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Abstract 26 

Background Malaria remains a major global health problem with a need for improved field-usable 27 

diagnostic tests. We have developed a portable, low-cost digital microscope scanner, capable of both 28 
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brightfield and fluorescence imaging. Here, we used the instrument to digitize blood smears, and 29 

applied deep learning (DL) algorithms to detect Plasmodium falciparum parasites. Methods Thin 30 

blood smears (n = 125) were collected from patients with microscopy-confirmed P. falciparum 31 

infections in rural Tanzania, prior to and after initiation of artemisinin-based combination therapy. 32 

The samples were stained using the 4′,6-diamidino-2-phenylindole fluorogen and digitized using the 33 

prototype microscope scanner. Two DL algorithms were trained to detect malaria parasites in the 34 

samples, and results compared to the visual assessment of both the digitized samples, and the Giemsa-35 

stained thick smears. Results Detection of P. falciparum parasites in the digitized thin blood smears 36 

was possible both by visual assessment and by DL-based analysis with a strong correlation in results 37 

(r = 0.99, p < 0.01). A moderately strong correlation was observed between the DL-based thin smear 38 

analysis and the visual thick smear-analysis (r = 0.74, p < 0.01). Low levels of parasites were detected 39 

by DL-based analysis on day three following treatment initiation, but a small number of fluorescent 40 

signals were detected also in microscopy-negative samples. Conclusion Quantification of P. 41 

falciparum parasites in DAPI-stained thin smears is feasible using DL-supported, point-of-care digital 42 

microscopy, with a high correlation to visual assessment of samples. Fluorescent signals from 43 

artefacts in samples with low infection levels represented the main challenge for the digital analysis, 44 

thus highlighting the importance of minimizing sample contaminations. The proposed method could 45 

support malaria diagnostics and monitoring of treatment response through automated quantification of 46 

parasitaemia and is likely to be applicable also for diagnostics of other Plasmodium species and other 47 

infectious diseases.  48 

 49 

1 Introduction 50 

Malaria remains a global health burden with over 200 million new yearly cases (1). Although the 51 

disease incidence has decreased by approximately 10% during the last decade, data indicates that 52 

progress has stalled during recent years (1). As most malaria cases occur in rural areas (1), the disease 53 

burden is caused partly by difficulties in diagnosing the disease. Currently, multiple techniques exist 54 

for malaria diagnostics (2). Light microscopy assessment of blood smears to detect Plasmodium 55 
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parasites remains the diagnostic golden standard (3) and allows detection and quantification of the 56 

various Plasmodium species while also being more sensitive than rapid diagnostic tests (RDTs) (4). 57 

Disadvantages with microscopy-based testing include a high level of labour intensiveness, 58 

subjectivity (5, 6), dependence on the microscopist’s skill and experience (7), requirements in terms 59 

of sample preparation and varying sensitivity for lower-level and mixed infections (4). In addition to 60 

microscopy, easy-to-use RDTs based on lateral flow immunochromatography to detect Plasmodium-61 

specific antigens are being used to an increasing extent (8). These RDTs enable rapid diagnostics at 62 

the point-of-care (POC), but have limited accuracy for non-falciparum (2) and low-level infections, 63 

do not allow for quantification of parasites when monitoring treatment response, and remain positive 64 

after treatment initiation, which means that results should ideally be validated by other methods (4). 65 

Detection of Plasmodium spp. nucleic acid with nucleic acid amplification tests (NAATs) has 66 

superior analytical sensitivity compared to other methods, especially for mixed infections (9), and 67 

allows quantification of parasitaemia (by real-time quantitative polymerase chain reaction; qPCR) but 68 

is more technically demanding, expensive and therefore not widely available (4), although certain 69 

NAAT-methods, such as loop-mediated isothermal amplification (LAMP) show promise as a field-70 

usable techniques (10). Consequently, the World Health Organization (WHO) currently recommends 71 

microscopy-based methods to confirm diagnosis in suspected cases of malaria (3). Various staining 72 

methods have been proposed for microscopy identification of malaria parasites in blood smears, with 73 

Giemsa staining being the standard method (5). As visual analysis of blood smears is time-consuming 74 

and subjective, fluorescent staining methods have been proposed to facilitate the sample analysis 75 

process (11). Cell-permeable fluorescent stains can be used to visualize the intracellular Plasmodium 76 

parasites more clearly and at lower magnification (12) to reduce the need for high-power microscopy 77 

equipment. Fluorescent stainings can also be combined with brightfield staining protocols (11). As 78 

access to microscopy diagnostics is severely limited in many areas, the potential to utilize optical 79 

components from widely-available consumer electronic products (such as smartphone cameras) to 80 

create digital microscopes has been recognized (13 - 15). By utilizing miniaturized, low-cost 81 

optomechanical components, several devices for POC digitization of microscopy slides have been 82 

developed. Compared to larger-sized, laboratory-grade slide scanners, these types of devices can be 83 
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manufactured significantly cheaper (16) and have other potential advantages, such as a smaller 84 

physical size for increased portability, which make them potentially more suitable for POC usage. 85 

Although these components are significantly less expensive than those used in high-end alternatives, 86 

the imaging performance achievable is sufficient to e.g. visualize pathogens in common infectious 87 

diseases (17) and for analysis of histological samples (18). Digitization of samples at the POC 88 

combined with the mobile connectivity of the instruments also mean that samples can be uploaded to 89 

a cloud server for remote access and analysis using digital methods (19). Multiple approaches have 90 

been studied for automated, computer-assisted diagnosis of malaria using both traditional computer 91 

vision methods and more recently machine learning algorithms based on deep convolutional neural 92 

networks (20-22). Several efforts have been made to digitize blood smears for malaria diagnostics 93 

with POC slide scanners, but a significant challenge with conventionally-stained samples is the need 94 

for higher magnifications than what is typically supported by these platforms (21). 95 

In this proof-of-concept study we describe how thin blood smears acquired in field-settings in 96 

Tanzania, stained with the 4′,6-diamidino-2-phenylindole (DAPI) fluorophore and scanned using a 97 

low-cost POC digital microscope scanner prototype enables visualization of P. falciparum parasites. 98 

P. falciparum is both the most prevalent malaria parasite in Africa, and the cause of the vast majority 99 

of malaria-related deaths (1). By digitizing both brightfield and fluorescent image channels from 100 

blood smears, and combining them into hybrid images, intracellular malaria parasites can be 101 

visualized in the digital samples. Furthermore, we train and apply two separate deep-learning 102 

algorithms to automatically detect and quantify P. falciparum trophozoites in the digital samples. 103 

Results are compared to the visual analysis of the digital samples and to expert microscopy of 104 

Giemsa-stained thick smears, using samples collected on the day of initiation of artemisinin-based 105 

combination therapy (ACT) and three days after treatment initiation.  106 
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2 Materials and Methods 107 

2.1 Acquisition and preparation of samples  108 

We acquired 125 thin blood films for this study, which were collected as part of the trial by 109 

Mhamilawa et al. (23). The overall study workflow and sample analysis process is illustrated as a 110 

STARD diagram in the supplementary material (S Fig 6). The samples were collected in a region with 111 

moderate levels of malaria transmission where P. falciparum is the predominant species (Bagamoyo 112 

District, Tanzania) during a time-period between July 2017 and March 2018. Samples were collected 113 

from volunteering patients who fulfilled the inclusion criteria (age between 1 and 65 years, history of 114 

fever in the last 24 hours or axillary temperature ≥ 37.5 °C, microscopy-confirmed uncomplicated P. 115 

falciparum monoinfection and written informed consent obtained). Microscopy confirmation of 116 

malaria positivity was performed on separate Giemsa-stained thick blood smears by certified 117 

professional microscopists. The number of asexual parasites and gametocytes was determined by 118 

counting the number of visible parasites per 200 white blood cells (WBCs) using a hand tally counter. 119 

The parasite density, measured as the number of asexual parasites per microliter (µl) of blood, was 120 

estimated by dividing the number of detected asexual parasites per by the number of WBCs counted 121 

(200) and multiplying the value by the assumed WBC count µl of blood (8,000 WBC/µl). A blood 122 

smear was considered negative after examining 100 high-power fields or counting 500 WBC with no 123 

parasites seen. Each slide was read by two independent and experienced microscopists, and upon 124 

disagreement on presence of parasites or if density differed by more than 25%, the slides were 125 

subjected to a third independent and decisive reader (blinded to the results from the previous readers). 126 

The mean parasitemia of the two most concordant readings were used as final parasite densities. In 127 

total, 125 unstained thin blood films from 100 separate patients were obtained for this study. 100 of 128 

these samples were collected before initiation of artemisinin-based combination therapy (ACT) (Day 129 

0), and 25 samples were follow-up thin blood smears collected three days after initiation of ACT (Day 130 

3). The Day 3 samples were also analysed by light microscopy examination, according to the 131 

procedure described above. Samples were fixated with methanol (water < 3 %) by incubating for 132 
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approximately 20 minutes at room temperature, and stored in slide boxes following this. For the 133 

staining of the samples, the slides were initially rinsed with deionized water, after which staining of 134 

the samples was performed using a mounting media solution containing 4’,6-Diamidino-2-135 

phenylindole (DAPI) fluorescent stain (Fluoroshield with DAPI, Sigma-Aldrich Finland Oy, Espoo, 136 

Finland). DAPI is a counterstain for DNA and RNA which penetrates cellular membranes to stain the 137 

DNA (and RNA) of the Plasmodium parasites inside intact erythrocytes. The DAPI staining solution 138 

was applied to the sample and distributed over the surface of the glass slide. Following this, the 139 

sample was let to stand at room temperature for five minutes, after which a cover slip was carefully 140 

applied to the sample to avoid air bubbles. After staining, the quality of the sample was examined 141 

visually with a fluorescence microscope to confirm that the staining quality was adequate for analysis 142 

(i.e. visible fluorescent WBCs to confirm successful staining and low amounts of debris).  143 

2.2 Digitization of slides 144 

For the digitization of the samples we used a prototype of a portable, digital microscope scanner, 145 

developed and patented by the University of Helsinki (Helsinki, Finland) for POC scanning of 146 

biological samples (Fig 1). The device supports brightfield and fluorescent imaging of glass slides and 147 

scanning of sample areas measuring multiple fields of view (FOVs), by capturing and stitching 148 

together multiple FOVs in a similar way as conventional whole-slide microscopy scanners. The 149 

device is constructed using inexpensive plastic optomechanical components from consumer electronic 150 

products. Total material costs for the components are comparable to the price of a mid-range 151 

smartphone (approximately 500 - 1000 EUR), and significantly lower than the prices of conventional 152 

slide scanners with device costs typically between 50.000 to 300.000 USD (16).  153 

 154 

Figure 1. (a) The prototype digital slide scanner (1) with slide adjustment motor unit (2) and laptop 155 

computer used to control device (3). (b) USAF standardized resolution test chart, digitized with the 156 

microscope prototype, showing the smallest set of resolvable bars (corresponding to a spatial 157 

resolution of 0.9 µm).  158 
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 159 

Digital images are captured using a camera module typically used in smartphone camera systems 160 

(See3CAM_130, e-con Systems Inc., St Louis, USA), featuring a 13-megapixel (maximum resolution 161 

4208 x 3120 pixels) complementary metal oxide semiconductor (CMOS) sensor with a plastic 1/3.2” 162 

lens. A white light-emitting diode (LED) is used as the light source for brightfield imaging and an 163 

ultraviolet LED combined with a retractable band pass filter for fluorescent imaging (peak wavelength 164 

365 nm). If the FOV is digitized using both the brightfield and fluorescence modes of the microscope, 165 

the resulting image can be rendered into a single merged image. (Fig 2). 166 

 167 

Figure 2. Microscopic field of view (FOV), showing the corresponding (a) brightfield, (b) 168 

fluorescence and (c) merged thin blood smear digital images. Red bounding boxes showing enlarged 169 

areas with (1) infected red blood cells (RBCs), (2) normal RBCs, (3) leukocytes and (4) fluorescent 170 

debris.  171 

 172 

With the current image sensor and lens, the pixel size was 0.22 µm and the spatial resolution 0.9 µm, 173 

as measured using a standardized USAF resolution test chart and white-light LED illumination (Fig 174 

1). One sensor FOV measures 0.22 mm2 (4208 x 3120 pixels), which is approximately five times 175 

larger than the FOV of a typical 100x objective (0.22mm2 compared to 0.04mm2). 176 

The device is connected to and operated from a computer by universal serial bus (USB), which also 177 

provides power for the device. An external motor unit (Fig 2) is used to move the sample holder with 178 

the glass slide to scan the sample. Coarse focus can be adjusted with a manual focus lever and fine 179 

focus with the built-in autofocus routine of the camera module. The device is controlled with a custom 180 

software written in the matrix laboratory (MATLAB, MathWorks Inc, Natick, MA) computing and 181 

programming environment, which features a live view from the camera feed, overview of scanned 182 

areas and controls for adjusting parameters of slide scanning (e.g. area to be captured, focus and 183 

exposure). Digitization of areas measuring more than one FOV utilizes the motor unit for automatic 184 

slide translation while the camera captures multiple images. The individual digitized samples in this 185 
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study measured 12-20 FOVs per sample, representing a thin smear area (red blood cell [RBC] 186 

monolayer) without significant amounts of artefacts or debris when examined visually) of 2.65-4.41 187 

mm2. This corresponds to approximately 80-140 optical microscopy FOVs, using a conventional 100 188 

x magnification (24). Image files were saved locally in the Tagged Image File Format (TIFF) and 189 

converted to a wavelet file format (Enhanced Compressed Wavelet, ECW, ER Mapper, Intergraph, 190 

Atlanta, Georgia) with a compression ratio of 1:9, before uploading to the image management 191 

platform (Aiforia Cloud, Aiforia Technologies Oy, Helsinki, Finland). This amount of compression 192 

has been shown in earlier studies to preserve sufficient detail to not alter results significantly (25). 193 

Remote access to the image server for sample viewing is established using a web browser, secured 194 

with Secure Socket Layer (SSL).  195 

2.3 Visual analysis of digital samples and training of deep learning systems 196 

Samples were visually evaluated by two researchers (O.H. and S.S), who independently reviewed the 197 

digital samples on an LCD computer monitor and counted all visible Plasmodium parasites in the 198 

images. Parasites were manually annotated on the slide-management platform and the annotations 199 

served as ground truth for the digital image analysis. Sample parasitaemia was calculated as the 200 

number of detected parasites divided by the number of red blood cells (RBCs) detected by digital 201 

image analysis as described below. Results were recorded in a spreadsheet table (Microsoft Excel, 202 

Microsoft, Redmond WA).  203 

For the digital analysis of the samples we trained two separate image analysis algorithms, based on 204 

deep learning (DL) with deep convolutional neural networks (CNNs). We utilized manually annotated 205 

image regions (n = 1,176) from a subset of thin blood smears (n = 25) to train the algorithms to detect 206 

visible malaria trophozoites and RBCs.  207 

For the first deep-learning system (DLS 1), the digitized samples were uploaded to a 208 

commercially available, cloud-based machine-learning platform (Aiforia Cloud and Create, Aiforia 209 

Technologies Oy, Helsinki, Finland). Using this platform, a supervised deep-learning system (DLS) 210 

was trained to detect intracellular trophozoites in the digital images. For this method, the 211 
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corresponding brightfield and fluorescence image channels were merged into hybrid images (Fig 3). 212 

The training data was visually reviewed by a researcher (S.S.), and visible trophozoites and RBCs 213 

were annotated to constitute the training data. This system consists of two sequential CNN algorithms. 214 

The first algorithm detects all RBCs (i.e. infected and non-infected). The corresponding results are 215 

then forwarded to a second layer, containing two separate algorithms; one that detects infected RBCs 216 

(RBCs with visible fluorescent intracellular trophozoites; i.e. parasite candidates) and one that detects 217 

non-infected RBCs (RBCs without visible parasite candidates). The sample parasitaemia is calculated 218 

as the number of detected parasites divided by the total number of detected RBCs (Fig 2). To increase 219 

the generalisability of the model, digital image augmentations by perturbation of the training data 220 

were utilized. In the first CNN layer, augmentations used were rotation (0-360°), variation of scale 221 

(±10%), shear distortion (±10%), aspect ratio (±10%), contrast (±10%), white balance (±10%) and 222 

luminance (±10%). In the second layer, the training material was augmented by rotation (0-360°), 223 

variation of scale (±5%), shear distortion (±5%), aspect ratio (±5%), contrast (±5%), white balance 224 

(±5%) and luminance (±5%). Training of the model was performed with 7,584 completed iterations 225 

(training epochs) of training and a predetermined feature size for object classification of 7 µm (RBCs) 226 

and 3 µm (parasites), using an image analysis window size (FOV) of 15 µm.   227 

 228 

 229 

Figure 3. Workflow for training of the first deep-learning system (DLS 1) and subsequent analysis of 230 

samples using the trained model. (a): Training of the DLS was performed on merged images 231 

(brightfield and fluorescent images combined) where regions with visible red blood cells (RBCs) and 232 

trophozoites (parasites) were manually annotated and used to train the DLS to detect RBCs and 233 

classify them as infected vs. non-infected. (b): Analysis of samples in the validation series was 234 

performed on merged images in two steps: 1) Segmentation of all visible RBCs and 2) quantification 235 

of infected and non-infected RBCs to determine overall level of parasitaemia.  236 

The second deep-learning system (DLS 2) analysis method also utilizes deep learning with 237 

CNNs, and analyses the brightfield and fluorescence images from the sample separately. The 238 
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workflow of this system is described in Figure 3. First, the RBCs in the brightfield-only image are 239 

identified using circle Hough Transform (CHT) to allow the selection of individual, well-preserved 240 

RBCs, while avoiding overlapping, clumped or otherwise deformed cells. Subsequently, a normalized 241 

cross correlation and peak finding algorithm (26) identifies the locations matching with a parasite 242 

template in the corresponding fluorescence-only image where the correlation peaks represent the 243 

centroids of the parasite candidates. Selected RBCs are then used to create a quantitation mask, and 244 

by combining the data from both images the parasite candidates are then addressed to the selected 245 

individual RBCs in the merged image. Notably, only the detected fluorescence signals emitted from 246 

locations inside the RBCs are included (with a small margin to cover the applique parasite forms and 247 

possible optical misalignment of the image channels). This also enables the detection of multiple 248 

objects within a single RBC; such as multiple visible parasites. A threshold was determined for the 249 

cross-correlation coefficient and Structural Similarity Index (SSIM) (27) value of the candidates to 250 

reduce computation cost by not including the least likely parasite objects, i.e. weak signals emitting 251 

from the background fluorescence. The SSIM Index assesses the visual impact of luminance, contrast 252 

and structure characteristics of an image. 253 

 254 

Figure 4. Workflow of training and analysis with the second deep-learning system (DLS 2) using the 255 

GoogLeNet model. Panels showing brightfield images with segmented red blood cells (RBCs), the 256 

corresponding fluorescence image with detected parasite candidates, classification of parasites and 257 

exported analysis results.  258 

For the classification part, transfer learning (28) was utilized using a pre-trained GoogLeNet 259 

network (29) The model is a binary-classification CNN which was trained using manually selected 260 

image-regions from the training series of samples, representing visible parasites and non-parasite 261 

fluorescent objects (i.e. debris and other artefacts). The training data was visually reviewed by a 262 

researcher (AS), and visible trophozoites (n = 5059) and other fluorescence signals (n = 856) were 263 

annotated from the training samples to constitute the training data for the two classes. As the 264 
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parasitaemia level was relatively high in a large part of the training samples, the number of true 265 

parasites was significantly higher than the number representing other fluorescence signals. To reduce 266 

training imbalance and to ensure that high-parasitaemia samples would not dominate the training 267 

while preserving a sufficiently diverse distribution of parasites, the number of parasites selected from 268 

each training sample was limited based on the SSIM value of the candidate objects. Specifically, in 269 

each training sample, only the candidates with a unique SSIM value were included in the training. 270 

Rotation (0 - 360°) and variation of scale (± 5 %) were utilized to augment image data, to prevent 271 

overfitting. Training of the model was performed in 30 training epochs with a batch size of 32 using a 272 

stochastic gradient descent solver with a momentum of 0.9 and initial learning rate of 0.0003. During 273 

the analysis phase the RBC was marked infected if at least one addressed parasite candidate was 274 

classified as a trophozoite with a classification score of at least 95/100. The overall parasitaemia was 275 

determined by the ratio of infected RBCs to the total number of RBCs (S Fig 1). DLS 2 is run locally 276 

and therefore suitable for potential integration directly into e.g. the imaging system for rapid analysis.  277 

2.5 Statistical analysis 278 

Statistical analysis of results was performed using a general-purpose statistical software package 279 

(Stata 15.1 for Mac, Stata Corp., College Station, TX, USA). We calculated a Pearson's product-280 

moment correlation to determine the relationship between parasitaemia determined by visual 281 

examination and analysis with the deep learning models in the digital samples. We utilized a two-282 

sided paired Wilcoxon Signed-Rank test to assess the difference in detected levels of parasitaemia 283 

between the Day 0 and Day 3 samples. Power analysis for these calculations were conducted using the 284 

G*Power software v3.1.7 (Universität Kiel, Kiel, Germany) to determine a sufficient sample size, 285 

using an alpha of 0.05, a power of 0.95 and an effect size of 1.17 (as calculated based on the 286 

difference between visually-determined levels of parasitaemia in slide pairs from the training data), 287 

which yielded a minimum required number of samples of 34 (17 slide pairs) (30).  288 

 289 
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2.6 Ethical statement 290 

Ethical clearance for the study was issued by the National Institute for Medical Research and 291 

Muhimbili University of Health and Allied Sciences, Tanzania (Identifier: NCT03241901).  292 

3 Results 293 

3.1 Quantification of parasites in digital samples 294 

Prior to analysis of the main samples used in the study, we tested the image capture and algorithms on 295 

a series of test blood thin smears, prepared in laboratory conditions from blood cultures with known 296 

levels of P. falciparum infection (n = 7; approximately 0%, 0.2%, 0.5%, 1% and 2%, respectively). 297 

Here, we confirmed that fluorescent parasites and parasitized red blood cells (RBCs) could be 298 

visualized at the spatial resolution provided by the instrument. Overall, we observed a high level of 299 

similarity and almost perfect correlation between the DLS-based sample analysis and the known 300 

infection levels of the samples (r(7) = 0.99, p < 0.001) (S Fig 4).  301 

For the samples used in the study, after exclusion of samples used for the training of the deep-302 

learning systems, 97 samples remained in the validation series, of which 77 samples were thin blood 303 

smears collected at baseline, prior to initiation of treatment with ACT (Day 0), and 20 samples were 304 

follow-up thin blood smears collected on day 3 after treatment initiation (Day 3). All samples 305 

collected on day 0 were confirmed as malaria-positive by light-microscopy assessment of thick 306 

smears from the same patients, with a mean parasitaemia of 58,711 parasites/µL (95%CI 44,055 - 307 

73,368 parasites/µL) and correspondingly a mean estimated parasitaemia of 1.17 % (95% CI 0.88 - 308 

1.47). The follow-up samples on day 3 after treatment initiation were all confirmed microscopy 309 

negative for malaria (no visible parasites in the Giemsa thick smear). The visual analysis of all 310 

fluorescently-stained digitized day 0 thin smears revealed visible parasites, with an overall mean rate 311 

of infected RBCs of 1.79 % (CI95% 1.31 - 2.26%). The visual analysis of the Day 3 digital samples 312 

detected a significantly lower rate of infected RBCs (0.014%, 95%CI 0.009 - 0.009 - 0.020%, z = - 313 

3.92, p < 0.001). The DLS analysis of the digitized thin smears returned similar levels of detected 314 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 14, 2020. ; https://doi.org/10.1101/2020.08.10.20170936doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20170936
http://creativecommons.org/licenses/by-nc/4.0/


infected RBCs as the visual analysis of the digital samples in all analysed microscopy-positive 315 

samples (mean 1.70% [95%CI 1.27 - 2.15%] and 1.76% [95% CI 1.32 - 2.20%]) (Table 1).  316 

 317 

Table 1. Results from analysis of blood samples by light microscopy of Giemsa-stained thick smears, 318 

visual analysis of digitized DAPI-stained samples and DLS-based analysis of the digitized DAPI-319 

stained samples. Parasitaemia estimated as the rate of infected red blood cells (RBCs), multiplied by 320 

the assumed number of RBCs per µl of blood (5,000,000).  321 

 322 

Diagnostic 
comparison 

Visual analysis 
of digitized thin 
smears  

DLS1 analysis of 
digitized thin 
smears 

DLS2 analysis of 
digitized thin 
smears 

Microscopy thick-
smear analysis 
(Giemsa) 

Day 0     

Number of 
samples  

77 77 77 77 

Mean number of 
parasites detected 
per analysed area 
(n, 95% CI) 

398 (297 - 498) 396 (295 - 496) 348 (261 - 436) n/a* 

Percentage of 
infected RBCs 
(%, 95% CI) 

1.79 (1.31 - 2.26) 1.70 (1.27 - 2.15) 1.76 (1.32 - 2.20) 1.17 (0.88 - 1.47) 

Mean estimated 
parasitemia 
(throphozoites/µL
, 95% CI) 

89,500 (65,500 - 
113,000) ** 

85,000 (63,500 - 
107,500) ** 

88,000 (66,000 - 
110,000) ** 

58,711 (44,054 - 
73,368)  

Day 3     

Number of 
samples  

20 20 20 20 

Mean number of 
parasites detected 
per analysed area 
(n, 95% CI) 

3 (2 - 4) 11 (4 - 17) 9 (2 - 16) 0 

Percentage of 
infected RBCs 
(%, 95% CI) 

0.01 (0.01 - 0.02) 0.05 (0.02 - 0.08) 0.05 (0.01-0.09) 0 

Mean estimated 
parasitemia 

500 (500 - 1,000) 
** 

2,500 (1,000 - 
4,000) ** 

2,500 (500 - 
4,500) ** 
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(trophozoites/µL, 
95% CI) 

*Not available from thick smear analysis.   323 

**Calculated based on the commonly-used approximation of 5,000,000 RBCs per µL. 324 

 325 

The results from the DLS analysis of the Day 3 digitized thin smears also yielded similar values as the 326 

visual sample analysis (mean 0.05% [95%CI 0.017 - 0.083] and 0.05% [95%CI 0.009 - 0.094]). When 327 

assessing correlation between the DLS analysis and the visual analysis of the digital samples, an 328 

almost perfect correlation in detected rate of trophozoites was observed, as calculated with the 329 

Pearson's product-moment correlation coefficient, for the microscopy-positive samples (r (77) = 330 

0.9996 and 0.9986, p < 0.01), by analysis with DLS 1 and DLS 2. Compared to the estimated rate of 331 

infected RBCs in the Giemsa thick-smear analysis, the correlation for the DLS 1 and DLS 2 results 332 

were strong (r (77) = 0.740, p <0.01 and r (77) = 0.743, p < 0.01, respectively) (Figure 5).  333 

med 334 

 335 

Figure 5. Box plots illustrating the detected levels of P. falciparum parasitemia (percentage of 336 

infected red blood cells; RBCs) in malaria-positive blood smears collected prior to initiation of 337 

treatment (Day 0) by the deep learning systems (DLS) and by visual analysis of the digital, DAPI-338 

stained slides and by conventional light microscopy of Giemsa-stained thick smears.  339 

 340 

For the detected rate of infected RBCs in the microscopy-negative samples, a modest correlation was 341 

observed for the DLS-based analysis of samples, compared to the visual sample analysis (r(20) = 0.61 342 

and 0.42, p < 0.01) (Figure 6).  343 

 344 

Figure 6. Correlation between levels of P. falciparum parasitemia, as detected with the deep learning 345 

systems (DLSs), and by visual analysis of the digital samples, collected on (a) Day 0 and (b) Day 3).  346 

 347 
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To further evaluate the DLS-based quantification of P. falciparum parasitemia in the Day 0 samples, 348 

we also compared the results from the digital analyses to the level of infection, as determined by 349 

quantitative PCR (qPCR). Here, we also observed a strong correlation between the DLS- and the 350 

qPCR-based assessment of infection level (r(27) = 0.90). 351 

As qPCR results were only available for a subset of patients (27), these are provided in more detail as 352 

supplementary material (S Fig 3).  353 

 354 

3.2 Monitoring of parasite clearance in thin smears collected at the day of ACT 355 

treatment initiation and three days later 356 

After exclusion of samples used for training of the image-analysis systems, 40 samples, containing a 357 

total number of 20 pairs of thin smears (Day 0 and Day 3) remained. By expert light microscopy 358 

assessment of the Giemsa-stained thick smears from the same patients, all Day 0 samples (n = 20) 359 

were classified as positive for P. falciparum parasites, and all Day 3 (n = 20) samples classified as 360 

negative for visible parasites. Overall, assessed rates of infected RBCs in the Day 3 samples were 361 

significantly lower with all methods studied, than the rates detected in the pre-treatment (Day 0) 362 

samples and the results showed high correlation between the methods studied (Table 1). A Wilcoxon 363 

signed-rank test revealed that the post-treatment (Day 3) parasitaemia of the digitized DAPI-stained 364 

samples was significantly lower than the pre-treatment parasitaemia (Day 0), as determined by visual 365 

analysis (mean: 0.01% [95%CI: 0.01 - 0.02%] vs. 1.76% [CI 95: 1.32 - 2.20], z = -3.92, p < 0.001), 366 

analysis by DLS 1 (mean: 0.05% [CI 95% 0.02 - 0.08] vs. 1.70% [CI 95% 1.27 - 2.15%], z = -3.92, p 367 

< 0.001) and analysis by DLS 2 (mean: 0.05% [CI 95% 0.01-0.09) vs. 1.76% [CI 95: 1.32 - 2.20], z = 368 

-3.92, p < 0.001) (Figure 7).  369 

 370 

Figure 7. Box plots illustrating the detected levels of P. falciparum parasitemia (percentage of 371 

infected red blood cells; RBCs) in blood smears collected at baseline, prior to initiation of treatment 372 

(Day 0) and three days following initiation of treatment (Day 3). Results shown as detected by 373 

analysis with the deep learning systems (DLS) and by visual analysis of the digital slides. 374 
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 375 

4 Discussion 376 

In this study we acquired thin blood smears from patients with light microscopy-determined 377 

uncomplicated P. falciparum infection, collected at baseline before initiation of artemisinin-based 378 

combination therapy (ACT) and three days following treatment initiation. We stained the samples 379 

using a simplified fluorescent staining protocol and digitized both the fluorescence and brightfield 380 

images into hybrid digital samples, using a small-sized POC digital microscope prototype. The digital 381 

samples were uploaded to a cloud-server and analysed with two deep learning-based systems to detect 382 

and quantify malaria parasites in the samples. Results were compared to visual assessment of the 383 

digitized samples, and to light microscopy examination of Giemsa-stained thick smears. Overall, we 384 

observed strong correlations in the numerical results, i.e. values for detected level of parasitaemia 385 

with the DLS-based system in malaria-positive samples and visual assessment of the digital samples 386 

(r = 0.98 - 0.99, p < 0.01) and (r = 0.42 - 0.61, p < 0.01). Compared to the light-microscopy 387 

assessment of Giemsa-stained thick smears, the correlation in detected number of parasites was strong 388 

but lower (0.74, p < 0.01), likely as the quantification of parasites is not directly comparable when 389 

using different methods of analysis and sample types (thick and thin blood films). Notably, previous 390 

studies have shown that the visual approximation of parasite density in especially thick blood films is 391 

prone to variations, due to factors such as reader technique, quality of slides and the random 392 

distribution of parasites and WBCs (31, 32).  Here, both DLSs performed with high similarity to the 393 

manual assessment of the digitized thin smears. When assessing parasite clearance by DLS-based 394 

analysis of digital samples collected on Day 3 after initiation of ACT, significantly lower levels of 395 

parasite candidates were detected in the samples using the digital methods (0.05% vs. 1.73%, z = -396 

3.92). For quantification of P. falciparum parasites in malaria-positive samples, both deep learning 397 

algorithms performed with high correlation (r > 0.99) to the manual, visual quantification of parasites 398 

in the digital samples, suggesting that the methods are comparable. Notably, a similarly high level of 399 

correlation was also observed when comparing the results from the DLSs to the qPCR-based 400 

assessment of infection level (r = 0.90), although these results were only available for a subset of 401 

patients (S Fig 3). Overall, the number of detected signals (parasite candidates) by analysis with the 402 
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DLSs was low in microscopy-negative samples, and mainly corresponded to fluorescent artefacts and 403 

debris (S Fig 2). The results here suggest that it would be possible to establish an operative threshold 404 

for the DLSs to separate positive and negative samples with relatively high sensitivity. Here, using a 405 

threshold for positivity of e.g. 0.10% for detected infected RBCs, the detection of positive samples in 406 

the validation series would be possible with approximately 95% sensitivity and specificity. This could 407 

initially be useful e.g. as a triage system to automatically detect the majority of abnormal slides, 408 

although the accurate detection of low-level infections would require higher sensitivity. Our results 409 

are in line with findings from earlier studies, where fluorescence malaria field microscopy has shown 410 

promise as a field-applicable and inexpensive diagnostic technology (33). Similarly to our findings, 411 

previous work has suggested that high sensitivity (up to 98%) and reasonable sensitivity (89%) can be 412 

achieved using visual fluorescence field microscopy, compared to conventional methods, and 413 

especially for samples with high levels of parasitaemia (34). Previous work has also demonstrated 414 

how the digital analysis of DAPI-stained blood samples, digitized with a 40x objective digital 415 

microscope in laboratory conditions, can be used to quantify levels of parasitaemia and even classify 416 

the infection stage of the parasites (35). Notably, the principal challenges with equivocal fluorescent 417 

particles being detected as parasites in samples with low levels of parasitemia encountered here has 418 

also been described previously (33). Although significantly lower amounts of parasite signals were 419 

detected in the microscopy-negative samples, the levels were still relatively high compared to e.g. the 420 

detection limits of conventional Giemsa thick smear microscopy. Therefore, to achieve ideal levels of 421 

sensitivity for primary malaria diagnostics, methods to improve sensitivity for especially low-level 422 

infections are essential. These include steps to minimize sample contaminations to allow the 423 

digitization of large, representative sample areas (i.e. uncontaminated monolayers of RBCs). To 424 

achieve similar levels of sensitivity as Giemsa thick smear-microscopy and RDTs, increasing the total 425 

sample area analysed (currently ~100 high-power FOVs) or utilizing methods to increase the amounts 426 

of visible RBCs per image field are crucial.  427 

 As this work represents a proof-of-concept study, it has certain limitations that need to be 428 

addressed. Firstly, the principal challenge encountered here and the major cause of false-positive 429 

signals in the microscopy-negative samples was the presence of artefacts and debris in the blood 430 
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smears, which resulted in fluorescent signals not originating from parasites. Although the staining 431 

process described here is simple to perform, the technique is, similarly to conventional staining 432 

methods, prone to contaminations, which was challenging especially in samples with higher levels of 433 

contamination and low parasite densities (S Fig 1). This emphasizes the need for robust sample 434 

processing to ensure usability in field settings. Secondly, here, we compared the parasite 435 

quantification in stained thin blood smears to the microscopy-assessment of thick smears from the 436 

patients, and accordingly observed a certain variation in the estimated infection levels. To determine 437 

the correlation to Giemsa microscopy, the analysis of Giemsa-stained thin blood smears from the 438 

same patients would be the preferred ground truth, which was not available in the current study. 439 

Notably, when testing the algorithms on samples prepared in laboratory conditions with known levels 440 

of P. falciparum infection, a strong correlation (r > 0.99, p < 0.001) was observed in DLS-detected 441 

levels of infection and known parasitaemia (S Fig 4). Lastly, we digitized areas of the thin smears that 442 

contained representative monolayers with minimal amounts of artefacts, but in a clinical setting larger 443 

representative sample areas would be analysed to improve the sensitivity for lower-level infections. 444 

5 Conclusion  445 

This proof-of-concept study shows that detection and quantification of P. falciparum parasites 446 

in thin blood smears is feasible, using a simplified fluorescent staining process, an inexpensive, POC 447 

portable slide-scanner and a deep learning-algorithm. As digital microscopy is currently limited 448 

mainly to laboratories with access to high-end digitization equipment, this method warrants further 449 

investigation as a potential novel platform for AI-based, digital malaria microscopy at the POC. The 450 

method can facilitate microscopy diagnostics in field settings and offer the benefits that digital and 451 

automated microscopy is associated with e.g. more objective and reproducible results, potentially 452 

reduced time for needed for sample analysis (compared to the manual quantification of parasites), and 453 

a method that can be used for monitoring of treatment efficacy through assessment of parasite 454 

clearance. Also, the method is likely to be applicable for different Plasmodium species and other 455 

pathogens, especially those where fluorescence microscopy may offer additional diagnostic 456 

advantages.  457 
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7 Supplementary material  461 

 462 

S Figure 1. Results from deep learning-based analysis of control samples, prepared from blood 463 

cultures in laboratory-conditions with known levels of P. falciparum infections (0% and 464 

approximately 0.2%, 0.5%, 1% and 2% levels of parasitemia, respectively). Correlation between 465 

results measured with the Pearson's product-moment correlation coefficient and showing an almost 466 

perfect level of correlation (r(7) = 0.99).  467 

 468 

 S Figure 2. Digitized Giemsa-stained thin blood smear from patient in study cohort. Images showing 469 

sample with high amounts of visible artefacts and debris.  470 

 471 

S Figure 3. Detected level of malaria infection before initiation of treatment, as determined by 472 

analysis with the deep learning-systems (DLSs), compared to quantitative PCR-based analysis of 473 

samples from a subset of patients. Correlation between results measured with the Pearson's product-474 

moment correlation coefficient and showing a high level of correlation (r(27) = 0.90).  475 

 476 

S Figure 3 (Suggestion 2). Detected level of malaria infection before initiation of treatment, as 477 

determined by analysis with the deep learning-systems (DLSs), compared to quantitative PCR-based 478 

analysis of samples from a subset of patients. DLS-detected parasitemia calculated based on an 479 

assumed amount of 5,000,000 RBCs per µL of blood. Correlation between results measured with the 480 

Pearson's product-moment correlation coefficient and showing a high level of correlation (r(27) = 481 

0.90).  482 

 483 

 484 

 485 

S Figure 4. STARD diagram of study workflow and sample processing.  486 

 487 
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