

1 10. Lead Contact
2 *These authors contr
3
4 #To whom correspor
5 chendong@tsinghua

- *These authors contributed equally to this work.

3

#To whom correspondence should be addressed

chendong@tsinghua.edu.cn; or zenghui@ccmu.

6 456780
- #To whom correspondence should be addressed: Chen Dong,
chendong@tsinghua.edu.cn; or zenghui@ccmu.edu.cn; Fan Li,
6
7
8
9 5 chendong@tsinghua.edu.cn; or zenghui@ccmu.edu.cn; Fan Li, lifan@jlu.edu.cn
6
7
9
0
1
-
-
-
-
- 789012345 8901234567 901234567。 0123456780
-
- 10 12
13
14
15
16
17
18
20
21
- 14
- 15 16
- 17
- 18 19

12 14
15
16
17
18
20
21
22
22 15
16
17
18
19
20
22
22
23 16
17
18
19
20
22
22
24
25 17
18
19
20
22
23
24
25
26 18
19
20
22
23
24
25
26
27 19

19

20

21

22

24

25

26

27

28 1920

2022

223

2425

2528

2022 20

- 21

22

23

24

25

26

27

28

29

20 21 22
- 22

22

24

25

26

27

28

29

30

31 22 23
- 24 25
- 26 27
- 28
- 29
- 30 31
- 32
- 23 25
26
27
28
29
30
31
32
33 26
27
28
29
30
31
32
33
34
3 27
28
29
30
31
32
33
34
35
36 28
29
30
31
32
33
35
35
37 28 30

31

32

33

34

35

36

37

38

30 31
32
33
34
35
36
39
39
40 32
33
33
35
35
38
39
40
41 33
- 34
- 35 36
- 37
- 38 39
- 40
- 33
34
35
36
38
39
40
41
42 34
35
36
38
39
40
41
42
42 35
36
37
38
39
40
42
43 36
37
38
39
40
42
43 37
38
39
40
42
43 38
39
40
41
42
43 39
40
41
42
43 40
41
42
43 41
- 42
- 41
42
43 42
43 43
|
| 43

1 **SUMMARY**

2

1 The Wc

4 world-wide p

5 symptoms,

6 convalescer

7 recepages 1 $\begin{bmatrix} 3 & 4 & 5 & 6 & 7 \end{bmatrix}$ 3 The World Health Organization has declared SARS-CoV-2 virus outbreak a
4 world-wide pandemic. Individuals infected by the virus exhibited different degrees of
5 symptoms, the basis of which remains largely unclear. Curre world-wide pandemic. Individuals infected by the virus exhibited different degrees of
symptoms, the basis of which remains largely unclear. Currently, though
convalescent individuals have been shown with both cellular and symptoms, the basis of which remains largely unclear. Currently, though
convalescent individuals have been shown with both cellular and humoral immune
responses, there is very limited understanding on the immune responses, 6 convalescent individuals have been shown with both cellular and humoral immune
responses, there is very limited understanding on the immune responses, especially
adaptive immune responses, in patients with severe COVID-1 7 responses, there is very limited understanding on the immune responses, especially adaptive immune responses, in patients with severe COVID-19. Here, we examined 10 blood samples from COVID-19 patients with acute respir adaptive immune responses, in patients with severe COVID-19. Here, we examined
10 blood samples from COVID-19 patients with acute respiratory distress syndrome
20 (ARDS). The majority of them (70%) mounted SARS-CoV-2-speci 9 10 blood samples from COVID-19 patients with acute respiratory distress syndrome

(ARDS). The majority of them (70%) mounted SARS-CoV-2-specific humoral

1 immunity with production of neutralizing antibodies. However, c 10 (ARDS). The majority of them (70%) mounted SARS-CoV-2-specific humoral
11 immunity with production of neutralizing antibodies. However, compared to healthy
12 controls, the percentages and absolute numbers of both NK ce 11 immunity with production of neutralizing antibodies. However, compared to healthy

12 controls, the percentages and absolute numbers of both NK cells and CD8⁺ T cells

13 were significantly reduced, accompanied with controls, the percentages and absolute numbers of both NK cells and CDB^+ T cells 12 controls, the percentages and absolute numbers of both NK cells and CD8⁺ T cells
13 were significantly reduced, accompanied with decreased IFNγ expression in CD4⁺ T
14 cells in peripheral blood from severe patients were significantly reduced, accompanied with decreased IFN γ expression in CD4⁺ T were significantly reduced, accompanied with decreased IFN_Y expression in CD4⁺ T
cells in peripheral blood from severe patients. Most notably, we failed in detecting
SARS-CoV-2-specific IFN_Y production by peripheral cells in peripheral blood from severe patients. Most notably, we failed in detecting
15 SARS-CoV-2-specific IFNγ production by peripheral blood lymphocytes from these
16 patients. Our work thus indicates that COVID-19 pat 15 SARS-CoV-2-specific IFNγ production by peripheral blood lymphocytes from these
16 patients. Our work thus indicates that COVID-19 patients with severe symptoms are
17 associated with defective cellular immunity, which 16 patients. Our work thus indicates that COVID-19 patients with severe symptoms are associated with defective cellular immunity, which not only provides insights on understanding the pathogenesis of COVID-19, but also has 17 associated with defective cellular immunity, which not only provides insights on
18 understanding the pathogenesis of COVID-19, but also has implications in
19 developing an effective vaccine to SARS-CoV-2.
20
21 Konver understanding the pathogenesis of COVID-19, but also has implications in
19 developing an effective vaccine to SARS-CoV-2.
20
21 Keywords: SARS-CoV-2, acute respiratory distress syndrome, adaptive immunity,

-
-

developing an effective vaccine to SARS-CoV-2.
20
21 Keywords: SARS-CoV-2, acute respiratory distr
23 neutralization antibody, T cells 21
22
23
24
25 22
23
24
25
26 22 Keywords: SARS-CoV-2, acute respiratory distress syndrome, adaptive immunity,

23 neutralization antibody, T cells

24

25 23 neutralization antibody, T cells
24
25
26

-
-
- 25
25 26

1 **Introduction**
2 **Identified in**
3 severe acute
4 has become a
5 cases we Identified in December, 2019, coronavirus disease 2019 (COVID-19) caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Wang et al., 2020a)

has become a global public health threat. As of July 17th, 202 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Wang et al., 2020a)

has become a global public health threat. As of July 17th, 2020, 13,378,853 global

cases were confirmed, of which 580,045 patients died

(has become a global public health threat. As of July 17th, 2020, 13,378,853 global
cases were confirmed, of which 580,045 patients died
(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-
reports).

cases were confirmed, of which 580,045 patients died

(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-

reports). The high infection rate and rapid spread make it a world-wide emergency

(Di Pier 6 (https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-
reports). The high infection rate and rapid spread make it a world-wide eme
(Di Pierro et al., 2020). However, up to date, there is no specific The high infection rate and rapid spread make it a world-wide emergency

18 (Di Pierro et al., 2020). However, up to date, there is no specific anti-viral medicine

19 or vaccine available to prevent or treat COVID-19 and 8 (Di Pierro et al., 2020). However, up to date, there is no specific anti-viral medicine
9 or vaccine available to prevent or treat COVID-19 and the current standard care
1 Approximately 80% of COVID-19 cases are asymptom

9 or vaccine available to prevent or treat COVID-19 and the current standard care

10 relies on supportive treatments.

14 Approximately 80% of COVID-19 cases are asymptomatic or manifest mild

29 symptoms resembling simpl relies on supportive treatments.
11 Approximately 80% of CO\
12 symptoms resembling simple
13 COVID-19 patients show sever
14 acute respiratory distress syndr 11 Approximately 80% of COVID-19 cases are asymptomatic or manifest mild
12 symptoms resembling simple upper respiration tract infection. The remaining
13 COVID-19 patients show severe or critical symptoms with severe pneu symptoms resembling simple upper respiration tract infection. The remaining
13 COVID-19 patients show severe or critical symptoms with severe pneumonia and
14 acute respiratory distress syndrome (ARDS) (Gruszecka and Filip COVID-19 patients show severe or critical symptoms with severe pneumonia and
14 acute respiratory distress syndrome (ARDS) (Gruszecka and Filip, 2020). How the
15 immune system modifies and controls the infection is still acute respiratory distress syndrome (ARDS) (Gruszecka and Filip, 2020). How the
15 immune system modifies and controls the infection is still not well understood, which
16 may underscore the different degrees of symptoms a 15 immune system modifies and controls the infection is still not well understood, which
16 may underscore the different degrees of symptoms amongst the population. Several
17 papers were reported on the adaptive immune r 16 may underscore the different degrees of symptoms amongst the population. Several

17 papers were reported on the adaptive immune responses in the recovered mild

18 COVID-19 patients. We detected SARS-CoV-2-specific an papers were reported on the adaptive immune responses in the recovered mild
18 COVID-19 patients. We detected SARS-CoV-2-specific antibodies and T cells in
19 convalescent individuals (Ni et al., 2020). Grofoni et al also COVID-19 patients. We detected SARS-CoV-2-specific antibodies and T cells in

19 convalescent individuals (Ni et al., 2020). Grofoni et al also found that ~70% and 100%

20 of COVID-19 convalescent subjects with mild and s 19 convalescent individuals (Ni et al., 2020). Grofoni et al also found that ~70% and 100%

20 of COVID-19 convalescent subjects with mild and severe symptoms developed

21 SARS-CoV-2-specific CD8⁺ and CD4⁺ T cells, re 20 of COVID-19 convalescent subjects with mild and severe symptoms developed
21 SARS-CoV-2-specific CD8⁺ and CD4⁺ T cells, respectively (Grifoni et al., 2020).
22 However, there is very limited understanding on immune SARS-CoV-2-specific CD8⁺ and CD4⁺ SARS-CoV-2-specific CD8⁺ and CD4⁺ T cells, respectively (Grifoni et al., 2020).

22 However, there is very limited understanding on immune responses in severe

23 COVID-19 patients during hospitalization. In a retrospe 22 However, there is very limited understanding on immune responses in severe
23 COVID-19 patients during hospitalization. In a retrospective study, Chen et al
24 observed that absolute numbers of T lymphocytes, both CD4⁺ 23 COVID-19 patients during hospitalization. In a retrospective study, Chen et all
24 observed that absolute numbers of T lymphocytes, both $CD4^+$ and $CD8^+$, were
25 markedly lower in severe patients than those in modera observed that absolute numbers of T lymphocytes, both $CD4^+$ and $CD8^+$ observed that absolute numbers of T lymphocytes, both $CD4^+$ and $CD8^+$, were
25 markedly lower in severe patients than those in moderate cases (Chen et al., 2020). 25 markedly lower in severe patients than those in moderate cases (Chen et al., 2020).

Markedly lower in severe patients than those in moderate cases (Chen et al., 2020).

1 In contrast to the aforementioned study, Zheng et al did not observe reduced
1 lymphocytes in the severe disease group, but T cells showed elevated exhaustion
1 levels and reduced functional heterogeneity (Zheng et al., lymphocytes in the severe disease group, but T cells showed elevated exhaustion
levels and reduced functional heterogeneity (Zheng et al., 2020). Using megapools
of overlapping or prediction-based peptides covering the SAR 1 levels and reduced functional heterogeneity (Zheng et al., 2020). Using megapools
1 of overlapping or prediction-based peptides covering the SARS-CoV-2 proteome,
15 Weiskopf et al found CD4⁺ and CD8⁺ T cells showed a of overlapping or prediction-based peptides covering the SARS-CoV-2 proteome,

Weiskopf et al found CD4⁺ and CD8⁺ T cells showed activation marker expression in

10 out of 10 and 8 out of 10 patients with severe COVID-Weiskopf et al found CD4⁺ and CD8⁺ 5 Weiskopf et al found $CD4^+$ and $CD8^+$ T cells showed activation marker expression in

10 out of 10 and 8 out of 10 patients with severe COVID-19 during hospitalization,

10 out of 10 and 8 out of 10 patients with sever 10 out of 10 and 8 out of 10 patients with severe COVID-19 during hospitalization,
respectively (Weiskopf et al., 2020). For humoral responses, Lynch et al found that
antibody responses were higher in patients with severe respectively (Weiskopf et al., 2020). For humoral responses, Lynch et al found that
antibody responses were higher in patients with severe than mild disease (Lynch et
al., 2020). And high levels of neutralizing antibodies 8 antibody responses were higher in patients with severe than mild disease (Lynch et al., 2020). And high levels of neutralizing antibodies was induced 10 days post onset in both mild and severe patient, which were higher 9 al., 2020). And high levels of neutralizing antibodies was induced 10 days post onset
in both mild and severe patient, which were higher in severe group (Wang et al.,
2020b).
In order to understand immune responses and t

10 in both mild and severe patient, which were higher in severe group (Wang et al.,

11 2020b).

12 In order to understand immune responses and the mechanism underlying the

13 pathogenesis of severe COVID-19, we collected 11 2020b).
12 In ord
13 pathoge
14 ARDS, a
15 compare 12 In order to understand immune responses and the mechanism underlying the
13 pathogenesis of severe COVID-19, we collected blood samples from 10 patients with
14 ARDS, analyzed their cellular and humoral responses specif pathogenesis of severe COVID-19, we collected blood samples from 10 patients with
14 ARDS, analyzed their cellular and humoral responses specific to SARS-CoV-2, and
15 compared severe and convalescent patients. Our data re 14 ARDS, analyzed their cellular and humoral responses specific to SARS-CoV-2, and
15 compared severe and convalescent patients. Our data reveal defective cellular
16 immunity associated with severe COVID-19. This study pr 15 compared severe and convalescent patients. Our data reveal defective cellular
16 immunity associated with severe COVID-19. This study provides new insights on the
17 precise treatment of COVID-19 patients and evaluation 16 immunity associated with severe COVID-19. This study provides new insights on the

17 precise treatment of COVID-19 patients and evaluation of candidate vaccines.

18 17 precise treatment of COVID-19 patients and evaluation of candidate vaccines.
18
19

19
|
|

1 **Results**
2 **Detectio**
3 To u
4 studied
5 and patl **Detection of SARS-CoV-2-specific antibodies in severe COVID-19 subjects**

2 To understand the immune responses to SARS-CoV-2 in severe patients

3 studied 10 patients with acute respiratory distress syndrome (ARDS). Their 3 To understand the immune responses to SARS-CoV-2 in severe patients, we
studied 10 patients with acute respiratory distress syndrome (ARDS). Their clinical
and pathological characteristics are shown in Table 1. All the p 4 studied 10 patients with acute respiratory distress syndrome (ARDS). Their clinical
and pathological characteristics are shown in Table 1. All the patients were
hospitalized at Beijing Ditan Hospital and showed severe sy 5 and pathological characteristics are shown in Table 1. All the patients were
6 hospitalized at Beijing Ditan Hospital and showed severe symptoms via CT scan and
7 were positive in SARS-CoV-2 nucleic acid testing. The mea 6 hospitalized at Beijing Ditan Hospital and showed severe symptoms via CT scan and
were positive in SARS-CoV-2 nucleic acid testing. The mean age was 57.5 years
and half of them were female. Among them, 8 (80%) showed lym were positive in SARS-CoV-2 nucleic acid testing. The mean age was 57.5 years
and half of them were female. Among them, 8 (80%) showed lymphopenia. As of
today, 1 patient (Pt#9) passed away and the remaining ones had recov and half of them were female. Among them, 8 (80%) showed lymphopenia. As of today, 1 patient (Pt#9) passed away and the remaining ones had recovered and were discharged from hospital. The blood samples were obtained within 9 today, 1 patient (Pt#9) passed away and the remaining ones had recovered and

9 were discharged from hospital. The blood samples were obtained within 20 days

9 post symptom onset and the detail sampling day for each pa were discharged from hospital. The blood samples were obtained within 20 days
11 post symptom onset and the detail sampling day for each patient was also shown in
12 Table 1. Human AB serum collected from healthy male AB d 11 post symptom onset and the detail sampling day for each patient was also shown in

12 Table 1. Human AB serum collected from healthy male AB donors in the US

13 (GemCell, CA) was used as a negative control. Additionall Table 1. Human AB serum collected from healthy male AB donors in the US
13 (GemCell, CA) was used as a negative control. Additionally, sera from nine healthy
14 donors were obtained before the SARS-CoV-2 outbreak (HD#1-9). (GemCell, CA) was used as a negative control. Additionally, sera from nine healthy

14 donors were obtained before the SARS-CoV-2 outbreak (HD#1-9). 5 additional

15 healthy donors (HD#10-14) without SARS-CoV-2 infection w donors were obtained before the SARS-CoV-2 outbreak (HD#1-9). 5 additional
15 healthy donors (HD#10-14) without SARS-CoV-2 infection were analyzed in our T
16 cell assays.
17 Using sera from patients and healthy donors, Ig

15 healthy donors (HD#10-14) without SARS-CoV-2 infection were analyzed in our T
16 cell assays.
17 Using sera from patients and healthy donors, IgG and IgM specific to SARS-
18 CoV-2 NP and S-RBD antigens were analyzed us cell assays.
17 Using sole
18 CoV-2 NP
19 reported (Ni
20 dilutions to d Using sera from patients and healthy donors, IgG and IgM specific to SARS-

20 CoV-2 NP and S-RBD antigens were analyzed using ELISA assay previously

19 reported (Ni et al., 2020). The individual serum samples were perfor CoV-2 NP and S-RBD antigens were analyzed using ELISA assay previously
19 reported (Ni et al., 2020). The individual serum samples were performed by serial
20 dilutions to calculate the area under the curve (AUC) values (F 19 reported (Ni et al., 2020). The individual serum samples were performed by serial

20 dilutions to calculate the area under the curve (AUC) values (Figure 1A). Compared

21 with healthy donors, patients with severe COVI dilutions to calculate the area under the curve (AUC) values (Figure 1A). Compared

21 with healthy donors, patients with severe COVID-19 showed significantly elevated

22 anti-NP IgG AUC values (Figure 1B). The AUC values with healthy donors, patients with severe COVID-19 showed significantly elevated
22 anti-NP IgG AUC values (Figure 1B). The AUC values of anti-S-RBD IgG in severe
23 cases were also significantly increased compared to thos 22 anti-NP IgG AUC values (Figure 1B). The AUC values of anti-S-RBD IgG in severe
23 cases were also significantly increased compared to those in healthy controls.
24 Serum NP- and S-RBD-specific IgM antibodies showed sign cases were also significantly increased compared to those in healthy controls.
24 Serum NP- and S-RBD-specific IgM antibodies showed significantly higher AUC
25 values in severe COVID-19 patients than in healthy controls (24 Serum NP- and S-RBD-specific IgM antibodies showed significantly higher AUC
25 values in severe COVID-19 patients than in healthy controls (Figure 1B). Notably, 25 values in severe COVID-19 patients than in healthy controls (Figure 1B). Notably,

patients #1, 4 and 7 did not develop NP- and S-RBD -specific antibody responses,
including IgM and IgG. As shown in Figure 1C, anti-NP and S-RBD IgG in severe
patients was mainly IgG1 isotype, as in convalescent individual including IgM and IgG. As shown in Figure 1C, anti-NP and S-RBD IgG in severe
patients was mainly IgG1 isotype, as in convalescent individuals (Ni et al., 2020). We
did not detect IgG2 to either NP or S-RBD proteins (data

patients was mainly IgG1 isotype, as in convalescent individuals (Ni et al., 2020). We
did not detect IgG2 to either NP or S-RBD proteins (data not shown).
In order to understand the pathogenic mechanisms in severe patient did not detect IgG2 to either NP or S-RBD proteins (data not shown).

In order to understand the pathogenic mechanisms in sever

compared the levels of virus-specific IgG or IgM in these patients

convalescent individuals. In order to understand the pathogenic mechanisms in severe patients, we

sompared the levels of virus-specific IgG or IgM in these patients with those in

convalescent individuals. Serum from one convalescent COVID-19 pati 6 compared the levels of virus-specific IgG or IgM in these patients with those in convalescent individuals. Serum from one convalescent COVID-19 patient was used as a positive control standard to calculate the antibody ti convalescent individuals. Serum from one convalescent COVID-19 patient was used
as a positive control standard to calculate the antibody titers (relative units) for all
samples using non-linear regression interpolations (G 8 as a positive control standard to calculate the antibody titers (relative units) for all
8 samples using non-linear regression interpolations (Grifoni et al., 2020). Of note, we
8 observed no significant differences in a 9 samples using non-linear regression interpolations (Grifoni et al., 2020). Of note, we

0 observed no significant differences in anti-NP/S-RBD IgG or IgM between these two

9 groups (Figure 1D).

7 Taken together, these

observed no significant differences in anti-NP/S-RBD IgG or IgM between these two

11 groups (Figure 1D).

12 Taken together, these findings indicate that most severe COVID-19 patients

13 mounted IgG and IgM responses spe 11 groups (Figure 1D).
12 Taken together,
13 mounted IgG and Ig
14 However, the levels
15 Taken together, these findings indicate that most severe COVID-19 patients
13 mounted IgG and IgM responses specific to SARS-CoV-2 proteins, NP and S-RBD.
14 However, the levels of humoral immune responses varied among the

mounted IgG and IgM responses specific to SARS-CoV-2 proteins, NP and S-RBD.
14 However, the levels of humoral immune responses varied among the patients.
15 **Measurement of neutralizing antibody production in severe COVID** However, the levels of humoral immune responses varied among the patients.
15
Measurement of neutralizing antibody production in severe COVID-19 sub-
17 To determine the neutralization capacity in sera from patients with --
16
17
18
19 **Measurement of neutralizing antibody production in severe COVID-19 subjects**

17 To determine the neutralization capacity in sera from patients with severe

18 COVID-19, we performed pseudovirus particle-based neutralizat 17 To determine the neutralization capacity in sera from patients with severe

18 COVID-19, we performed pseudovirus particle-based neutralization assay as

19 previously described (Ni et al., 2020). As shown in Figure 2A COVID-19, we performed pseudovirus particle-based neutralization assay as
19 previously described (Ni et al., 2020). As shown in Figure 2A and 2B, patients #1, 4
20 and 7, did not produce neutralizing antibodies, while pat previously described (Ni et al., 2020). As shown in Figure 2A and 2B, patients #1, 4

20 and 7, did not produce neutralizing antibodies, while patient #3 had a high

21 neutralizing antibody titer (NAT50>1000). Most severe and 7, did not produce neutralizing antibodies, while patient #3 had a high

21 neutralizing antibody titer (NAT50>1000). Most severe patients (70%) had protective

22 humoral immunity to SARS-CoV-2. Notably, sera from sev 21 neutralizing antibody titer (NAT50>1000). Most severe patients (70%) had protective

22 humoral immunity to SARS-CoV-2. Notably, sera from severe patients did not show

23 significantly reduced NAT50 values than convale 22 humoral immunity to SARS-CoV-2. Notably, sera from severe patients did not show
23 significantly reduced NAT50 values than convalescent sera (Figure 2C). About 30%
24 of severe patients and 8% of convalescent individual 23 significantly reduced NAT50 values than convalescent sera (Figure 2C). About 30%
24 of severe patients and 8% of convalescent individuals did not produce neutralizing
25 antibodies, respectively (Figure 2D). Around 40%, 24 of severe patients and 8% of convalescent individuals did not produce neutralizing
25 antibodies, respectively (Figure 2D). Around 40%, 20% and 10% of severe patients 25 antibodies, respectively (Figure 2D). Around 40%, 20% and 10% of severe patients

1 showed low (NAT50: 30-500), medium (NAT50: 500-1000) and high (NAT50: >1000)

2 NAT50, respectively, while 50%, 21% and 21% in the convalescent group did.

1 Nonetheless, our results indicate that most severe patients ha NAT50, respectively, while 50%, 21% and 21% in the convalescent group did.

2 Nonetheless, our results indicate that most severe patients had

4 neutralizing antibodies to SARS-CoV-2 infection.

5 Lymphocyte numbers and fu Nonetheless, our results indicate that most severe patients had serum
neutralizing antibodies to SARS-CoV-2 infection.
5
Lymphocyte numbers and function in severe COVID-19 subjects
To analyze cellular immune responses to

meutralizing antibodies to SARS-CoV-2 infection.
5
Lymphocyte numbers and function in severe (
7 To analyze cellular immune responses to
8 mononuclear cells (PBMCs) from 10 patients wi 6 7 8 9 0 Example of the cellular immune responses to SARS-CoV-2, per mononuclear cells (PBMCs) from 10 patients with severe COVID-19 donors were phenotypically analyzed by flow cytometry (Figure 3/
detect live PBMCs in 3 out of 10 To analyze cellular immune responses to SARS-CoV-2, peripheral blood

8 mononuclear cells (PBMCs) from 10 patients with severe COVID-19 and 5 healthy

9 donors were phenotypically analyzed by flow cytometry (Figure 3A). We 8 mononuclear cells (PBMCs) from 10 patients with severe COVID-19 and 5 healthy
9 donors were phenotypically analyzed by flow cytometry (Figure 3A). We did not
1 detect live PBMCs in 3 out of 10 patients (Pts# 3, 4 and 5), 9 donors were phenotypically analyzed by flow cytometry (Figure 3A). We did not

0 detect live PBMCs in 3 out of 10 patients (Pts# 3, 4 and 5), possibly due to technical

1 issues during cryopreservation. Compared to heal detect live PBMCs in 3 out of 10 patients (Pts# 3, 4 and 5), possibly due to technical
11 issues during cryopreservation. Compared to healthy donors, there was a significant
12 decrease in the percentages of NK cells in th 11 issues during cryopreservation. Compared to healthy donors, there was a significant

12 decrease in the percentages of NK cells in the severe patients, but similar

13 frequencies of NKT cells (Figure 3B). Although the decrease in the percentages of NK cells in the severe patients, but similar
13 frequencies of NKT cells (Figure 3B). Although there was a trend towards increased
14 frequencies of T cells (CD3⁺CD56^c) in the patient bl 13 frequencies of NKT cells (Figure 3B). Although there was a trend towards increased
14 frequencies of T cells (CD3⁺CD56`) in the patient blood, the absolute numbers of T
15 cells were significantly decreased compared t frequencies of T cells (CD3+CD56 14 frequencies of T cells (CD3⁺CD56⁻) in the patient blood, the absolute numbers of T

15 cells were significantly decreased compared to those in blood from healthy controls

16 (Figure 3C). Notably, the percentages a 15 cells were significantly decreased compared to those in blood from healthy controls
16 (Figure 3C). Notably, the percentages and absolute numbers of $CD8^+$ T cells were
17 reduced dramatically, while the frequency of (Figure 3C). Notably, the percentages and absolute numbers of $CD8⁺$ T cells were 16 (Figure 3C). Notably, the percentages and absolute numbers of $CD8^+$ T cells were

17 reduced dramatically, while the frequency of $CD4^+$ T cells was elevated compared

18 with those in healthy donors. As a result, the reduced dramatically, while the frequency of $CD4^+$ T cells was elevated compared reduced dramatically, while the frequency of $CD4^+$ T cells was elevated compared
18 with those in healthy donors. As a result, the $CD4:CDB$ ratios were significantly
19 higher in severe patients than in the healthy donors 18 with those in healthy donors. As a result, the CD4:CD8 ratios were significantly

19 higher in severe patients than in the healthy donors (6.7 ± 1.3 in COVID-19 vs 2.5 ±

20 0.3 in HD, P=0.0226) (Figure 3B). Thus, the 19 higher in severe patients than in the healthy donors $(6.7 \pm 1.3$ in COVID-19 vs 2.5 ± 20 0.3 in HD, P=0.0226) (Figure 3B). Thus, the severe patients exhibited reduced cytotoxic lymphocytes, both NK and CD8⁺ T cell cytotoxic lymphocytes, both NK and CDB^+ T cells.

20 0.3 in HD, P=0.0226) (Figure 3B). Thus, the severe patients exhibited reduced
21 cytotoxic lymphocytes, both NK and CD8⁺ T cells.
22 To further assess the function of the T cells in the severe patients, we stimulated
 cytotoxic lymphocytes, both NK and CD8⁺ T cells.

22 To further assess the function of the T cells in

23 T cells with phorbol myristate acetate (PMA) ar

24 cytokine production. As shown in Figure 4A an

25 patients exp 22 To further assess the function of the T cells in the severe patients, we stimulated

23 T cells with phorbol myristate acetate (PMA) and ionomycin and then measured

24 cytokine production. As shown in Figure 4A and 4B 23 T cells with phorbol myristate acetate (PMA) and ionomycin and then measured
24 cytokine production. As shown in Figure 4A and 4B, CD4⁺ T cells from severe
25 patients expressed significantly lower levels of IFN₇ t cytokine production. As shown in Figure $4A$ and $4B$, $CD4⁺$ T cells from severe 24 cytokine production. As shown in Figure 4A and 4B, CD4⁺ T cells from severe
patients expressed significantly lower levels of IFN_γ than those from healthy donors.
The patients expressed significantly lower levels of 25 patients expressed significantly lower levels of IFNγ than those from healthy donors.

25 patients expressed significantly lower levels of IFNγ than those from healthy donors.

We observed no apparent difference in the frequencies of $TNF\alpha$ -expressing CD4⁺ T 1 We observed no apparent difference in the frequencies of TNF α -expressing CD4⁺ T cells, but significantly reduced percentages of $IFN\gamma^*$ TNF α^* T cells (Figure 4C and 4D), consistent with a published report (Che cells, but significantly reduced percentages of IFN γ^* TNF α^* cells, but significantly reduced percentages of $IFN\gamma^*$ TNF α^* T cells (Figure 4C and 4D), consistent with a published report (Chen et al., 2020). Only 2 out of 7 patients had detectable IL-17A⁺ CD4⁺ T cells, whic 3 4D), consistent with a published report (Chen et al., 2020). Only 2 out of 7 patients

had detectable IL-17A⁺ CD4⁺ T cells, which expressed TNFα, but not IFNγ (Figure

4D).

Despite the decreased frequencies of CD8 had detectable IL-17A⁺ CD4⁺ T cells, which expressed TNF α , but not IFN γ (Figure

4 had detectable IL-17A⁺ CD4⁺ T cells, which expressed TNFα, but not IFNγ (Figure 4D).

4D).

5 4D).

10 Despite the decreased frequencies of CD8⁺ T cells in PBMCs from the patients,

10 these CD8⁺ T cells expres 5 4D).
6 Γ
7 these
8 from
9 IFN γ Despite the decreased frequencies of $CD8⁺$ T cells in PBMCs from the patients, 6 Despite the decreased frequencies of CD8⁺ T cells in PBMCs from the patients,

7 these CD8⁺ T cells expressed similar levels of cytokines IFN₇ and TNFα as the ones

from healthy donors (Figure 4E and 4F). In addi these CD8⁺ T cells expressed similar levels of cytokines IFN_Y and TNF α as the ones 7 these CD8⁺ T cells expressed similar levels of cytokines IFN_γ and TNFα as the ones
from healthy donors (Figure 4E and 4F). In addition, similar frequencies of
IFN_γ⁺TNFα⁺ CD8⁺ T cells were found in severe pa 8 from healthy donors (Figure 4E and 4F). In addition, similar frequencies of

9 IFNγ⁺TNFα⁺ CD8⁺ T cells were found in severe patients and healthy donors (Figure

4G).

We also evaluated capacities of cytokine prod IFNγ⁺TNFα⁺ CD8⁺

9 IFN₇⁺TNFα⁺ CD8⁺ T cells were found in severe patients and healthy donors (Figure 4G).

4G).

We also evaluated capacities of cytokine production in CD3⁻ cells, likely NK cells.

4S shown in Figure 4H, these c 10 4G).
11 V
12 As s
13 reduc
14 signif We also evaluated capacities of cytokine production in CD3⁻ cells. likely NK cells. 11 We also evaluated capacities of cytokine production in CD3 cells, likely NK cells.

12 As shown in Figure 4H, these cells in severe patients expressed significantly

13 reduced levels of IFN_Y and TNF α than those i 12 As shown in Figure 4H, these cells in severe patients expressed significantly

13 reduced levels of IFN_Y and TNF α than those in healthy donors. We did not observe

14 significant difference in terms of the frequen 13 reduced levels of IFN_Y and TNF α than those in healthy donors. We did not observe

14 significant difference in terms of the frequency of IFN_Y⁺ TNF α ⁺ cells between these

15 two groups (Figure 4H).

16 **Ce** significant difference in terms of the frequency of IFN $\gamma^{\text{*}}$ TNF $\alpha^{\text{*}}$ significant difference in terms of the frequency of $IFN\gamma^+ \text{TNF}\alpha^+$ cells between these
15 two groups (Figure 4H).
16 **Cellular immune responses to SARS-CoV-2 in severe COVID-19 subjects**
18 To further measure virus-spe

15 two groups (Figure 4H).
16
17 Cellular immune respo
18 To further measure
19 recombinant NP, S-RBI 17
18
19
20 **Cellular immune responses to SARS-CoV-2 in severe COVID-19 subjects**

18 To further measure virus-specific cellular immunity, we treated PBMC

19 recombinant NP, S-RBD and S proteins, followed by IFNγ ELISpot analys

20 18 To further measure virus-specific cellular immunity, we treated PBMCs with
19 recombinant NP, S-RBD and S proteins, followed by IFN γ ELISpot analysis. As
20 shown in Figure 5A, the absolute numbers of T cells produc 19 recombinant NP, S-RBD and S proteins, followed by IFNγ ELISpot analysis. As

20 shown in Figure 5A, the absolute numbers of T cells produced IFNγ in response to

21 anti-CD3 were decreased dramatically in PBMCs from se 20 shown in Figure 5A, the absolute numbers of T cells produced IFNγ in response to anti-CD3 were decreased dramatically in PBMCs from severe patients than those from healthy donors. More strikingly, we did not detect any 21 anti-CD3 were decreased dramatically in PBMCs from severe patients than those
22 from healthy donors. More strikingly, we did not detect any SARS-CoV-2-specific T
23 cells in all the tested severe patients, whereas one 22 from healthy donors. More strikingly, we did not detect any SARS-CoV-2-specific T
23 cells in all the tested severe patients, whereas one out of ten T cells could secret
24 IFNγ after exposure to NP protein in convales 23 cells in all the tested severe patients, whereas one out of ten T cells could secret
24 IFNγ after exposure to NP protein in convalescent individuals (Figure 5B). 24 IFN_γ after exposure to NP protein in convalescent individuals (Figure 5B).

IFN_γ after exposure to NP protein in convalescent individuals (Figure 5B).

- Thus, T cells in the severe COVID-19 patients failed in developing cellular

1 immunity to SARS-CoV-2.

3

4
- 2 immunity to SARS-CoV-2.
3
4
-
- $\frac{1}{4}$

1 **Discussion**
2 In this st
3 19 patients
4 CoV-2 IgG a
5 patients. The 2 In this study, we characterized humoral and cellular immunity in severe COVID-
2 19 patients during hospitalization. Although most patients developed anti-SARS-
2 CoV-2 IgG and IgM responses, humoral immune responses var 3 19 patients during hospitalization. Although most patients developed anti-SARS-

2 19 coV-2 lgG and lgM responses, humoral immune responses varied widely among the

2 patients. The percentages and absolute numbers of bot 2 CoV-2 IgG and IgM responses, humoral immune responses varied widely among the
patients. The percentages and absolute numbers of both NK cells and CD8⁺ T cells
were significantly reduced, accompanied with decreased Th1 patients. The percentages and absolute numbers of both NK cells and CDB^+ T cells patients. The percentages and absolute numbers of both NK cells and CD8⁺ T cells
were significantly reduced, accompanied with decreased Th1 cell response in
peripheral blood from severe patients. Most notably, we failed were significantly reduced, accompanied with decreased Th1 cell response in
peripheral blood from severe patients. Most notably, we failed in SARS-CoV-2-
specific IFN_Y production in these patients.
In this study, most se

17 peripheral blood from severe patients. Most notably, we failed in SARS-CoV-2-

92 specific IFNγ production in these patients.

19 In this study, most severe patients had reduced Th1 cell responses, consistent

19 With 8 specific IFNγ production in these patients.

9 In this study, most severe patients ha

0 with the published report (Chen et al., 202

1 blood of a severe COVID-19 patient had

2 cells (Xu et al., 2020). In addition, se In this study, most severe patients had reduced Th1 cell responses, consistent
with the published report (Chen et al., 2020). Another report showed that peripheral
blood of a severe COVID-19 patient had a strikingly high n with the published report (Chen et al., 2020). Another report showed that peripheral
11 blood of a severe COVID-19 patient had a strikingly high number of CCR6⁺ Th17
12 cells (Xu et al., 2020). In addition, several paper blood of a severe COVID-19 patient had a strikingly high number of CCR6⁺ Th17 blood of a severe COVID-19 patient had a strikingly high number of CCR6⁺ Th17
12 cells (Xu et al., 2020). In addition, several papers proposed use of therapies directed
13 at Th17 cells and IL-17A signaling in treating C cells (Xu et al., 2020). In addition, several papers proposed use of therapies directed
at Th17 cells and IL-17A signaling in treating COVID-19 patients (De Biasi et al.,
2020; Orlov et al., 2020; Wu and Yang, 2020). Howev 13 at Th17 cells and IL-17A signaling in treating COVID-19 patients (De Biasi et al.,

14 2020; Orlov et al., 2020; Wu and Yang, 2020). However, we observed no significant

15 Th17 cell responses in most of the severe pati 2020; Orlov et al., 2020; Wu and Yang, 2020). However, we observed no significant
15 Th17 cell responses in most of the severe patients (5/7) with only one patient
16 showing elevated IL-17A expression. Several possibiliti 15 Th17 cell responses in most of the severe patients (5/7) with only one patient
16 showing elevated IL-17A expression. Several possibilities may account for the
17 discrepancy. One is different markers used for defining 16 showing elevated IL-17A expression. Several possibilities may account for the
17 discrepancy. One is different markers used for defining Th17 cells. The above-
18 mentioned paper used CCR6 on CD4⁺ T cells to define Th discrepancy. One is different markers used for defining Th17 cells. The above-
mentioned paper used CCR6 on CD4⁺ T cells to define Th17 cells, whereas we used
IL-17A expression in CD4⁺ T cells. Another is different pat mentioned paper used CCR6 on CD4⁺ T cells to define Th17 cells, whereas we used mentioned paper used CCR6 on CD4⁺ T cells to define Th17 cells, whereas we used

19 IL-17A expression in CD4⁺ T cells. Another is different patient cohort and disease

severity. Sample timing during disease course is a IL-17A expression in $CD4^+$ T cells. Another is different patient cohort and disease 19 IL-17A expression in CD4⁺ T cells. Another is different patient cohort and disease
20 severity. Sample timing during disease course is another possibility, since T cell
121 responses are dynamic. Given not all the sev severity. Sample timing during disease course is another possibility, since T cell

21 responses are dynamic. Given not all the severe COVID-19 patients had increased

22 IL-17A expression, one may not want to treat all pa

esponses are dynamic. Given not all the severe COVID-19 patients had increased
22 IL-17A expression, one may not want to treat all patients with IL-17A inhibitors.
5 healthy donors (HD#10-14) with a mean age of 29.4 years 122 IL-17A expression, one may not want to treat all patients with IL-17A inhibitors.

23 5 healthy donors (HD#10-14) with a mean age of 29.4 years were included

24 T cell assays, which are not age-matched with severe pat 5 healthy donors (HD#10-14) with a mean age of 29.4 years were included in our
24 T cell assays, which are not age-matched with severe patients with a mean age of
25 57 years. Compared to healthy controls, severe patients 24 T cell assays, which are not age-matched with severe patients with a mean age of
25 57 years. Compared to healthy controls, severe patients showed reduced
25 57 years. Compared to healthy controls, severe patients showe 25 57 years. Compared to healthy controls, severe patients showed reduced

percentages of CD8⁺ T cells and IFN γ -expressing CD4⁺ 1 percentages of CDB^+T cells and $IFN\gamma$ -expressing $CD4^+T$ cells. Previously, Carr et al.

2016). Thus, the differences we observed between healthy controls and severe

2016). Thus, the differences we observed between h found that frequencies of Th1 and CDB^+ T cells were enhanced with age (Carr et al., 2 found that frequencies of Th1 and CD8⁺ T cells were enhanced with age (Carr et al.,

2016). Thus, the differences we observed between healthy controls and severe

patients were unlikely caused by age.

In our study, a

2016). Thus, the differences we observed between healthy controls and severe
patients were unlikely caused by age.
In our study, antigens-specific IFNγ expression was not detected in severe
patients, in contrast to the re 4 patients were unlikely caused by age.

5 In our study, antigens-specific IF

6 patients, in contrast to the report (Wei

7 IFNγ ELISpot analysis to detect antige

cell receptor-dependent activation m 5 In our study, antigens-specific IFNγ expression was not detected in severe
patients, in contrast to the report (Weiskopf et al., 2020). We used antigen-mediated
IFNγ ELISpot analysis to detect antigen-specific T cells, 6 patients, in contrast to the report (Weiskopf et al., 2020). We used antigen-mediated IFNγ ELISpot analysis to detect antigen-specific T cells, while the other group used T cell receptor-dependent activation marker assa 1 IFNγ ELISpot analysis to detect antigen-specific T cells, while the other group used T
cell receptor-dependent activation marker assay in measuring the expression of
CD137 and CD69. Since AIM assay did not measure effe cell receptor-dependent activation marker assay in measuring the expression of
CD137 and CD69. Since AIM assay did not measure effector function by T cells, it is
possible that virus-specific T cells are "exhausted". Diffe 9 CD137 and CD69. Since AIM assay did not measure effector function by T cells, it is

9 possible that virus-specific T cells are "exhausted". Different patient cohort and

1 sample timing may account for the different res

possible that virus-specific T cells are "exhausted". Different patient cohort and
11 sample timing may account for the different results.
12 In summary, we detected anti-SARS-CoV-2 antibody responses in most severe
13 cas sample timing may account for the different results.

12 In summary, we detected anti-SARS-CoV-2 an

13 cases, while impaired cellular responses were of

14 patients. Our results thus provide insight in the pa

15 They sug In summary, we detected anti-SARS-CoV-2 antibody responses in most severe

13 cases, while impaired cellular responses were observed in all severe COVID-19

14 patients. Our results thus provide insight in the pathogenesis cases, while impaired cellular responses were observed in all severe COVID-19

14 patients. Our results thus provide insight in the pathogenesis of severe COVID-19.

15 They suggest that induction of cellular immunity is v 14 patients. Our results thus provide insight in the pathogenesis of severe COVID-19.

15 They suggest that induction of cellular immunity is vital in controlling SARS-CoV-2

16 infection, which also has implications in de 15 They suggest that induction of cellular immunity is vital in controlling SARS-CoV-2
infection, which also has implications in development of an effective vaccine.
17
18 16 infection, which also has implications in development of an effective vaccine.
17
18

 18

ACKNOWLEDGEMENT
2 We thank Weijin Huan
3 Drug Control for sharing
4 supported in part by gr
5 Program of China (201 We thank Weijin Huang and Jianhui Nie from the National Institutes for Food and

Drug Control for sharing the plasmids for pseudovirus package. This work was

supported in part by grants from the National Key Research and Brug Control for sharing the plasmids for pseudovirus package. This work was
supported in part by grants from the National Key Research and Development
Frogram of China (2016YFC0906200 to CD, 2016YFC130390 to LN, and
2020Y supported in part by grants from the National Key Research and Development

Frogram of China (2016YFC0906200 to CD, 2016YFC130390 to LN, and

4 2020YFA0707800 to XW), Natural Science Foundation of China (31991173,

3182100 Frogram of China (2016YFC0906200 to CD, 2016YFC130390 to LN, and
6 2020YFA0707800 to XW), Natural Science Foundation of China (31991173,
7 31821003 and 31991170 to CD), Beijing Municipal Science and Technology
8 (Z18110000 2020YFA0707800 to XW), Natural Science Foundation of China (31991173,
31821003 and 31991170 to CD), Beijing Municipal Science and Technology
27 (2181100001318007, 2181100006318015 and 2171100000417005 to C.D.),
21 Zhejiang 31821003 and 31991170 to CD), Beijing Municipal Science and Technology

(Z181100001318007, Z181100006318015 and Z171100000417005 to C.D.),

2hejiang University Foundation (2020XGZX014 to CD), Tsinghua University (to CD)

a 8 (Z181100001318007, Z181100006318015 and Z171100000417005 to C.D.),
2 Zhejiang University Foundation (2020XGZX014 to CD), Tsinghua University (to CD)
3 and Science and Technology Development Plan Project of Jilin Province 2 Zhejiang University Foundation (2020XGZX014 to CD), Tsinghua University (to CD)

and Science and Technology Development Plan Project of Jilin Province

(20200901007SF to F.L.).

2
 AUTHOR CONTRIBUTIONS and Science and Technology Development Plan Project of Jilin Province
11 (20200901007SF to F.L.).
12 **AUTHOR CONTRIBUTIONS**
14 **L.N.** and C.D. designed the research and analyzed the data. Y.F. and F.C.
15 collected clinica

11 (20200901007SF to F.L.).
12
AUTHOR CONTRIBUTIOI
14 L.N. and C.D. designe
15 collected clinical specime --
13
14
15
16
17 **AUTHOR CONTRIBUTIONS**
14 L.N. and C.D. designed to
15 collected clinical specimens
16 specimens with severe COVI
17 at a P3 laboratory. M.C., Y.F. L.N. and C.D. designed the research and analyzed the data. Y.F. and F.C.
collected clinical specimens with mild COVID-19; J.L. and H.Z. collected clinical
specimens with severe COVID-19; Y.D., X.L. and Q.Y. did most of the collected clinical specimens with mild COVID-19; J.L. and H.Z. collected clinical
specimens with severe COVID-19; Y.D., X.L. and Q.Y. did most of the experiments
at a P3 laboratory. M.C., Y.F., H.Z., Q.Y., Z.G., L.X., P. W 16 specimens with severe COVID-19; Y.D., X.L. and Q.Y. did most of the experiments

17 at a P3 laboratory. M.C., Y.F., H.Z., Q.Y., Z.G., L.X., P. W., S.J. and D.Y. performed

18 some experiments or prepared key reagents; L 17 at a P3 laboratory. M.C., Y.F., H.Z., Q.Y., Z.G., L.X., P. W., S.J. and D.Y. performed

18 some experiments or prepared key reagents; L.N. and C.D. analyzed the results; L.N.

19 and C.D. wrote the manuscript.

20 **Conf** 18 some experiments or prepared key reagents; L.N. and C.D. analyzed the results; L.N.
20
20
Conflict of interest
22 The authors declare that there are no conflicts of interest to disclose.

19 and C.D. wrote the manuscript.
20
21 **Conflict of interest**
22 The authors declare that ther
23 21 **Conflict of interest**
22 The authors decla
23
24
25
26
27 22 The authors declare that there are no conflicts of interest to disclose.
23
24
25
26

 21
 22
 23
 24
 25
 26 --
24
25
26
27

25
26
27 --
26
27

 $\frac{1}{27}$

1 **Figure legends**

2
 **Sigure 1. Pres

4 severe COVID-1**

5 (A) Titration of in

6 were presented

7 **potients to resent** $\begin{bmatrix} 3 & 4 & 5 & 6 & 7 \end{bmatrix}$ **Figure 1. Presence of SARS-CoV-2 NP- and S-RBD-specific antibodies in**
severe COVID-19 patients.
(A) Titration of individual serum samples. (B) Data from the same experiments as (A)
were presented as area under curve (AUC severe COVID-19 patients.

5 (A) Titration of individual series

6 were presented as area ur

7 patients to recombinant NP a

8 sera from convalescent in 5 (A) Titration of individual serum samples. (B) Data from the same experiments as (A)

6 were presented as area under curve (AUC). (C) IgG isotypes of 10 COVID-19

patients to recombinant NP and S-RBD. (D) Serum ELISA ti 6 were presented as area under curve (AUC). (C) IgG isotypes of 10 COVID-19 patients to recombinant NP and S-RBD. (D) Serum ELISA titers to NP and S-RBD in sera from convalescent individuals $(n=14)$ and severe patients $(n$ patients to recombinant NP and S-RBD. (D) Serum ELISA titers to NP and S-RBD in
sera from convalescent individuals (n=14) and severe patients (n=10). The
experiment was performed in duplicates. Date are presented as Mean sera from convalescent individuals (n=14) and severe patients (n=10). The
experiment was performed in duplicates. Date are presented as Mean \pm SEM. NP,
nucleocapsid protein. S-RBD, receptor binding domain of spike prot 9 experiment was performed in duplicates. Date are presented as Mean \pm SEM. NP,

10 nucleocapsid protein. S-RBD, receptor binding domain of spike protein. HD, healthy

11 donor. Pt, patient. AUC, area under curve. HD#1 nucleocapsid protein. S-RBD, receptor binding domain of spike protein. HD, healthy

11 donor. Pt, patient. AUC, area under curve. HD#1-9, the sera were collected before

12 SARS-CoV-2 outbreak. *P<0.05, 0.05<**P<0.001, *** donor. Pt, patient. AUC, area under curve. HD#1-9, the sera were collected before
12 SARS-CoV-2 outbreak. *P<0.05, 0.05<**P<0.001, ***P<0.001. ns, not significant.
13
Figure 2. Measurement of neutralizing antibody titers

SARS-CoV-2 outbreak. *P<0.05, 0.05<**P<0.001, ***P<0.001. ns, not significant.

13

13

14 Figure 2. Measurement of neutralizing antibody titers in severe COVID

15 cases.

(A) Neutralizing curves of 10 COVID-19 patients m

--
14
15
16
17
19 Figure 2. Measurement of neutralizing antibody titers in severe COVID-19

cases.

(A) Neutralizing curves of 10 COVID-19 patients measured by pseudovirus-based

assay. The experiment with patients was performed in duplicat **cases.**

16 (A) Net

17 assay.

18 antibod

19 convale

20 Mess 16 (A) Neutralizing curves of 10 COVID-19 patients measured by pseudovirus-based
17 assay. The experiment with patients was performed in duplicates. (B) Neutralizing
18 antibody titers of 10 severe COVID-19 patients. (C) 17 assay. The experiment with patients was performed in duplicates. (B) Neutralizing

18 antibody titers of 10 severe COVID-19 patients. (C) Comparison of NAT50 between

19 convalescent subjects (n=14) and severe patients antibody titers of 10 severe COVID-19 patients. (C) Comparison of NAT50 between
convalescent subjects (n=14) and severe patients (n=10). Date are presented as
Mean ± SEM. (D) Pie plot showing NAT50 range in severe and conv 19 convalescent subjects (n=14) and severe patients (n=10). Date are presented as

20 Mean \pm SEM. (D) Pie plot showing NAT50 range in severe and convalescent

21 patients. HD, healthy donor (HD#10-14). Pt, patient. NAT Mean ± SEM. (D) Pie plot showing NAT50 range in severe and convalescent

21 patients. HD, healthy donor (HD#10-14). Pt, patient. NAT50, neutralizing antibody

22 titers. *P<0.05, 0.05<**P<0.001, ***P<0.001. ns, not signifi

patients. HD, healthy donor (HD#10-14). Pt, patient. NAT50, neutralizing antibody
22 titers. *P<0.05, 0.05<**P<0.001, ***P<0.001. ns, not significant.
23
Figure 3. Phenotypic analysis of blood lymphocytes in severe COVID-22 titers. *P<0.05, 0.05<**P<0.001, ***P<0.001. ns, not significant.

23
 Figure 3. Phenotypic analysis of blood lymphocytes ir

25 **patients.** --
24
25 24 **Figure 3. Phenotypic analysis of blood lymphocytes in severe COVID-19** 25 **patients.**

1 (A) Phenotypic analysis of PBMCs from one representative COVID-19 patient. (B)

2 Summarized data on the frequencies of different immune cell subsets in COVID-19

patients and the ratio of CD4:CD8 T cells. (C) Summarize 2 Summarized data on the frequencies of different immune cell subsets in COVID-19 patients and the ratio of CD4:CD8 T cells. (C) Summarized data on the absolute numbers of different immune cell subsets in COVID-19 patient 3 patients and the ratio of CD4:CD8 T cells. (C) Summarized data on the absolute

4 numbers of different immune cell subsets in COVID-19 patients. HD, healthy donors

5 (HD#10-14); Pt, patients (n=7). Date are presented a %4 numbers of different immune cell subsets in COVID-19 patients. HD, healthy donors

(HD#10-14); Pt, patients (n=7). Date are presented as Mean \pm SEM. *P<0.05,

0.05<**P<0.001,***P<0.001. ns, not significant.

7
 Fig (HD#10-14); Pt, patients (n=7). Date are presented as Mean ± SEM. *P<0.05,

0.05<**P<0.001, ***P<0.001. ns, not significant.

7
 Figure 4. Cellular functionality of T cells in severe COVID-19 cases.

(A) Intracellular cy

6 0.05<**P<0.001, ***P<0.001. ns, not significant.

7
 Figure 4. Cellular functionality of T cells in se

(A) Intracellular cytokine staining of CD3⁺CD56

on the frequencies of cytokine-producing CD3⁺ 8901 8 **Figure 4. Cellular functionality of T cells in severe COVID-19 cases.**

(A) Intracellular cytokine staining of CD3⁺CD56⁻CD8⁻ T cells. (B) Sum

on the frequencies of cytokine-producing CD3⁺CD56⁻CD8⁻ T cells a (A) Intracellular cytokine staining of CD3+CD56CD8 9 (A) Intracellular cytokine staining of CD3⁺CD56⁻CD56⁻CD8⁺ T cells. (B) Summarized data

9 on the frequencies of cytokine-producing CD3⁺CD56⁻CD8⁺ T cells as indicated. (C)

9 Representative FACS plots showi on the frequencies of cytokine-producing CD3+CD56 CD8 on the frequencies of cytokine-producing CD3⁺CD56⁻CD5² T cells as indicated. (C)

11 Representative FACS plots showing polyfunctional CD3⁺CD56⁻CD8⁻ T cells. (D)

12 Summarized data on the frequencies of polyfun Representative FACS plots showing polyfunctional CD3+CD56CD8 Representative FACS plots showing polyfunctional CD3⁺CD56⁻CD8⁻ T cells. (D)
12 Summarized data on the frequencies of polyfunctional CD3⁺CD56⁻CD8⁻ T cells as
13 indicated. (E) Intracellular cytokine staining of Summarized data on the frequencies of polyfunctional CD3+CD56 CD8 Summarized data on the frequencies of polyfunctional CD3⁺CD56⁻CD8⁺ T cells as

indicated. (E) Intracellular cytokine staining of CD3⁺CD56⁻CD8⁺ T cells. (F)

Summarized data on the frequencies of cytokine-produc indicated. (E) Intracellular cytokine staining of CD3⁺CD56⁻CD8⁺ indicated. (E) Intracellular cytokine staining of $CD3^+CD56^+CD8^+$ T cells. (F)

14 Summarized data on the frequencies of cytokine-producing $CD3^+CD56^+CD8^+$ T cells

15 as indicated. (G) Summarized data on the frequencies Summarized data on the frequencies of cytokine-producing CD3+CD56 CD8+ 14 Summarized data on the frequencies of cytokine-producing CD3⁺CD56⁻CD8⁺ T cells

15 as indicated. (G) Summarized data on the frequencies of polyfunctional CD3⁺CD56⁻

16 CD8⁺ T cells as indicated. (H) Summari as indicated. (G) Summarized data on the frequencies of polyfunctional CD3⁺CD56⁻ --
16
17
18
19 CD8⁺ T cells as indicated. (H) Summarized data on the frequencies of cytokine-CD8⁺ T cells as indicated. (H) Summarized data on the frequencies of cytokine-
producing CD3⁻ cells as indicated. HD, healthy donors (HD#10-14); Pt, patients
(n=7). Date are presented as Mean ± SEM. *P<0.05, 0.05<**P<0 producing CD3⁻ cells as indicated. HD, healthy donors (HD#10-14); Pt, patients producing CD3⁻ cells as indicated. HD, healthy donors (HD#10-14); Pt, patients

18 (n=7). Date are presented as Mean ± SEM. *P<0.05, 0.05<**P<0.001, ***P<0.001.

19 ns, not significant.

20 **Figure 5. T cell responses to**

(n=7). Date are presented as Mean \pm SEM. *P<0.05, 0.05<**P<0.001, ***P<0.001.

19 ns, not significant.

20
 19 Figure 5. T cell responses to recombinant SARS-CoV-2 proteins in COVID-19

22 patients. 19 ns, not significant.
20
21 **Figure 5. T cell r**
22 **patients.**
23 (A) IFNγ ELISpot and the conditional of the conditional o

--
21
22
23
24 Figure 5. T cell responses to recombinant SARS-CoV-2 proteins in COVID-19

patients.

(A) IFNγ ELISpot analysis of COVID-19 patients to anti-CD3 antibody. HD, healthy

donors (HD#10-14); Pt, patients (n=7). The experiment **patients.**

23 (A) IFNγ

24 donors (F

25 in duplica 23 (A) IFNγ ELISpot analysis of COVID-19 patients to anti-CD3 antibody. HD, healthy
24 donors (HD#10-14); Pt, patients (n=7). The experiment with patients was performed
25 in duplicates. (B) The ratios of IFNγ-producing T 24 donors (HD#10-14); Pt, patients (n=7). The experiment with patients was performed
25 in duplicates. (B) The ratios of IFNγ-producing T cells in response to NP or anti-CD3
25 in duplicates. (B) The ratios of IFNγ-produc 25 in duplicates. (B) The ratios of IFN_Y-producing T cells in response to NP or anti-CD3
 $\frac{1}{2}$

-
-
-
-
-
-
- **1 Reference**

2 Carr, E.J., Do

3 Boeckxstaen

4 human immu

5 Chen, G., Wu
 et al. (2020).

7 disease 2019

8 De Biasi, S., I

9 lannone, A.,
-
- 2 Boeckxstaens, G., Linterman, M.A., and Liston, A. (2016). The cellular composition of the

1 Auman immune system is shaped by age and cohabitation. Nat Immunol 17, 461-468.

2 Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D 4 human immune system is shaped by age and cohabitation. Nat Immunol 17, 461-468.

5 Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, X., Chen, H., Yu,
 et al. (2020). Clinical and immunological 4 human immune system is shaped by age and cohabitation. Nat immunol 17, 461-468.

6 Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, X., Chen, H.,
 et al. (2020). Clinical and immunological feat Each, S., Wa, D., Suo, W., eac, H., Haang, D., Wang, H., Wang, H., Eneng, A., Chen, H., Ta, H.,

et al. (2020). Clinical and immunological features of severe and moderate coronavirus

disease 2019. J Clin Invest 130, 2620-6 et al. (2020). Clinical and immunological readdies of severe and moderate coronavirus

disease 2019. J Clin Invest 130, 2620-2629.

De Biasi, S., Meschiari, M., Gibellini, L., Bellinazzi, C., Borella, R., Fidanza, L., Go 2020 2029.

8 De Biasi, S., Meschiari, M., Gibellini, L., Belli

1 annone, A., Lo Tartaro, D., Mattioli, M., et

20 exhaustion and skewing towards TH17 in pa

1 11, 3434.

2 Di Pierro, F., Bertuccioli, A., and Cavecchia,
 9 Iannone, A., Lo Tartaro, D., Mattioli, M., *et al.* (2020). Marked T cell activation, senesc
exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Co
11, 3434.
Di Pierro, F., Bertuccioli, A., and C Famone, A., Lo Tartaro, D., Mattion, M., et al. (2020). Marked T cell activation, schessence,

11, 3434.

21 Di Pierro, F., Bertuccioli, A., and Cavecchia, I. (2020). Possible therapeutic role of a highly

11, 3434.

21 Di
-
- 11 11, 3434.

12 Di Pierro,

13 standardi.

14 (AHCC) in

15 Grifoni, A.

16 S.A., Sutha

17 SARS-CoV

18 Gruszecka

20 Lynch, K.L
- standardized mixture of active compounds derived from cultured Lentinula edodes myce

(AHCC) in patients infected with 2019 novel coronavirus. Minerva Gastroenterol Dietol.

15 Grifoni, A., Weiskopf, D., Ramirez, S.I., Mat
-
-
-
- 21 exhibited and skewing towards TH17 in patients with COVID-19 phedinomal. Nat Communi

11 11, 3434.

12 Di Pierro, F., Bertuccioli, A., and Cavecchia, I. (2020). Possible therapeutic role of a highly

13 standardized mix (AHCC) in patients infected with 2019 novel coronavirus. Minerva Gastroenterol Dietol.

15 Grifoni, A., Weiskopf, D., Ramirez, S.I., Mateus, J., Dan, J.M., Moderbacher, C.R., Rawlings,

16 S.A., Sutherland, A., Premkumar,
-
-
-
-
- 15 Grifoni, A., Weiskopf, D., Ramirez, S.I., Mateus, J., Dan, J.M., Moderbacher, C.R., Rawling
16 S.A., Sutherland, A., Premkumar, L., Jadi, R.S., *et al.* (2020). Targets of T Cell Responses t
17 SARS-CoV-2 Coronavirus in S.A., Sutherland, A., Premkumar, L., Jadi, R.S., *et al.* (2020). Targets of T Cell Responses to
SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Ce
Gruszecka, J., and Filip, R. (2020). Pre 16 S.A., Sutherland, A., Telnikalitar, E., Sadi, R.S., et al. (2020). Targets of Telni Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Constants Cover 2 Cell Responses in Huma 18 Gruszecka, J., and Filip, R. (2020). Preliminary information on prevention of infections

19 caused by SARS-COV-2 virus in endoscopic laboratories. Ann Agric Environ Med 27, 171-174.

19 Lynch, K.L., Whitman, J.D., Laca 20 caused by SARS-COV-2 virus in endoscopic laboratories. Annoughe Environ Med 27, 171-174.

19 Lynch, K.L., Whitman, J.D., Lacanienta, N.P., Beckerdite, E.W., Kastner, S.A., Shy, B.R.,

21 Goldgof, G.M., Levine, A.G., Bap 21 Goldgof, G.M., Eevine, A.G., Bapat, S.F., Stramer, S.E., et al. (2020). Magnitude and kinetics
23 of anti-SARS-CoV-2 antibody responses and their relationship to disease severity. Clin Infect
23 Dis.
24 Ni, L., Ye, F.,
-
- caused by SARS-COV-2 virus in endoscopic laboratories. Ann Agric Environ Med 27, 17

19 Lynch, K.L., Whitman, J.D., Lacanienta, N.P., Beckerdite, E.W., Kastner, S.A., Shy, B.R.,

19 Goldgof, G.M., Levine, A.G., Bapat, S.P. 21 Goldgof, G.M., Levine, A.G., Bapat, S.P., Stramer, S.L., *et al.* (2020). Magnitude and kir of anti-SARS-CoV-2 antibody responses and their relationship to disease severity. Clin Dis.
23 Dis.
24 Ni, L., Ye, F., Cheng, M 23 Dis.

24 Ni, L., Ye, F., Cheng, M.L., Feng, Y., Deng, Y.Q., Zhao, H., Wei, P., Ge, J., Gou, M., Li, X., *et al.*

25 (2020). Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19

26 Convalescent In 24 Ni, L
25 (202
26 Conv
27 Nie,
28 (202
29 Eme
30 Orlo
31 Targ
32 War 24 Mi, L., IC, T., Onchg, M.L., Ichg, T., Deng, T.Q., Zhao, H., Wei, T., Oc, J., Ood, M., L., N., et al.
25 (2020). Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19
26 Convalescent Individuals. Im
-
-
-
-
-
- Convalescent Individuals. Immunity 52, 971-977 e973.

27 Nie, J., Li, Q., Wu, J., Zhao, C., Hao, H., Liu, H., Zhang, L., Nie, L., Qin, H., Wang, M., et a

28 (2020). Establishment and validation of a pseudovirus neutraliza 27 Nie, J., Li, Q., Wu, J., Zhao, C., Hao, H., Liu, H., Zhang, L.
28 (2020). Establishment and validation of a pseudovirus in
29 Emerg Microbes Infect 9, 680-686.
20 Orlov, M., Wander, P.L., Morrell, E.D., Mikacenic, C., a
-
-
- 27 Mic, J., Li, Q., Wu, J., Zhao, e., Hao, H., Eld, H., Zhang, L., Nie, L., Qin, H., Wang, M., et al.

28 (2020). Establishment and validation of a pseudovirus neutralization assay for SARS-CoV

29 Emerg Microbes Infect 9, Emerg Microbes Infect 9, 680-686.

20 Crlov, M., Wander, P.L., Morrell, E.D., Mikacenic, C., and Wurfel, M.M. (2020). A Case for

31 Targeting Th17 Cells and IL-17A in SARS-CoV-2 Infections. J Immunol.

22 Wang, C., Horby, 29 Emerg Microbes Micet 9, 680-686.

29 Orlov, M., Wander, P.L., Morrell, E.

23 Wang, C., Horby, P.W., Hayden, F.G

23 Wang, C., Horby, P.W., Hayden, F.G

23 global health concern. Lancet 395,

24 Wang, Y., Zhang, L., San Targeting Th17 Cells and IL-17A in SARS-CoV-2 Infections. J Immunol.

31 Targeting Th17 Cells and IL-17A in SARS-CoV-2 Infections. J Immunol.

32 Wang, C., Horby, P.W., Hayden, F.G., and Gao, G.F. (2020a). A novel coronavi 32 Wang, C., Horby, P.W., Hayden, F.G., and Gao, G.F. (2020a). A novel completed and health concern. Lancet 395, 470-473.
33 Wang, Y., Zhang, L., Sang, L., Ye, F., Ruan, S., Zhong, B., Song, T., Alshu
35 Zhang, Z., *et al.* 33 global health concern. Lancet 395, 470-473.

33 global health concern. Lancet 395, 470-473.

34 Wang, Y., Zhang, L., Sang, L., Ye, F., Ruan, S., Zhong, B., Song, T., Alshukairi, A.N., Chen, R.,

35 Zhang, Z., et al. (20 33 Wang, Y., Zhang, L., Sang, L., Ye, F., Ruan, S.,
35 Zhang, Z., *et al.* (2020b). Kinetics of viral load
36 severity. J Clin Invest.
37 Weiskopf, D., Schmitz, K.S., Raadsen, M.P., G
48 Akker, J.P.C., Molenkamp, R., Koopm 25 Zhang, Z., *et al.* (2020b). Kinetics of viral load and antibody response in relation to COVID-3
36 severity. J Clin Invest.
37 Weiskopf, D., Schmitz, K.S., Raadsen, M.P., Grifoni, A., Okba, N.M.A., Endeman, H., van der
-
-
- 25 Zhang, Z., et al. (2020b). Kinetics of viral load and antibody response in relation to COVID-15
36 Severity. J Clin Invest.
37 Weiskopf, D., Schmitz, K.S., Raadsen, M.P., Grifoni, A., Okba, N.M.A., Endeman, H., van den
 37 Weiskopf, D., Schmitz,
38 Akker, J.P.C., Molenka
39 and kinetics of SARS-C
40 distress syndrome. Sci
41 Wu, D., and Yang, X.O
42 target of JAK2 inhibito
43 Xie, S., Huang, J., Qiao
44 Expression of the inhil
tumors. Can Akker, J.P.C., Molenkamp, R., Koopmans, M.P.G., van Gorp, E.C.M., *et al.* (2020). Phenotype
39 and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory
40 distress syndrome. Sci Immunol 5.
3 38 Akker, J.F.C., Molenkamp, R., Roopmans, M.F.C., Van Gorp, E.C.M., et al. (2020). Thenotype
39 and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory
40 distress syndrome. Sci Immunol 5.

- distress syndrome. Sci Immunol 5.
39 Au. D., and Yang, X.O. (2020). TH17 responses in cytokine storm of COVID-19: An eme
32 and kinetic of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect 53, 368-370.
33 Xie, S., Huan 41 Wu, D., and Yang, X.O. (2020). TH1
42 target of JAK2 inhibitor Fedratinib.
43 Xie, S., Huang, J., Qiao, Q., Zang, W
44 Expression of the inhibitory B7 fam
tumors. Cancer Immunol Immunot
-
- 42 target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect 53, 368-370.

43 Kie, S., Huang, J., Qiao, Q., Zang, W., Hong, S., Tan, H., Dong, C., Yang, Z., and Ni, L. (2018).

44 Expression of the inhibitory B7 fami 42 target of JAK2 inhibitor Fedratinib. J Microbiol Immunior infect 33, 368-370.
43 Xie, S., Huang, J., Qiao, Q., Zang, W., Hong, S., Tan, H., Dong, C., Yang, Z., and
44 Expression of the inhibitory B7 family molecule VIST
- $\frac{1}{2}$, $\frac{1}{2}$,
- 45 tumors. Cancer Immunol Immunother 67, 1685-1694. 45 tumors. Cancer Immunol Immunother 67, 1685-1694.

-
-
-
- 1 Xu, 2., Shi, L., Wang, T., Zhang, S., Halang, L., Zhang, C., Liu, S., Zhao, P., Liu, P., Zhu, L., C., L.
(2020). Pathological findings of COVID-19 associated with acute respiratory distress
syndrome. Lancet Respir Med 8, 2 (2020). Elevated Respir Med 8, 420-422.

2 (2020). Pathology M., Yang, C.X., Zhang, N., Wang, X.C., Yang, X.P., Dong, X.Q., and

2 (2020). Pathology M., Yang, C.X., Zhang, N., Wang, X.C., Yang, X.P., Dong, X.Q., and

2 (3 syndrome. Lancet Respir Med 8, 428 422.
4 Zheng, H.Y., Zhang, M., Yang, C.X., Zhang, I
5 Y.T. (2020). Elevated exhaustion levels and
6 peripheral blood may predict severe progr
7 541-543.
9
-
- 4 2 Y.T. (2020). Elevated exhaustion levels and reduced functional diversity of T cells in

4 2020). Elevated exhaustion levels and reduced functional diversity of T cells in

541-543.

4 341-543.

9 9 France Controller and reduced function in COVID-19 patients. Cell Mol Imp.
541-543.
9
0 6 peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol 17,
7 541-543.
8
1
- $\begin{bmatrix} 8 \\ 9 \\ 1 \\ 2 \end{bmatrix}$
-
- 9 0 1 2 2
-
-
-
-
- 0 1 2 3 4 11
12
13
14
15 --
12
13
14
15
16 --
13
14
15
16
17 13
- --
14
15
16
17
19 14
- 15
- 16
- 17
- 15
16
17
18
19
20 16
17
18
19
20
21
22 17
18
19
20
22
22
24 18
19
20
22
23
24
25
25
25 18
- 19 20
- 21 22
- 23
- 24 25
- 26
- 27
- 19

20

21

22

24

25

26

27

28

20

28

20 20

21

22

23

24

25

26

27

29

29

29 20 - 22 23 24 25 26 27 28 29 30 31 32 22 23 25
26
27
28
29
31
32
33
34
5 26
27
28
29
30
31
32
33
35
32 26 28
- 28 29 30 31 32 33 34 35 36 37 -29
30
31
32
33
35
35
37
38 29
- 30
31
32
33
35
35
37
38 30 31
- 31
32
33
35
35
37
38 - 32
333
34
35
36
37
38 32
- 33 34
- 35
- 36 37
- 33
33 4
35 56
37 38 34
35
36
37
38 35
36
37
38 36
37
38 37
38
| 38
1 38

 $\mathbf{1}$

-
- $\begin{array}{ccccccccc}\n1 & 2 & 3 & 4 & 5 & c\n\end{array}$ RESOURCE AVAILABILITY

2 Lead Contact

4 Further information and requ

3 and will be fulfilled by the lead

6 **Materials Availability**

7 The pleamide (pET28 N 6YH) **2** *Lead Contact*
4 Further informs
5 and will be fulfi
6 **Materials Ava**
7 The plasmids (

- Further information and requests for resources and reagents should be directed to
and will be fulfilled by the lead contact, Chen Dong (chendong@tsinghua.edu.cn)
Materials Availability
The plasmids (pET28-N-6XHis and pEF and will be fulfilled by the lead contact, Chen Dong (chendong@tsinghua.edu.cn)
 Materials Availability

The plasmids (pET28-N-6XHis and pEF1a-S-RBD-6His) generated in this study

be made available on request from the Le **Materials Availability**

7 The plasmids (pET28-l

8 be made available on r
 Data and Code Availa

0 The study did not gene The plasmids (pET28-N-6XHis and pEF1a-S-RBD-6His) generated in this study will
be made available on request from the Lead Contact without restriction.
Data and Code Availability
The study did not generate any unique data
- be made available on request from the Lead Contact without restriction.
 Data and Code Availability

The study did not generate any unique dataset or code.
 EXPERIMENTAL MODEL AND SUBJECT DETAILS
 COVID 19 patient blo

9 **Data and Code Availability**
0 The study did not generate a
1
**EXPERIMENTAL MODEL A
COVID-19 patient blood sa**
4

The study did not generate any unique dataset or code.

11
 EXPERIMENTAL MODEL AND SUBJECT DETAILS
 COVID-19 patient blood samples

The blood samples of severe COVID-19 patients

15 received to the infection or proumpp 12
13
14
15
16 **EXPERIMENTAL MODEL AND SUBJECT DETAILS

COVID-19 patient blood samples

The blood samples of severe COVID-19 patient

respiratory tract infection or pneumonia with fever p

tachypnea, respiratory distress, or oxygen satur COVID-19 patient blood samples**
14 The blood samples of severe
15 respiratory tract infection or pneur
16 tachypnea, respiratory distress, or
17 according to the guidelines release The blood samples of severe COVID-19 patients defined as severe lower
15 respiratory tract infection or pneumonia with fever plus any one of the following:
16 tachypnea, respiratory distress, or oxygen saturation less than 15 respiratory tract infection or pneumonia with fever plus any one of the following:
16 tachypnea, respiratory distress, or oxygen saturation less than 93% on room air
17 according to the guidelines released by the nation 16 tachypnea, respiratory distress, or oxygen saturation less than 93% on room air
17 according to the guidelines released by the national Health Commission of China
18 were obtained from Ditan hospital in Beijing. All pro according to the guidelines released by the national Health Commission of China
18 were obtained from Ditan hospital in Beijing. All procedures followed were in
19 accordance with the ethical standards of the responsible c were obtained from Ditan hospital in Beijing. All procedures followed were in
accordance with the ethical standards of the responsible committee on human
experimentation (the institutional review board at Tsinghua Universi accordance with the ethical standards of the responsible committee on human
20 experimentation (the institutional review board at Tsinghua University and at Ditan
21 hospital) and with the Helsinki Declaration of 1975, as experimentation (the institutional review board at Tsinghua University and at Ditan
21 hospital) and with the Helsinki Declaration of 1975, as revised in 2000. All studies
22 were approved by the Medical Ethical Committee 21 hospital) and with the Helsinki Declaration of 1975, as revised in 2000. All studies
22 were approved by the Medical Ethical Committee at Tsinghua University. Informed
23 consent was obtained from all subjects for being were approved by the Medical Ethical Committee at Tsinghua University. Informed

consent was obtained from all subjects for being included in the study. All patient

consent was obtained from all subjects for being include 23 consent was obtained from all subjects for being included in the study. All patient

-
-
-
-
- data were anonymized before study inclusion. See Table 1 for full patient information,
including age, sex, and health status.
3
Cell Lines
HuH-7 cells originally taken from a liver tumor in a Japanese male were cultured in
- 2 including age, sex, and health status.
3
2 Cell Lines
5 HuH-7 cells originally taken from a live
5 DMEM supplemented with 10% FBS. 45678 5 HuH-7 cells originally taken from a liver tumor in a Japanese male were cultured in

5 DMEM supplemented with 10% FBS. Cells were grown at 37 °C in a 5% CO2 setting.

7
 METHOD DETAILS

Expression and Purification of r
-

4 Cell Lines
5 HuH-7 cell
6 DMEM sur
7
8 **METHOD** 8901

6 DMEM supplemented with 10% FBS. Cells were grown at 37 °C in a 5% CO2 setting.
7
METHOD DETAILS
Expression and Purification of recombinant proteins
The recombinant His-tagged NP of SARS-CoV-2 was expressed in E. coli

8 **METHOD DETAILS**
9 **Expression and Pull
0** The recombinant His
1 expression system, v
2 tagged S-RBD (amil Expression and Purification of recombinant proteins

1 The recombinant His-tagged NP of SARS-CoV-2 was e

1 expression system, with 1 mM IPTG induction at 37 °C for

2 tagged S-RBD (amino acids 319-541) was expressed I

29 10 The recombinant His-tagged NP of SARS-CoV-2 was expressed in E. coli by a T7
11 expression system, with 1 mM IPTG induction at 37 °C for 4 h. The recombinant His-
12 tagged S-RBD (amino acids 319-541) was expressed by a expression system, with 1 mM IPTG induction at 37 °C for 4 h. The recombinant History
12 tagged S-RBD (amino acids 319-541) was expressed by a mammalian system in
13 293F cells. Purified proteins were identified by SDS-PAG 12 tagged S-RBD (amino acids 319-541) was expressed by a mammalian system in
13 293F cells. Purified proteins were identified by SDS-PAGE gels and stained with
14 Coomassie blue.
15 **ISOlation of PBMC** 293F cells. Purified proteins were identified by SDS-PAGE gels and stained with
14 Coomassie blue.
15 **Isolation of PBMC**
17 PBMCs were isolated from anti-coagulant blood using Ficoll-Hypaque gradients (GE
18 Hooltheore Li

14 Coomassie blue.
15
16 Isolation of PBM
17 PBMCs were isol
18 Healthcare Life S 16
17
18
19
20 **ISolation of PBMC**
17 PBMCs were isolate
18 Healthcare Life Scie
19 under the biosafety
20 PBS, was gently la 17 PBMCs were isolated from anti-coagulant blood using Ficoll-Hypaque gradients (GE
18 Healthcare Life Sciences, Philadelphia, PA) as previously described (Xie et al., 2018)
19 under the biosafety level 3 facility in AMMS. Healthcare Life Sciences, Philadelphia, PA) as previously described (Xie et al., 2018)

under the biosafety level 3 facility in AMMS. To isolate PBMCs, blood diluted with

PBS, was gently layered over an equal volume of Fi under the biosafety level 3 facility in AMMS. To isolate PBMCs, blood diluted with

20 PBS, was gently layered over an equal volume of Ficoll in a Falcon tube and

21 centrifuged for 30-40 minutes at 400-500 g without brak PBS, was gently layered over an equal volume of Ficoll in a Falcon tube and

21 centrifuged for 30-40 minutes at 400-500 g without brake. Four layers formed, each

22 containing different cell types. The second layer conta 21 centrifuged for 30-40 minutes at 400-500 g without brake. Four layers formed, each
22 containing different cell types. The second layer contained PBMCs. These cells
23 could be gently removed using a Pasteur pipette and 22 containing different cell types. The second layer contained PBMCs. These cells
23 could be gently removed using a Pasteur pipette and added to warm medium or PBS
24 to wash off any remaining platelets. The pelleted cell 23 could be gently removed using a Pasteur pipette and added to warm medium or PBS
24 to wash off any remaining platelets. The pelleted cells were then counted and the
24 to wash off any remaining platelets. The pelleted c 24 to wash off any remaining platelets. The pelleted cells were then counted and the

1 percentage viability was estimated using Trypan blue staining. Cells were then

2 cryopreserved for future study.

3
 4 Anti-SARS-CoV-2 lgG/lgM ELISA

5 For lgM/lgG testing, 96-well ELISA plates were coated overnight w

cryopreserved for future study.

3
 4 Anti-SARS-CoV-2 IgG/IgM EL

5 For IgM/IgG testing, 96-well E

NP and S-RBD (100 ng/well). T 45678 Anti-SARS-CoV-2 IgG/IgM ELISA

For IgM/IgG testing, 96-well ELISA

6 NP and S-RBD (100 ng/well). The s

¹ h at 37°C. An anti-Human IgG-biotii

8 Sino Biological Inc., Wayne, PA) ar 5 For IgM/IgG testing, 96-well ELISA plates were coated overnight with recombinant

16 NP and S-RBD (100 ng/well). The sera from COVID-19 patients were incubated for 1

16 h at 37°C. An anti-Human IgG-biotin conjugated mon 6 NP and S-RBD (100 ng/well). The sera from COVID-19 patients were incubated for 1

h at 37°C. An anti-Human IgG-biotin conjugated monoclonal antibody (Cat. SSA009,

Sino Biological Inc., Wayne, PA) and streptavidin-HRP we 1 h at 37°C. An anti-Human IgG-biotin conjugated monoclonal antibody (Cat. SSA009,

18 Sino Biological Inc., Wayne, PA) and streptavidin-HRP were used at a dilution of 1:

19 5000 and 1:250, respectively, and anti-human Ig 8 Sino Biological Inc., Wayne, PA) and streptavidin-HRP were used at a dilution of 1:
5000 and 1:250, respectively, and anti-human IgM-HRP conjugated monoclonal
antibody (Cat. bs-0345G-HRP, Biosynthesis Biotechnology Inc. 9 5000 and 1:250, respectively, and anti-human IgM-HRP conjugated monoclonal

0 antibody (Cat. bs-0345G-HRP, Biosynthesis Biotechnology Inc. Beijing, China) was

1 used. The OD value at 450 nm was calculated. The area unde antibody (Cat. bs-0345G-HRP, Biosynthesis Biotechnology Inc. Beijing, China) was
11 used. The OD value at 450 nm was calculated. The area under the curve (AUC) was
12 calculated by Prism 8 (Graphpad). As a second analytica used. The OD value at 450 nm was calculated. The area under the curve (AUC) was
calculated by Prism 8 (Graphpad). As a second analytical approach (Grifoni et al.,
2020), the serum from one convalescent mild COVID-19 patien calculated by Prism 8 (Graphpad). As a second analytical approach (Grifoni et al.,

13 2020), the serum from one convalescent mild COVID-19 patient was used as a

14 positive control standard. In order to quantify the amou 2020), the serum from one convalescent mild COVID-19 patient was used as a positive control standard. In order to quantify the amount of anti-NP/S-RBD IgG or anti-NP/S-RBD IgM present in each specimen, the positive control 14 positive control standard. In order to quantify the amount of anti-NP/S-RBD IgG or
15 anti-NP/S-RBD IgM present in each specimen, the positive control standard was run
16 on each plate to calculate antibody titers (rela anti-NP/S-RBD IgM present in each specimen, the positive control standard was run
16 on each plate to calculate antibody titers (relative units) for all samples using non-
17 linear regression interpolations.
413 Anti-SA on each plate to calculate antibody titers (relative units) for all samples using non-
17 linear regression interpolations.
18 **Anti-SARS-CoV-2 lgG1/lgG3 ELISA**
20 For lgG1/lgG2/lgG3 test, 96 well ELISA plates were coated

linear regression interpolations.

18
 Anti-SARS-CoV-2 lgG1/lgG3 E

20 For lgG1/lgG2/lgG3 test, 96 we

21 with recombinant NP and S-RBI

22 potients were insuboted for 1 b 19

20

21

22

22

22 **Anti-SARS-CoV-2 IgG1/IgG3 ELISA**
20 For IgG1/IgG2/IgG3 test, 96 well ELI
21 with recombinant NP and S-RBD. Pla
22 patients were incubated for 1 h at 3:
23 conjugated monoclonal antibody (Cat. 20 For IgG1/IgG2/IgG3 test, 96 well ELISA plates were coated (80 ng/well) overnight
21 with recombinant NP and S-RBD. Plates were washed and the sera from COVID-19
22 patients were incubated for 1 h at 37°C. After washing, with recombinant NP and S-RBD. Plates were washed and the sera from COVID-19
22 patients were incubated for 1 h at 37°C. After washing, an anti-Human IgG1-HRP
23 conjugated monoclonal antibody (Cat. C030248, BaiaoTong Expe 22 patients were incubated for 1 h at 37°C. After washing, an anti-Human IgG1-HRP
23 conjugated monoclonal antibody (Cat. C030248, BaiaoTong Experiment Center, LY),
24 and an anti-human IgG3-HRP conjugated monoclonal anti 23 conjugated monoclonal antibody (Cat. C030248, BaiaoTong Experiment Center, LY),
24 and an anti-human IgG3-HRP conjugated monoclonal antibody (Cat.C030246,
25 BaiaoTong Experiment Center, LY), all validated by the compan 24 and an anti-human IgG3-HRP conjugated monoclonal antibody (Cat.C030246,
25 BaiaoTong Experiment Center, LY), all validated by the company for their specificity,
25 BaiaoTong Experiment Center, LY), all validated by the 25 BaiaoTong Experiment Center, LY), all validated by the company for their specificity,

25 BaiaoTong Experiment Center, LY), all validated by the company for their specificity,

were used at a dilution of 1:4000 for 1 h at RT. After washing, TMB substrate

solution was added. The OD value at 450 nm was calculated. The area under the

curve (AUC) was calculated by Prism 8 (Graphpad).

4
 Neutraliz 2 solution was added. The OD value at 450 nm was calculated. The area under the

2 curve (AUC) was calculated by Prism 8 (Graphpad).

4

2 **Neutralizing antibody assay**

2 **CB pCACCS** were as transfected into 202T polls, 4

2 curve (AUC) was calculated by Prism 8 (Graphpad).

4
 Neutralizing antibody assay
 B Pseudovirus expressing the SARS-CoV-2 S protein

2 GP-pCAGGS were co-transfected into 293T cells

2 BS PSEUdOVirus containing super 5 6 7 8 0 **Neutralizing antibody assay**
6 **Pseudovirus expressing the S
6 GP-pCAGGS** were co-transfe
8 **pseudovirus-containing superi
9 serum samples from the COV**
9 *WOTG* transferred to 06 Woll pla 6 Pseudovirus expressing the SARS-CoV-2 S protein was produced. pNL43Luci and
GP-pCAGGS were co-transfected into 293T cells. 48 hours later, SARS-CoV-2
pseudovirus-containing supernatants were mixed with at least 6 seriall GP-pCAGGS were co-transfected into 293T cells. 48 hours later, SARS-CoV-2
pseudovirus-containing supernatants were mixed with at least 6 serially diluted
serum samples from the COVID-19 patients at 37°C for 1 hour. Then th between mixed with at least 6 serially diluted
8 serum samples from the COVID-19 patients at 37°C for 1 hour. Then the mixtures
8 were transferred to 96-well plates containing monolayers of Huh-7 cells (Nie et al.,
8 a 202 9 serum samples from the COVID-19 patients at 37°C for 1 hour. Then the mixtures

0 were transferred to 96-well plates containing monolayers of Huh-7 cells (Nie et al.,

2020). 3 hours later, the medium was replaced. Afte were transferred to 96-well plates containing monolayers of Huh-7 cells (Nie et al.,

11 2020). 3 hours later, the medium was replaced. After incubation for 48 h, the cells

12 were washed, harvested in lysis buffer and an 2020). 3 hours later, the medium was replaced. After incubation for 48 h, the cells
12 were washed, harvested in lysis buffer and analyzed for luciferase activity by the
13 addition of luciferase substrate. Inhibition rate 12 were washed, harvested in lysis buffer and analyzed for luciferase activity by the

13 addition of luciferase substrate. Inhibition rate = [1-(the sample group- the cell control

14 group) / (the virus control group- th addition of luciferase substrate. Inhibition rate = [1-(the sample group- the cell control
group) / (the virus control group- the cell control group)] x 100%. The neutralizing
antibody titer (NAT50) were calculated by perf qroup) / (the virus control group- the cell control group)] x 100%. The neutralizing
15 antibody titer (NAT50) were calculated by performing S-fit analysis via Graphpad
16 Prism 7 software.
17 **Interferon Gamma (IFNy) ELIS** 15 antibody titer (NAT50) were calculated by performing S-fit analysis via Graphpad
16 Prism 7 software.
17 **Interferon Gamma (IFNγ) ELISpot**
19 IFN-γ-secreting T cells were detected by Human IFNγ ELISpot^{pro} kits (MABTE

16 Prism 7 software.
17
18 Interferon Gamm
19 IFN-γ-secreting T
20 Sweden) accordin --
18
19
20
21 **Interferon Gamma (IFNγ) ELISpot**
19 IFN-γ-secreting T cells were detecte
20 Sweden) according to the manufa
21 duplicate at 150k per well and then i
22 Spots were then counted using an IFN- γ -secreting T cells were detected by Human IFN γ ELISpot^{pro} kits (MABTECH AB, 19 IFN- γ -secreting T cells were detected by Human IFN γ ELISpot^{pro} kits (MABTECH AB,
20 Sweden) according to the manufacture protocol. Fresh PBMCs were plated in
21 duplicate at 150k per well and then incubated 48h Sweden) according to the manufacture protocol. Fresh PBMCs were plated in duplicate at 150k per well and then incubated 48h with 1uM of recombinant proteins.
22 Spots were then counted using an AID ELIspot Reader System (i duplicate at 150k per well and then incubated 48h with 1uM of recombinant proteins.
22 Spots were then counted using an AID ELIspot Reader System (iSpot, AID GmbH).
23 The number of spots was converted into the number of s 22 Spots were then counted using an AID ELIspot Reader System (iSpot, AID GmbH).

23 The number of spots was converted into the number of spots per million cells and

24 the mean of duplicate wells plotted.

25 23 The number of spots was converted into the number of spots per million cells and
24 the mean of duplicate wells plotted.
25 24 the mean of duplicate wells plotted.
25
B

 $\mathbf 1$

- $\overline{2}$
- $\mathsf 3$
- $\overline{4}$
- 5

9

0 1 2 3 4 10 Notes: pt, patient; F, female; M, male; ARDS, acute respiratory distress syndrome; P, positive; N, negative; BT, before treatment; NA, nucleic acid; NA, non-available.
12
13
14

11 negative; BT, before treatment; NA, nucleic acid; NA, non-available.
12
13
14

13
14 14

B HD#10 **Pt#3** 1500 $120 -$ **Pt#4** HD#11 Pt#5 HD#12 $90 NAT_{50}$ (log₁₀) 1000 **NAT50 Pt#6** HD#13 **Pt#7** HD#14 60-500 **Pt#8** Pt#1 Pt#9 $30 \rightarrow\leftarrow$ **Pt#2** Pt#10 0 **HD#20#2#2#2#2#2#2#2#2#2#2#** $\overline{0}$ 1.5 2.5 3.035 1.0 2.0 4.0 Log serum dilution 2500 Dns convalescent severe ere2000 <30 NAT50 30-500 1500 500-1000 1000 >1000 500 0seyere convalescent

A

C

medRxiv preprint doi: https://doi.org/10.1101/2020.08.10.20171371; this version posted August 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted The copyright holder for this preprint this prepriated August 12, 2020. [;](https://doi.org/10.1101/2020.08.10.20171371) http://doi.org/10.1101/2020. The copyright holder for this preprint this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

medRxiv preprint doi: https://doi.org/10.1101/2020.08.10.20171371; this version posted August 12, 2020. The copyright holder for this preprint
Which was not certified by peer review) is the author/funder, who has granted m The copyright holder for this preprint this prepriated August 12, 2020. [;](https://doi.org/10.1101/2020.08.10.20171371) http://doi.org/101/101/101/1011101/doi.org/10.1101/2020. ; http://doi.org/10.1101/201713711. this version posted August 12, 2020. ; Decomptine oppor (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

medRxiv preprint doi: https://doi.org/10.1101/2020.08.10.20171371; this version posted August 12, 2020. The copyright holder for this preprint
Which was not certified by peer review) is the author/funder, who has granted m The copyright holder for this preprint this prepriated August 12, 2020. [;](https://doi.org/10.1101/2020.08.10.20171371) http://doi.org/101/101/101/101/101/2020. ; http://doi.org/101/101/2020. ; http://doi.org/10.1101/201713711. this version posted August 12, 2020. ; D (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.