic simula-
tor, GleamViz17,18 with explicit heterogeneity in connections
between sub-populations, as well as simulations of uniform
migration between sub-populations and find good overall
agreement for the distribution of extinction times with our
simple predictions.

We use these results to produce predictions of extinc-
tion times within the UK and globally of the SARS-Cov-2
epidemic/pandemic, as a function of Re as a guide to the
expected trends in more complex models; the results sug-
gest that if the reproductive number can be constrained to
Re = 0.4 (assuming 1/γ = 7 days), within the UK we would
expect extinction times of approximately 123±15 days, or 4
months, given an incidence of infection ≈ 0.06% and glob-
ally, roughly 177± 15 days, assuming a similar level of inci-
dence. However, given current estimates of Re ≈ 0.9 within
the UK, the extinction times become very long, of order a
couple of years; this clearly demonstrates the sensitivity of
extinction times for Re > 0.6, as shown in Figs.4&6. On the
other hand the same figures show that decreasing Re much
below Re = 0.4 produces diminishing gains in reductions of
extinction times; hence, given social consequences of lock-
down measures this suggests an optimal Re ≈ 0.4 → 0.5,
which in the United Kingdom was achieved just after lock-
down in regions such as London25.

However, these predictions need to be treated with care
when 1−Re becomes small, as relative changes in the sus-
ceptible pool have a large relative effect on Re, so we can
no longer assume it is constant; in particular, we estimate
this occurs for 1 − Re ∼

√
I0/S0, and will in general lead

our extinction time estimates being an over-prediction. This
does not affect our broad conclusions that for all practical
purposes when Re > 0.6 the extinction times become very
long and of order years. However, it is an interesting open
question to calculate the extinction time when Re = 1,
in the same limit that I0 � S0, since infections reducing
the susceptible pool now have a significant effect to reduce
Re; intuitively, we might expect that Re will continue to de-
crease until again changes in S become negligible, such that
Re stabilises and then the rest of the analysis in this paper
would be valid. Note that a naive analogy to evolutionary
theory where Re = 1 would correspond to neutrality, and so
the epidemic could potentially increase, would be incorrect
for the reasons outlined — even for Re = 1 we would expect
the epidemic to decline.

Note that within the UK, throughout we have taken an
incidence level of 0.055% measured by random population
sampling in England between 25 May to 7 June 2020, cor-
responding to I0 ≈ 3.7× 104. A more recent estimate (20
to 26 July 2020) by the ONS shows a small increase in the
incidence to ≈ 0.07%, which means our estimates are still
relevant as of end of July. In fact, the month of June saw
a decrease to an incidence of 0.03% by random population
sampling, indicating that infections levels are currently on

an upward trend, which of course would be inconsistent with
current government central estimates that Re < 1.

We have also used England and United Kingdom, some-
what interchangeably, purely as a matter of convenience, as
the main scope is to provide approximate and qualitative
predictions. The Scottish government28 estimates the cur-
rent (7th Aug 2020) number of infected as I0 ≈ 200 and a
weekly reduction in the infectious pool of 24%, which trans-
lates to ρe = 0.038 (Re ≈ 0.73, assuming 1/γ = 7days)
giving a mean extinction time of 119 ± 33 days (95% CI:
(70, 199) days); this reduces to 63± 15 days if ρe = 0.086,
corresponding to a reproductive number of Re = 0.4. In
Wales there is no direct report of currently infected, but a
very crude estimate of I0 ≈ 1400 can be obtained given
approximately an average of 2 deaths per day (2nd Aug →
9th Aug), an infection fatality rate of η ≈ 0.01,23,27 and
1/γ = 7 days. The rate of decline of infections is estimated
to have a wide range ρe = 0.01→ 0.0829, so taking a cen-
tral estimate of ρe = 0.045 (Re = 0.685, 1/γ = 7 days), we
arrive at mean extinction time prediction of 148 ± 29 days
(95% CI: (106, 217) days); if the rate of decline is increased
to ρe = 0.086 (Re = 0.4) then this reduces to 85 ± 15
days (95% CI: (63, 121) days). In Northern Ireland, it is
currently estimated Re = 0.8 → 1.830, and so is likely to
be above 1, which means an extinction time estimate can-
not be made; however, we can make an estimate assuming
Re as for the other nations. As for Wales there is no esti-
mate of the size of the currently infected pool, but the same
crude approximation gives I0 ≈ 47, given 2 deaths in period
10th July to 9th Aug (30 days), and an extinction time esti-
mate of 46± 15 days (95% CI: (24, 82) days). Again, these
predictions should be viewed as a guide to expected qualita-
tive changes in extinction times given changes in Re, and in
particular, to demonstrate the sensitivity of extinction times
on Re in specific local contexts. Reducing the reproductive
number to Re = 0.4 is ambitious, but was achieved in Lon-
don not long after the lockdown on 23rd March 202025; in
other regions of England, the lockdown was less successful
with numbers in the range Re = 0.6 → 0.7, which if re-
peated again, from Fig.4 would give an extinction time of
roughly half a year for the United Kingdom as a whole.

The basic calculation in this paper ignores spatial
structure3,4, heterogeneity of contacts between individuals5,
and also dependence of transmission on age structure of
the population. To assess the realism of our simple model,
we performed simulations using a realistic spatial epidemic
simulator, GleamViz,17,18 which gave a distribution of ex-
tinction times matching reasonably closely the Gumbel dis-
tribution in Eqn.7, with a slightly smaller mean time; this
suggests that despite the heterogeneity of contacts between
different regions, the overall decay of infection is exponential
and the stochastic variation follows closely the well-mixed
predictions of the stochastic SIR model presented here.

We have also made a very crude extrapolation of our re-
sults to extinction at the global level. The most problematic
assumption, of course, is a single value of Re globally, and so
the predictions in Fig.6 should be viewed as a guide to what
could be achieved globally if all countries acted roughly in
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the same way on average. As we show, sub-divided regions
with uniform migration, simply lead to a upwards rescaling
of Re by factor (1 + φ) where φ is the migration proba-
bility, and so we can have confidence in these predictions,
as long as Re at a global level is suitably interpreted. Pre-
vious work on generalising the concept of the reproductive
number to include spread between different regions, uses a
different approach, by defining an analogous reproductive
number R∗ for regions,3–5, i.e. how many sub-populations
or regions have at least one infection, where migration plays
an analogous role to individual contacts for the spread of in-
fection in a single population. This gives rise to a condition
for spread or decline of infections to multiple regions and
eventually globally, if R∗ > 1 or R∗ < 1, respectively. In
the context of a local reproductive number Re < 1, as has
been discussed previously3, it is still theoretically possible
that R∗ > 1, particularly when infection is highly preva-
lent in a region (due to a previous time when R0 > 1,
as has occurred across in many countries with SARS-Cov-
2 before lockdowns were imposed); this can happen if the
global contact probability is sufficiently large, meaning that
the infection can continue to spread between countries and
regions. However, these long distance seedings of infection
will not in themselves lead to regional or national outbreaks,
as long as locally Re < 17; the simple upward rescaling of
Re → (1 + φ)Re, which we observe for small φ captures
this phenomenon. These results also suggest that at the
national level, a simple rescaling of Re should describe the
reduction in the rate of decline of infections due to impor-
tation of infected cases, and should be accounted in more
accurate estimates of extinction times.

Finally an aspect, which we have not considered, is the
possibility of a non-human reservoir of SARS-Cov-2 , which
could allow re-infections of human populations, such that
actually extinction is not a permanent (stable) state, as
we have assumed in this paper. This could be accounted
in a similar way as we account for migration in this the-
ory, except, unlike human populations (and arguably even
in human populations), we have much less control, or even
understanding, of a potential non-human reservoir. How-
ever, if such reservoirs, whether bat or pangolin31,32, can be
identified and surveyed33, measures can be taken to control
contact with human populations, such that effective global
elimination in human populations is possible, even if the
virus cannot be eliminated from non-human populations.

To conclude, the theory presented and closed-form ana-
lytical equation for the distribution of extinction times of
an epidemic, despite the many simplifications of the SIR
model, provides a useful and quick guide to estimate, with
confidence intervals, the time to extinction of an epidemic;
different intervention, and test and trace, strategies are en-
capsulated in an overall effective reproductive number Re
to give extinction time predictions as shown in Figs.4&6.
In particular, we have shown that these results have broad
applicability, beyond the specific assumptions of the calcu-
lation, when the reproductive number is suitably rescaled to
account for migration. The broad conclusion when applied
to SARS-Cov-2 is that to achieve rapid extinction, on times

of order or less than half a year, then the goal should be to
restrict Re to numbers much less than 1 and optimally in
the region Re ≈ 0.4→ 0.5.
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tions, as well as for performing the Gillespie simulations can
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Extinction-Epidemic.

APPENDIX 1: BRANCHING PROCESS ANALYSIS

A birth-death process with birth rate b = γRe and death
rate d = γ, corresponds to a pure exponential growth
(Re > 1) or decay (Re < 1) phase of an epidemic, when the
number of susceptible individuals S(t) are far in excess of
the total number infected I(t). In this appendix, for presen-
tational clarity, we will use n = I to represent the number of
infected individuals. To write down the rate of change of the
probability of n infected individuals at time t, we need only
consider the probability of having n− 1, n, n+ 1 individuals
and rates of transitions between them, since in the limit of
infinitesimal (continous) changes in time, we consider only
changes of single individuals. The rate of transition from
n − 1 → n happens with rate γRe(n − 1) and the rate of
transition from n + 1 → n happens with rate γ(n + 1),
which both lead to an increase in the probability of n, while
the rate of transition from n → n + 1 happens with rate
γRen and the rate of transition from n → n − 1 happens
with rate γn, which both decrease the probability of n. Us-
ing these facts we can write down the rate of change of the
probability of n at time t:

dpn(t)

dt
= γ

(
Re(n− 1)p(n− 1, t)

− (Re + 1)np(n, t) + (n+ 1)p(n+ 1, t)
)
.

(12)

However, this description isn’t complete, and we need to
consider how the probability of the n = 0 state changes,
since the above equation won’t work for n − 1, since we
cannot have a negative number of individuals:

dpn=0(t)

dt
= −γ (Renp(n, t) + (n+ 1)p(n+ 1, t)) . (13)

We can encompass both equations together in one by using
the unit step function Un = 1 for n ≥ 0, while Un = 0 for
n < 0:
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dp(n, t)

dt
= γ

(
Un−1Re(n− 1)p(n− 1, t)

− Un(Re + 1)np(n, t) + (n+ 1)p(n+ 1, t)
)
.

(14)

For n < 0, as long as we have an initial condition, pn<0(t =
0) = 0, the ODEs above guarantee that pn<0(t)∀t. Con-
sidering each value of n : 0 ≤ n < ∞, we have an infinite
set of coupled differential equations. The standard way to
solve this is to use probability generating functions:

G(z, t) =
∞∑
n=0

pn(t)zn, (15)

which is in general a complex function of a complex vari-
able z. Using the fact that z∂G(z, t)/∂t =

∑
npn(t)zn,

it is straightforward to show that the set of ODEs give the
following first order partial differential equation for G(z, t):

∂G(z, t)

∂t
= α(z)

∂G(z, t)

∂t
, (16)

where

α(z) = γ(Rez
2 − (Re + 1)z + 1). (17)

This PDE can be solved by using the method of character-
istics, which finds a parametric path z(s), t(s) along which
our original PDE is obeyed. The rate of change of G(s)
along this path in terms of our parameterisation is:

dG(s)

ds
=

dt

ds

∂G

∂t
+

dz

ds

∂G

∂z
, (18)

and so with reference to the original PDE (Eqn.16), we can
identify that

dt

ds
= 1

dz

ds
= −α(z). (19)

Integrating these pair of equations gives the characteristic
paths for which dG(s)/ds = 0 is a constant:

z − 1

z − 1/Re
eγ(Re−1)t = C, (20)

where C is a constant that represents different possible ini-
tial conditions. Integrating dG(s)/ds = 0, gives

G(s) = φ

(
z − 1

z −R−1e
eγ(Re−1)t

)
, (21)

where φ is an arbitrary function to be determined by con-
sideration of the initial conditions on pn(t). We can use
the fact that at time t = 0 we assume we know the exact

number of infected individuals is n0 and hence, pn(t = 0) =
δnn0 , where δnn0 = 0 for n 6= n0 and δnn0 = 1 for n = n0.
Calculating the probability generating function for the initial
delta function probability mass, we get G(z, t = 0) = zn0 ,
and so we need to find a function φ satisfying:

G(z, 0) = φ

(
z − 1

z −R−1e

)
= zn0 . (22)

Substituting x = (z − 1)/(z − 1/Re), we can find φ(x), to
give our solution:

G(z, t) =

(
1 + (z − 1)eγ(Re−1) − zRe

1 +Re(z − 1)eγ(Re−1) − zRe

)n0

. (23)

Our probability mass function pn(t), should always be nor-
malised

∑
n pn(t) = G(z = 1, t) = 1; substituting z = 1 we

see this that the solution G(z, t) behaves correctly. Finally,
the reason this is all useful, is that we want to calculate the
probability of zero individuals infected p0(t), which is simply
given by G(z = 0, t), since 00 = 1:

p0(t) = G(0, t) =

(
1− eγ(Re−1)

1−Reeγ(Re−1)

)n0

. (24)

Substituting n0 = I0 and ρe = γ(1 − Re) gives Eqn.6 in
the main text.

Differentiating Eqn.24 to obtain the extinction time dis-
tribution, we find

p†(t) =
dp0(t)

dt
= (1−Re)ρen0

(1− e−ρet)n0−1

(1−Ree−ρet)n0+1
e−ρet.

(25)
This is an exact expression, which is valid for all values
of I0 and I†, as long as the original assumptions of the
model that changes in susceptible numbers are negligible
(1−Re �

√
I0/S0) is true. If I0 � I† then we expect there

to be a strong division between the deterministic phase and
the stochastic phase, such that in Eqn.25 the exponentials
have sufficiently decayed such that n0e

−ρet � 1, before
any extinction is likely, then it is straightforward to show
that the limiting form of Eqn.25, is the Gumbel distribution,
Eqn.7, using the fact that (1− e−ρet)n0 ≈ (1−n0e−ρet) ≈
exp(−n0e

−ρet).

APPENDIX 2: INVARIANCE OF EXTINCTION
TIME DISTRIBUTION TO POPULATION
SUB-DIVISION

If we imagine a single population to be divided into
n equally sized sub-populations, each with a reproductive
number Re and zero-migration between, then the extinc-
tion time distribution of tk in the kth sub-population will
be given by Eqn.7, but with I0 → I0/n. Now we want
to calculate the extinction time distribution of the whole
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population. Extinction will occur when all sub-populations
have zero infected individuals. We can record the extinction
times in each sub-population: t1, t2, ..., tk, ..., tn and the ex-
tinction time of the whole population will be the maximum
of this set: t̃ = max{t1, t2, ..., tk, ..., tn}. The cumulative
distribution function of the maximum time t̃ will be the
probability of the joint event that each sub-population k
has an extinction time less than t̃:

Pn(t̃) = P (t1 < t̃, t2 < t̃, ..., tk < t̃, ..., tn < t̃)

= P (t1 < t̃)P (t2 < t̃)...P (tk < t̃)...P (tn < t̃)

= (P (t̃))n
(26)

where P (t) is the CDF for a single population given by
Eqn.10 in the main text, but with I0 → I0/n. Given the
form of Eqn.10, these calculations can be performed exactly,
whereas using extreme value theory it usually required that
the tails of the distribution asymptotically obey some expo-
nential form, which allows approximate calculation. Doing

these calculations we find (P (t̃))n = (exp(−e−ρe(t̃−τ†
n)))n,

where τ †n = 1
ρe

ln(I0/nI
†). It is then simple to show that

the n-dependence cancels in the final result to give

Pn(t̃) = P (t̃) = exp(−e−ρe(t̃−τ
†)). (27)

In other words, population sub-division into equal sized iso-
lated populations does not affect the extinction time distri-
bution of the whole global population. In fact, it is simple
to extend these arguments to any population sub-division,
where I0 =

∑n
k=1 Ik, where Ik is the initial infected pop-

ulation in each, as long as the fraction of susceptible and
Re is the same in each sub-population. This is not surpris-
ing, as it is just a restatement of the mean-field/well-mixed
approximation that infected individuals and sub-populations
all experience the same probability of encountering a sus-
ceptible individual S0/N which is set by the global number
of susceptible individuals S0.
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