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Abstract

I describe SIR modeling of the COVID-19 pandemic in two U.S. urban environments, New York City (NYC) and Cook
County, IL, from onset through the month of June, 2020. Since testing was not widespread early in the pandemic in the U.S.,
I do not use data on confirmed cases and rely solely on public fatality data to estimate model parameters. Fits to the first 20
days of data determine a degenerate combination of the basic reproduction number, R0, and the mean time to removal from
the infectious population, γ−1, with γ(R0 − 1) = 0.25(0.21) inverse days for NYC (Cook County). Equivalently, the initial
doubling time was td = 2.8(3.4) days for NYC (Cook). The early fatality data suggest that both locations had infections
in early February. I model the mitigation measures implemented in mid-March in both locations (distancing, quarantine,
isolation, etc) via a time-dependent reproduction number Rt that declines monotonically from R0 to a smaller asymptotic
value, with a parameterized functional form. The timing (mid-March) and duration (several days) of the transitions in Rt
appear well determined by the data. However, the fatality data determine only a degenerate combination of the parameters
R0, the percentage reduction in social contact due to mitigation measures, X, and the infection fatality rate (IFR), f . With flat
priors, based on simulations the NYC model parameters have 95.45% credible intervals of R0 = 3.0− 5.4, X = 80− 99.9%
and f = 2− 6%, with 5− 13% of the population asymptotically infected. A strong external prior indicating a lower value
of f or of γ−1 would imply lower values of R0 and X and higher percentage infection of the population. For Cook County,
the evolution was qualitatively different: after mitigation measures were implemented, the daily fatality counts reached a
plateau for about a month before tailing off. This is consistent with an SIR model that exhibits “critical slowing-down", in
which Rt plateaus at a value just above unity. For Cook County, the 95.45% credible intervals for the model parameters are
much broader and shifted downward, R0 = 1.4− 4.7, X = 26− 54%, and f = 0.1− 0.6% with 15− 88% of the population
asymptotically infected. Despite the apparently lower efficacy of its social contact reduction measures, Cook County has had
significantly fewer fatalities per population than NYC, D∞/N = 100 vs. 270 per 100,000. In the model, this is attributed to
the lower inferred IFR for Cook; an external prior pointing to similar values of the IFR for the two locations would instead
chalk up the difference in D/N to differences in the relative growth rate of the disease. I derive a model-dependent threshold,
Xcrit

e , for ‘safe’ re-opening, that is, for easing of contact reduction that would not trigger a second wave; for NYC, the models
predict that increasing social contact by more than 20% from post-mitigation levels will lead to renewed spread, while for
Cook County the threshold value is very uncertain, given the parameter degeneracies. The timing of 2nd-wave growth will
depend on the amplitude of contact increase relative to Xcrit

e and on the asymptotic growth rate, and the impact in terms of
fatalities will depend on the parameter f .

1 Introduction

Epidemiological models of infectious diseases can be useful in inferring characteristics such as disease transmissibility
within a given population and for modeling disease progression, dependencies, and the impact of mitigation measures.
Typically, models are fit retrospectively to historical disease data (e.g., Ebola [1] and previous coronavirus outbreaks). At
early stages of the COVID-19 pandemic, public data sets were used to infer some characteristics of the disease in different
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regions (e.g., [2-3]), but forecasting its future progression is a fraught exercise at best: the data are incomplete and biased due
to incomplete and non-random sampling, the models are overly simplistic in their dynamics and assumptions, and public
health measures are constantly changing and highly heterogeneous. Nevertheless, models can be used to make ‘what-if’
projections that describe an envelope of outcomes given current uncertainties and show the impact of taking or not taking
timely mitigation measures [4]. In addition, exploring simple dynamical models can determine if few-parameter models
have enough complexity to reasonably describe the data and, if so, to draw conclusions about model parameters describing
the pandemic.

In this note, I present a comparative study of COVID-19 evolution in 2 U.S. urban environments, New York City and
Chicago and environs, with the goal of exploring their similarities and differences and seeing what qualitative conclusions
might be drawn at this stage, using the simplest version of the Susceptible-Infected-Recovered (SIR) epidemiological model.
As of this writing (mid-July), both locations have experienced hundreds of thousands of COVID-19 infections and thousands
of deaths, but the ‘first wave’ of the pandemic has largely run its course, with daily fatalities in both locations now in the
single digits. The time is ripe to retrospectively study this phase and see what lessons might be drawn for the next. Unlike
most studies in the literature, I will only make use of public fatality data, since the case data are subject to much larger
selection effects.

2 Susceptible-Infected-Recovered (SIR) Model

The SIR model is a simplified version of a more general infectious disease transmission model studied by Kermack and
McKendrick (and predecessors) in the late 1920’s and early 1930’s [5]. Similar to the Lotka-Volterra model for the predator-
prey problem introduced a few years earlier, it relies on a system of coupled, first-order differential equations to describe
the interactions of and transformations between subpopulations. In the form used here, the SIR model describes only mean
community transmission in a population once infection is present; it does not account for diffusion within a community
nor spatial spread between communities in different regions. It can be thought of as a kind of mean-field approximation to
more detailed granular dynamics [6].

The SIR model assumes a “closed", spatially homogeneous, interacting population or community of N individuals,
comprising S susceptible, I infected/infectious, and R recovered/removed individuals, so that

N = S + I + R . (1)

More complex versions of the model include additional subpopulations (e.g., exposed, latent, symptomatic, hospitalized,
etc), with associated additional parameters. A susceptible (non-infected) individual interacting with other individuals has
an average daily probability of getting infected of pi = βI/N, where I/N is the fraction of the population currently infected,
and β is a characteristic parameter with units of inverse time that encodes the transmissability of the disease and the typical
number of daily encounters per susceptible individual. Due to these transmissive encounters, the susceptible population,
S, declines according to

dS
dt

= − βSI
N

. (2)

Defining γ−1 as the mean time in days for an infected individual to be removed from the infectious population, either
due to recovery, hospitalization, isolation/quarantine, or death, the evolution of the infected population, I, is given by

dI
dt

=
βSI
N
− γI , (3)

where the first term on the RHS of Eqn. (3) follows from Eqn. (2). By conservation of individuals, the rate of change of the
number of removed/recovered individuals, R, must satisfy

dR
dt

= γI . (4)

Note that this version of the model refers only to those infected, whether or not they display illness symptoms, and recov-
ered/removed just means no longer contagious and interacting in the population, again independent of illness symptoms.
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In this version of the model, it is also assumed that recovery confers immunity on a timescale longer than any of those
considered here.

I model the population, D(t), of those who have died from COVID-19 as a fixed subpopulation of those recovered/re-
moved, D = f R, where f is the Infection Fatality Rate, the fraction of those infected who die from it. In the modeling that
follows, I assume f is a fixed (time-independent) parameter for a given community. Since there is a time delay between
infection and fatality, I allow for a time-translation, viz.,

D(t) = f R(t− ∆t) . (5)

Since there is clear evidence that the subpopulation of those who have died from COVID-19 are not a random subset of the
infected population and that improvements in hospital care over time have improved disease outcomes, the assumption that
f remains time-independent within a community should be viewed with skepticism. For the analysis here, I am making the
weaker (but still questionable) assumption that the timescale for f to vary has, so far, been long compared to the 3.5-month
period under study.

The SIR model is thus specified by the 3 dynamical equations (2), (3), and (4), and the constraint (1), so it is a dynamical
system with 2 state variables. Solutions are determined by the two dimensionful parameters β and γ, the dimensionless
parameter f (which only enters when comparing to fatality data), and a specified initial condition at time t0, which is
conventionally taken as the initial number of cases, I(t0) ≡ I0, with, from Eqn. (1), S(t0) = N − I0, assuming R(t0) =
0 at sufficiently early time. The transmission rate, β, is expected to depend on community characteristics (population
density, mobility, modes of transportation, mitigation measures in place, etc,). By contrast, the mean removal time, γ−1, is
determined to a degree by the human body’s response to the disease, so it might be expected to be more of an “intrinsic"
property that would vary less from community to community, although it is certainly affected by variations in age, health,
and customs between communities, as well as by public awareness, the availability of testing, etc.

2.1 Scaled Version of the Model

The dynamics can be made more transparent by defining scaled variables for the fractions of susceptible, infected, and
removed, s = S/N, i = I/N, r = R/N, a dimensionless time variable, τ = γt, and the dimensionless basic reproduction
number, R0 = β/γ, in terms of which the model equations become

ds
dτ

= −Rois ,
di
dτ

= i(Ros− 1) ,
dr
dτ

= i , s + i + r = 1 . (6)

The scaled dynamics are determined completely by R0 and by the initial condition, i.e., by the value of i0 = I0/N. The
infection will initially grow if R0 > 1. Since D = f Nr, for a given model (r) and fatality data set (D), the parameters f and
N are perfectly degenerate.

Early on, when only a tiny fraction of the population is infected, s ' 1− i0 ' 1, the growth is quasi-exponential,

i(τ) ' i0 exp [(R0 − 1)(τ − τ0)] , I(t) ' I0 exp [γ(R0 − 1)(t− t0)] . (7)

In this limit, the dimensionless doubling time of infections in the population is τd = ln 2/(R0 − 1) = 0.7/(R0 − 1) and
therefore td = 0.7/γ(R0 − 1) days. As the infection spreads and s starts to decline, the infection growth rate di/dτ slows,
and the number of infected reaches a maximum (di/dτ = 0) when s = 1/R0 and thereafter declines. Alternatively, the
number of infected will decline when R0 < 1/s. The daily death rate, dD/dt, peaks a time ∆t later. The daily rate of new
cases, R0is, peaks when d(is)/dτ = 0; using Eqn. (6), this occurs when s− i = 1/R0. Since s is monotonically falling, the
rate of new cases peaks earlier than the peak in number of infected. An obvious point is that the asymptotic future value
of s must be less than 1/R0, so the asymptotic future value of r satsifies r∞ > 1− 1/R0, assuming that the disease does not
remain endemic (i→ 0 asymptotically): a substantial fraction of the population will get infected unless R0 is very close to 1.
For example, for R0 = 3, about r∞ = 94% of the population will get infected or else 2/3 of the population would need to be
vaccinated to stop the spread. All of these statements assume that no mitigation measures are taken, so that R0 is constant
in time. Since R0 is typically of order unity, we expect a priori that the dynamics will yield quantities of order unity as well;
however, the initial condition i0 � 1 provides a very small dimensionless parameter that can lead to large values for the
characteristic dynamical time τ � 1.
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It’s useful to relate the SIR model parameters to characteristic quantities related to transmission of the infection. The
probability per day that an infected individual transmits infection to a susceptible individual is pt = βS/N = R0γs ' R0γ
at the beginning of the pandemic. Assuming the probability of infecting another individual is a Poisson process with rate
λ = pt, then early in the pandemic the mean number of individuals that an infected individual infects before removal from
the population is λ/γ ' R0, since 1/γ is the mean time to removal. This is often taken as an operational definition of
R0. For an individual infected at t = 0, if ta is the time until they first infect another individual and ts is the time interval
between when they infect their first and second individuals, then for a Poisson process ta and ts both follow an exponential
distribution, p(ti) = λ exp(−λti), with mean 〈ti〉 = 1/λ and variance σ2(ti) = 1/λ2. Thus, the serial time, the mean time
interval between an infected person’s first and second transmissions to other individuals, is 〈ts〉 = 1/R0γs. The infection
will spread rapidly if the serial time is less than the removal time, 〈ts〉 < 1/γ, that is, if R0s > 1, in agreement with Eqn. (6).

2.2 SIR Model with Reduction of Social Contact

A variety of physical distancing and isolation measures were taken at the local, state, and national levels starting around
mid-March that suppressed the growth of COVID-19 cases and thus of fatalities. In the epidemiology literature, such
mitigation measures are often modeled by assuming that the basic reproduction number R0 in Eqn. (6) is replaced by a
function Rt that decays in time to a smaller final value [1]. This introduces 3 additional model parameters: the characteristic
time when measures are taken, tm; the percentage reduction X in social contact, i.e., in Rt, from well before to well after tm;
and the characteristic time α−1 that it takes for the measures to go into effect, that is, the duration of the transition in Rt from
R0 to its final value of R∞ = R0(1− X).

I have tried both exponential and hyperbolic tangent functions of time to model Rt,

Rexp
t (τ) = R0 for τ < τm

= (1− X)R0 + XR0 exp
[
−α(τ − τm)

γ

]
for τ > τm

or

Rtanh
t (τ) = (1− X)R0 +

XR0

2

[
1− tanh

(
α

γ
(τ − τm)

)]
. (8)

Note that for the tanh model, tm = τm/γ is not the date of onset of mitigation measures but rather the midpoint of the
transition in Rt from R0 to R∞. I present results below for the tanh model, but the parameter inferences do not seem
strongly dependent on which functional form is assumed. An alternative approach to adopting a parameterized functional
form for Rt would be to infer the model functions s, i and r empirically from the fatality data, up to the unknown model
parameters f and γ; this is discussed in Appendix B. For the rest of the paper, I adopt and test the functional form of Eqn.
(8) since unlike the non-parametric model it allows one to make parameter inferences and forecasts.

3 Estimating R0 from early Fatality Data

Due to the reported lack of deployment of test kits in the U.S. early in the pandemic, the raw public data on COVID-19
confirmed cases vs. time underestimated the true number of infections by a large, uncertain, and time-dependent factor. In
many parts of the country, those with COVID-19-like symptoms who did not require hospitalization were not routinely
tested, especially early on. Some early estimates were that only 10-20% of those infected showed severe symptoms that
might prompt hospitalization, suggesting that the number of early infections may have been underestimated by a factor of
5-10. Time-dependence of this sampling incompleteness will introduce a spurious time-dependence in the confirmed-case
rate and thus bias estimates of R0. In principle, this bias can be corrected using information on the (time-dependent) number
of tests given per day, but given the very low sampling rate early on and the fact that testing for the most part has not been
done on random subsamples of the population, the uncertainty in the bias correction factor could be significant.
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Place t1 D1 γ(R0 − 1) td R0
(days−1) (days) γ−1 = 4 8 16

NYC Mar. 11 18.4± 4.8 0.250± 0.014 2.8 2.00 3.00 5.00
Cook County Mar. 16 3.5± 1.1 0.210± 0.017 3.4 1.84 2.68 4.36

Table 1: Fits to the first 20 days of fatality data for NYC and Cook County. t1 is the date of first recorded fatality at
that location. td is the initial doubling time. Early exponential growth determines the parameter combination γ(R0 − 1)
in the 3rd column. Inferred R0 values in last 3 columns assume γ−1 = 4, 8, 16 days. Errors on D1 and γ(R0 − 1) span the
2.5− 97.5% t-based confidence intervals returned by nlstools. These fits are based on minimizing the sum of squares of the
residuals between the cumulative data D(t) and the exponential model. Fits to the daily deaths or that include weighting
by Poisson model errors yield values consistent with those in the Table.

For these reasons, I do not use data on the number of confirmed cases vs. time for estimating the SIR model parameters.
Instead, I rely only upon public fatality data. Recent studies of the number of excess deaths compared to seasonal averages
suggest that the reported COVID-19 fatality data also underestimate the true fatality counts associated with COVID-19 [7,8].
This stems in part from the same issue as above: many people who died from the disease at home were never tested and
therefore not counted among those confirmed as dying from COVID-19. To correct for this, NYC public health data include
both confirmed and probable COVID-related deaths, separately tabulated, and the number of excess deaths suggest that
this combination is less incomplete than for reported fatalities in a number of other regions studied. Overall, the excess
death counts suggest that reported COVID-19 death counts, particularly those that include probable deaths, underestimate
true COVID-related deaths by a much smaller factor than confirmed cases underestimate true infections. Nevertheless, the
fatality underestimates mean that the conclusions below about model parameters should be viewed with skepticism; I have
made no attempt to correct the fatality data for incompleteness.

I consider fatality data from two sources: (1) the NYC public health site nychealth/coronavirus (data on github),
from which I aggregate confirmed plus probable NYC deaths from 3/11/20; (2) the Cook County Medical Examiner site
(maps.cookcountyil.gov/medexamcovid19/), with fatality data from 3/16/20. In each case, the first date listed is the date
of first fatality attributed by that source to COVID-19, which I denote by t1.

From Eqns. (5-7), at early times the cumulative number of deaths is given by

D(t) = D1 exp [γ(R0 − 1)(t− t1)] . (9)

The results of fitting Eqn. (9) to the data from t1 = 0 to t1 + 19 days, using the R package nlstools, are given in Table 1,
with the fits shown in Figs. 1-2. Not surprisingly, the estimates for D1 and γ(R0 − 1) are perfectly anti-correlated. Inferred
values for R0 in Table 1 are given for different values of 1/γ in the range 4 to 16 days.

The selection of 20 days as the interval for the exponential fit for Eqn. (9) is determined by several factors. A significantly
shorter time interval would involve smaller data samples and correspondingly noisier parameter estimates. Moreover, I
have verified that truncating the fit a few days earlier or starting the fit a few days later does not lead to substantial shifts
in the inferred values of γ(R0 − 1). On the other hand, as Figs. 1 and 2 show, extending the fit interval past 20 days would
include data impacted by the mitigation measures imposed in mid-March (around time tm), consistent with the estimate of
∆t ' 20 days for the mean interval from infection to fatality discussed below. This stems from the approximate coincidence
in time between the first reported fatalities and the imposition of mitigation measures. Since my interest is in inferring this
pre-mitigation parameter combination, I truncate the fit at 20 days.

Using the assumed relation between D(t) and R(t) and Eqns. (7) and (9), we also have

D(t) =
f I0

(R0 − 1)
exp [γ(R0 − 1)(t− t0 − ∆t)] , (10)

Taking t0 as the date of the first case(s), for D1 ' 1 and I0 ' 1, we have

γ(R0 − 1)(t1 − t0 − ∆t) ' ln[(R0 − 1)/ f ] , (11)
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Figure 1: 30 days of cumulative (left) and daily (right) COVID-19 related deaths in New York City from the NYC public
health site (points). Blue curves show exponential model fit (Eqn. (9)) to cumulative deaths from days 1-20, where day 1 is
Mar. 12. Fit parameters are given in Table 1. The impact of mitigation measures taken in mid-March begins to show up as a
bend in the data away from the exponential model around the end of March.
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Figure 2: Same as Fig. 1, but for Cook County.
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and therefore the time delay between first infections and first deaths is of order t1 − t0 ' ∆t + 20 for f = 0.01. If the mean
time from infection to death is ∆t = 15− 20 days, then we expect the first deaths to occur of order 35− 40 days after the first
infections. From Table 1, this would put the first infections in early February for both locations. The first confirmed cases in
both locations were in late February.

4 Modeling COVID-19 Evolution

Having fit the early exponential growth of the data, I now explore the evolution of the model and the data over an extended
timescale that includes the impact of social contact reduction measures, using the deSolve package in R [10] to solve the SIR
model equations above. In principle, one could carry out a six-dimensional likelihood analysis using Monte Carlo Markov
Chain techniques, using either the cumulative fatality data over time, D(t), or the daily deaths, dD/dt, to determine credible
regions for the parameters R0, γ, X, α, tm, and f for each city. However, since we have external knowledge of when (tm)
and how rapidly (α) mitigation measures were imposed, I first adopted roughly 10-day-wide, flat priors on tm (centered on
mid-March) and on α−1. I found that the model fits constrain the value of tm to within less than a day and α−1 to within
1− 2 days, so those model parameters are more or less fixed for each location (see below). Given the constraint on γ(R0− 1)
from Table 1, that leaves 3 independent parameters to vary, which I take to be R0, X, and f . (One can also treat γ as a 4th
parameter, using the constraint from Table 1 as a starting value for the non-linear fit, but I find that does not significantly
change the results.)

For the results shown below, I take the daily fatality counts as the data vector and assume they can be modeled as
an inhomogeneous Poisson process with time-varying intensity, (dD/dt)model = λ(t; R0, X, f ). Given the data, (dD/dt)i,
on k days ti, one can determine the model parameters by minimizing the negative log-likelihood over the 3-dimensional
parameter space,

− ln L =
k

∑
i=1

[λ(ti)− (dD/dt)i ln(λ(ti))] , (12)

where I have suppressed a term independent of λ. In passing from data likelihood to parameter posterior I assume flat
priors on the model parameters within a “reasonable" range of variation, which I take to be f = 0.1− 6%, R0 = 1.1− 6.0,
and X = 20− 99.9%; the flat, bounded prior on R0 implies a corresponding flat, bounded prior on γ via Table 1.

To estimate the goodness-of-fit of the Maximum Likelihood Estimate (MLE) model, one can evaluate the residual de-
viance for the Poisson likelihood, which is the change in the deviance between the MLE model and the “saturated" model,

RDMLE = 2
k

∑
i

[
(dD/dt)i

[
ln(dD/dt)i − ln(λ̂(ti))

]
−

(
(dD/dt)i − λ̂(ti)

)]
, (13)

where λ̂(t; R̂0, X̂, f̂ ) is the MLE model intensity; for p model parameters estimated from the data, RDMLE has a χ2 distribu-
tion with k− p degrees of freedom (dof) if the model is a good fit. In that case, one can estimate model parameter credible
intervals using levels of the RD difference, ∆RDmin = RD(R0, X, f )− RDMLE.

If the Poisson model errors can be approximated as Gaussian, then with flat priors one could alternatively determine the
MLE model parameters and credible ranges by minimizing the usual χ2 function,

χ2 =
k

∑
i

[(dD/dt)i − λ(ti)]
2

λ(ti)
, (14)

determining goodness-of-fit via the value of χ2
min = χ2

MLE relative to the number of degrees of freedom and parameter
intervals via ∆χ2

min = χ2 − χ2
min [11]. Since the fatality counts at early and late times are not large compared to unity, it is

not obvious at the outset that this would be a good approximation. This is discussed further below.
The extended fatality data alone constrain only a degenerate combination of the 3 parameters; some example model

“best-fit" parameters are given in Table 2, with results described in the following subsections.
An important timescale for SIR inference from the fatality rate is the mean time from infection to death; the early study

of [3] suggests it is of order 15− 20 days, which provides an estimate of the time-delay parameter ∆t introduced above. I
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R0 γ−1 days 100 f f N 100X R∞ 100r∞ D∞ RD 100Xcrit
e Fig.

NYC:
5.15+0.22

−2.13 16.6+0.9
−8.5 4.9+1.1

−2.8 418998+94060
−239427 99.2+0.7

−19.4 0.04+0.57
−0.03 5.6+7.5

−1.0 23,256 402 20 3
2.82+0.14

−0.15 7.3+0.5
−0.6 1.1 fixed 94,061 73.4+2.4

−2.8 0.75 24.3 22,879 470 20 11
2.76+0.09

−0.08 7.0+0.4
−0.3 0.7 fixed 59,857 67.2± 1.8 0.91 37.8 22,607 553 26

Cook:
2.97+1.76

−1.54 9.4+8.4
−7.4 0.16+0.48

−0.05 8,240+24814
−2498 51.1+2.7

−25.6 1.45+0.74
−0.38 60.2+27.4

−45.2 4,962 131 36+88
−28 7

1.69± 0.03 3.3+0.1
−0.2 0.4 fixed 20,600 34.0+1.3

−1.2 1.12 24.3 5,010 135 12 8
1.39+0.02

−0.03 1.9+0.1
−0.2 0.7 fixed 36,052 23.6+1.1

−1.2 1.06 14.3 5,145 135 7.5
1.24± 0.01 1.1+0.1

−0 1.1 fixed 56,653 16.5+0.9
−0.6 1.04 8.7 4,953 137 4.9 11

Table 2: Best-fit SIR models with social contact reduction of 100X%, with model parameters fit to fatality data for NYC and
Cook County, using the tanh mitigation model of Eqn.(8), including estimated 95.45% credible regions. For the first row in
each location, credible regions are estimated from 500 simulations of the MLE model. R0 and R∞ are the initial and post-
mitigation values of the basic reproduction number, γ−1 is the mean time to removal from the population after infection, f
is the infection fatality rate (IFR), r∞ is the model asymptotic fraction of the population that’s been infected, D∞ is the model
number of asymptotic fatalities, and RD is the residual deviance goodness-of-fit measure for the daily fatalities from Eqn.
(13); for reference, there are 108 (NYC) and 113 (Cook) degrees of freedom. Due to the perfect degeneracy between f and
the population N, I also indicate the more robust product f N, the hypothetical number of asymptotic fatalities if the entire
population were infected. Bottom two NYC rows and bottom three Cook County rows indicate fits with IFR f fixed by the
indicated prior.

adopt 20 days as the fiducial value for ∆t; changing this value has no direct impact on the fatality-based modeling and just
shifts the model curves for s, i and r in time. Equivalently, fixing ∆t translates the mitigation time parameter tm to a date in
real time. As we shall see, the resulting dates for tm are consistent with the mid-March time frame when contact reduction
measures were implemented in both locations, indicating that this choice of ∆t is consistent with that external information.

4.1 New York City

For the NYC model fits, I adopt the tanh mitigation model of Eqn.(8) and take the NYC population to be N = 8, 550, 971
(as noted above, N and f can be relatively rescaled, keeping the product fixed, to yield identical results). I use the daily
NYC public health fatality data vs. time, including confirmed plus probable deaths, through June 30, 2020 (day 111), as
downloaded on July 2. As of that date, there had been 23,059 cumulative NYC fatalities reported.

The Poisson model MLE parameters are R0 = 5.15, X = 99.2%, f = 4.9%, with tm = t1 + 22.9− ∆t = Mar. 14 and
α−1 = 7.7 days as the time interval over which mitigation measures were implemented (1st row of Table 2); the data vs.
model comparison is shown in Fig. 3. For these model parameters, the June 30 cumulative fatality total is 23,126 (within
0.3% of the actual value), and the asymptotic value is D∞ = 23, 256. For this model, the asymptotic value of Rt is R∞ = 0.04,
and 100r∞ = 5.6% of the population, or 470,596 people, will end up having been infected. The dashed vertical line in the
upper left panel of Fig. 3 indicates the date when Rts = 1, which is when the peak in the number of model infected occurs,
around Mar. 18 in this example; on that date, in the model INYC

peak = 254, 159 people in NYC had the infection. For the MLE
model, the residual deviance is RD = 401.5 for k − p = 108 degrees of freedom. While this is quantitatively a poor fit,
the data-model comparison in Fig. 3 indicates that the model appears to capture the key qualitative behaviors and detailed
shape of the data; for more discussion, see §5. The fatality predictions to June 30 are in principle sensitive to the model
curves to June 30 −∆t = June 10, or about Day 93, as shown in the upper panels of the figure. In the MLE model, the initial
serial time is 〈ts〉 = 1/R0γ = 3.2 days, and the initial removal time is γ−1 = 16.6 days. For the MLE model parameters,
as Fig. 3 shows, for t & 30 days, Rt ∼ 0, so there were relatively few new infections after mid-April, and the number
of infected thereafter decayed exponentially, I ∼ I30 exp[−γ(t− 30)]; similarly, (dD/dt)(t) ∼ (dD/dt)50 exp[−γ(t− 50)].
Since R0 > 2, the exponential decline was slower than the initial exponential growth.
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Figure 3: MLE SIR model for NYC, with R0 = 5.15 and 100X = 99.2% reduction in social contact implemented over
an 8-day period in mid-March, with IFR f = 4.9% (top row of Table 2). Model parameters were fit using daily fatality
data dD/dt through June 30. Asymptotically, 5.6% of the population will be infected. Upper left: Fraction of susceptible, s
(black), parameter Rt (blue), and product Rts (brown) vs. time. Upper right: Number infected at a given time divided by
5, I/5 (red), new infections per day (green), cumulative number infected divided by 20 (brown), and cumulative number
of deaths (blue). Lower left: cumulative number of deaths (histogram) and model (blue curve). Lower right: daily fatalities,
data (histogram) and model (blue curve); upper and lower curves indicate ±1− σ intervals, assuming model daily deaths
are Poisson-distributed.
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Figure 4: Similar to Fig. 3, but for a model with R0 = 3.24, X = 83.6%, f = 2.7%, illustrating the parameter degeneracies.
∆RD = 9 for this model relative to the MLE model of Fig. 3. In this case, γ−1 = 9 days, R∞ = 0.53, model NYC death total
to June 30 is 23,114, and r∞ = 10% of the population get infected.
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To illustrate the model parameter uncertainties and degeneracies, Fig. 5 shows regions in the 2-dimensional parameter
subspaces where the minimum value of ∆RDmin = RD(X, R0, f )− RDMLE (projected over the third parameter) is below 1, 4
and 9. If the MLE model were a good fit, these regions would be expected to delimit 68, 95.5, and 99.7% credible limits for
one parameter. Under this assumption, I find 95.45 (99.7)% ranges of R0 = 3.56− 5.34(3.15− 5.38), X = 87.8− 99.8(83.0−
99.8)%, and f = 3.1− 5.9(2.7− 5.9)%, but see below. Fig. 4 shows a model with ∆RD = 9 for illustration. Note that the
upper bounds on X and R0 come from imposing the physical constraint that X < 1, while the upper bound on f is just the
upper bound on the imposed prior, so the data do not constrain these model parameters at the upper end. The upper right
panel shows that the parameters R0 and X are highly correlated: not surprisingly, larger values of R0 require greater degrees
of social contact reduction, X, in order to match the data. This degeneracy curve is well-approximated by the expression
X − 1 ' 0.24− (1.28/R0), which implies R∞ ' 1.28− 0.24R0, that is, larger R0 requires smaller R∞ to fit the NYC fatality
data. The requirement X < 1 or equivalently R∞ > 0 also implies the upper bound R0 . 5.33, consistent with above.
Moving from lower left to upper right in that figure, f increases and R∞ decreases. The models along the degeneracy curve
predict similar values of D∞. The two left-hand panels show that the degeneracy between f and the other 2 parameters is
significant but not nearly as pronounced. The lower right panel shows that the values of RD (Eqn. 13) and χ2 (Eqn. 14) over
the grid of model parameter values are in reasonable agreement with each other, particularly for the better-fitting models.

Since the MLE model is not a good fit by the standard goodness-of-fit measure, the assumption that ∆RD follows a χ2 dis-
tribution that can be used to set credible ranges on the model parameters as above is open to question. Simulations provide
another approach to parameter uncertainty estimation. Fig. 6 shows the best-fit parameter estimates for 500 simulations of
the MLE model, where each simulation is a Poisson sample drawn from the model intensity, λMLE(t). For computational
speed, the fit for each simulation is done by minimizing the χ2 statistic of Eqn. (14); the lower right panel shows that in this
case χ2 and RD are tightly correlated, so this procedure is effectively identical to minimizing RD for each simulation. The
resulting parameter degeneracies are very similar to those shown for the data in Fig. 5, and the effects of the prior limits
on the parameters are similarly apparent. The median best-fit parameter values over the 500 simulations are R0 = 5.06,
X = 0.985, and f = 0.043; the differences between these and the input MLE simulation parameters are well within 1− σ.
The 95.45% parameter ranges from the simulation fits are R0 = 3.02− 5.37, X = 79.8− 99.9%, and f = 2.1− 6.0%. Since
these ranges are comparable to but broader than the ∆RD = 4 ranges above, I adopt these more conservative ranges for the
parameter uncertainty estimates in Table 2.

The models above suggest a preference for relatively high values of the NYC IFR, f > 2%. If there were a strong external
constraint (prior) on f from other studies that indicated lower values, the preferred values for the other model parameters
would shift accordingly. To demonstrate this, the 2nd and 3rd rows of Table 2 indicate the best-fit models to the daily fatality
data with imposed priors of f = 1.1 and 0.7%.

A feature of the mitigation models is that the asymptotic value of r∞ for models that fit the fatality data depends on the
Infection Fatality Rate f as roughly 1/ f . This is expected since D∞ = N f r∞, so r∞ = D∞/N f , and for NYC the model
prediction for D∞ appears well-constrained by the data. This inverse trend of r∞ with f is evident in Table 2. This scaling
also enables us to place a very conservative lower bound on f , since it implies f = D∞/Nr∞ > D∞/N > D(June 30)/N =
0.27%. A very conservative upper bound follows from the fact that the Infection Fatality Rate f must be lower than the
Case Fatality Rate, which is the ratio of the number of deaths to the number of reported cases; from the NYC Public Health
website, as of mid-July this ratio was 10.8%. Saturating this bound would imply that 100% of those infected have been
tested, which is clearly far from the case.

4.1.1 Predictivity of the NYC Model

The foregoing analysis shows that the simple SIR model with a single transition in social contact appears to qualitatively
describe the NYC fatality data through the end of June, 2020. In fact, by examining earlier subsets of the data, one can infer
that the model became quasi-predictive relatively soon after the peak in fatalities, in the sense that the number of subsequent
fatalities over a significant time interval were accurately predicted. As an example, using fits to fatality data through April
22 (Day 43), at which time there were 15,864 NYC confirmed plus probable fatalities in the public database, the best-fit
models predicted the subsequent month’s 5,151 fatalities (April 23 to May 20) to about 1.3% accuracy, about equal to the
statistical error. The success of this prediction is expected to be limited in part by the fact that NYC continually updates its
fatality data for earlier dates, sometimes with significant additions for dates weeks earlier; e.g., by July 2, the cumulative
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Figure 5: Distribution of minimum values of ∆RDmin = RD(X, R0, f ) − RDMLE in the two-dimensional parameter sub-
spaces for NYC, projected over the third parameter. Red, blue, and black points indicate models with ∆RDmin < 1, 4, 9,
which would correspond to 68, 95.5, and 99.7% credible limits for one parameter if the MLE model were a good fit. Upper
left: f vs. R0; Upper right: R0 vs. X; Lower left: f vs. X; Lower right: RD vs. χ2 statistic.
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Figure 6: Same as Fig. 5 but now for 500 simulations of the NYC MLE model, showing best-fit models for each simulation
using the χ2 statistic of Eqn. (14).
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reported fatalities through April 22 had increased from 15,864 to 16,129.

4.2 Cook County

For the Cook County model fits, I take the Cook County population to be N = 5, 150, 233. I use public health fatality data
through July 9 (day 116), downloaded from the Cook County Medical Examiner site on July 12; as of July 9, total reported
fatalities were 4,725.

Fig. 7 shows the MLE tanh Rt model fit to the daily fatality data, with R0 = 2.97, X = 51.1%, f = 0.16%, tm =
t1 + 20.6− ∆t = Mar. 17 (2 days earlier relative to the first fatality than for NYC), and α−1 = 3.3 days (4 days shorter than
for NYC); asymptotically, 100r∞ = 60.2% of the population get infected, and D∞ = 4, 962. The goodness-of-fit RD = 131 for
113 degrees of freedom, which is acceptable. The model prediction for July 9 was D = 4, 746 fatalities, within 0.5% of the
data value and well within the expected statistical error. The initial serial time in the Cook County MLE model is 〈ts〉 = 3.2
days, identical to that for the NYC MLE model. At the peak, ICook

peak = 448, 109 individuals were infected in the MLE model.
The feature in the curve of new infections vs. time (green curve in upper right panel) is due to the sharply falling behavior
of Rt around that time.

As another example, Fig. 8 shows the best-fit model with a sharp prior of f = 0.4%, with R0 = 1.69 and X = 34%,
which has a goodness-of-fit parameter RD = 135 for 114 degrees of freedom (∆RDmin = 4). The model prediction for July
9 was D = 4, 786, which agrees with the data to 1.2%. In this model, asymptotically 100r∞ = 24.2% of the population will
be infected, and D∞ ' 4, 995 fatalities. The 3rd and 4th Cook County entries in Table 2 show best-fit results for two other
values of f , 0.7 and 1.1%.

The striking feature of the Cook County data, compared to NYC, is the roughly linear growth in cumulative fatalities
over an extended time period from day ' 35− 70 and a corresponding extended plateau in daily fatalities. Since the daily
fatality rate dD/dt = f γI, linear growth in D is achieved if I ' Ipeak = constant over an extended time period, which
requires Rts ' 1 and very slowly varying. Since both Rt and s are monotonically decreasing, this requires Rt ' 1 + δ,
s ' 1− δ, in order to achieve this slower evolution. Indeed, Table 2 shows that for the 2 models shown here, the asymptotic
value of R∞ is modestly above unity. This behavior is analogous to the phenomenon of “critical slowing down" in the
approach to equilibrium in second-order phase transitions and in dynamical systems, which also involve a transition from
exponential to power-law evolution—for discussion, see Appendix A. From mid-April through late May, in Cook County
dD/dt ' 70 deaths per day; this implies I ∼ ICook

peak ' 70/ f γ ' 61, 250(0.004/ f )(γ−1/3.5) were infected at that time, with a
comparable number of new cases per day, as shown in Figs. 7 and 8.

The model parameter degeneracy for Cook County is shown in Fig. 9. Using ∆RD = 4, 9, the approximate 95.45 (99.7)%
credible intervals are R0 = 1.39− 4.18(1.21− 4.85), X = 23.6− 54.5%(14.8− 55.4%), and f = 0.12− 0.7%(0.11− 1.5%). The
locii are roughly approximated by R0 ' 1+ (0.003/ f ) (for f > 0.002) and R0 ' 0.005/ f (for f < 0.002), and by the not very
illuminating polynomials X ' 0.68− (0.67/R1.3

0 )− 0.0006R3
0 and X ' 0.65− 80 f (for f < 0.004) and X ' 0.55(0.002/ f )0.7

(for f > 0.004).
As for NYC, we can alternatively estimate parameter uncertainties via simulation. Fig. 10 shows the results of model

fitting 500 simulations of the Cook County MLE model. The simulated parameter degeneracies are close to those inferred
from the data-model fit, and we find simulated 95.45% credible intervals of R0 = 1.43 − 4.73, X = 25.5 − 53.8%, and
f = 0.11− 0.64%, comparable to the ∆RD = 4 results above, while the expected 4.55− 95.45% range for the goodness-of-fit
parameter is RD = 91.7− 140.8, which encompasses the MLE value for the data. As for NYC, I adopt the simulation-based
intervals in Table 2.

For Cook County, we can draw conservative external upper and lower bounds on f analogous to those given above
for NYC. The lower bound is f = D∞/Nr∞ > D∞/N > D(July 9)/N = 0.09%. The upper bound is the ratio of the
number of deaths to the number of reported cases; from the Illinois Public Health website, as of mid-July this ratio was
4, 776/98, 670 = 4.8%. Both the lower and upper bounds are factors of 2− 3 lower than for NYC, while the preferred model
values for f are an order of magnitude smaller than for NYC.
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Figure 7: SIR MLE model for Cook County daily fatality data through July 9, with R0 = 2.97, X = 51.1%, and f = 0.16%,
with measures implemented over an α−1 = 3.3-day period. Upper and lower model curves in lower right panel indicate
±1− σ intervals, assuming model daily deaths are Poisson-distributed, suggesting that the day to day variations in Cook
County reported fatalities are roughly consistent with statistical fluctuations.
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Figure 8: SIR model for Cook County data through July 9, showing best-fit model for daily fatalities with fixed prior of
f = 0.004, for which R0 = 1.69, X = 34%, with measures implemented over an α−1 = 3.3-day period (2nd Cook County
row in Table 2).
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Figure 9: Distribution of minimum values of ∆RDmin = RD(X, R0, f ) − RDMLE in the two-dimensional parame-
ter subspaces for Cook County, projected over the third parameter. Red, blue, and black points indicate models with
∆RDmin < 1, 4, 9, which would correspond to 68, 95.5, and 99.7% credible limits for one parameter if the MLE model
were a good fit. Upper left: f vs. R0; Upper right: R0 vs. X; Lower left: f vs. X; Lower right: RD vs. χ2 statistic. Compare
degeneracy directions with those for NYC in Fig. 5.
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Figure 10: Same as Fig. 9 but now for 500 simulations of the Cook MLE model, showing best-fit models for each simulation
using the χ2 statistic of Eqn. (14).
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5 Discussion: NYC vs. Cook County

The SIR model with a single transition in social contact in mid-March appears to provide a qualitative description of the
fatality evolution in NYC (in terms of goodness of fit) and a quantitative description for Cook County, and can be used to
get a qualitative understanding of the different behaviors of the data in the two places. NYC fatalities rose and fell sharply,
with a FWHM of daily fatalities of about 20 days. This is attributable to a steep decline in the reproduction parameter Rt:
the reduction in social contact was over 80% in the best-fit models. By contrast, for Cook County Rt appears to have fallen
more modestly to values just above unity, leading to an extended plateau in daily fatalities, with a FWHM of order 55 days.

Despite the degeneracies among the model parameters, the qualitative differences in fatality evolution in the two urban
areas point to their occupying different regions of model parameter space. As Table 2 shows, for NYC, the best-fit values
of the reproduction number, R0, the contact reduction factor, X, and the infection fatality rate, f , appear to be significantly
higher than those for Cook County, while the asymptotic reproduction number, R∞, and the asymptotic fraction of popula-
tion infected, r∞, appear lower. Since NYC has a higher population density than Cook County, it is perhaps not surprising
that it would start off with a higher reproduction number, R0. On the other hand, since similar mitigation measures were
instituted in both regions, it is less obvious why NYC would have achieved a greater percentage reduction in social contact.

As for the significantly higher IFR value for NYC, there are numerous factors that might have contributed to this dif-
ference, including: (1) differences in demographics and fractions of at-risk population, (2) availability of treatment, e.g.,
number of intensive care unit beds relative to population size, (3) hot spots in at-risk subpopulations, e.g., long-term care
facilities, prisons, etc., (4) possible differences or evolution in lethality of COV-SARS-2 strains circulating in the two regions,
(5) differences between documented population, N, and effective model population, Ne f f . On the last point, a critical sim-
plifying assumption of the model is that everyone in the documented population N of each urban area is a ‘participant’ in
the model, in the sense that they have non-zero probability of infection or transmission. However, if a subset N−Ne f f of the
population has no social contact over an extended period, in principle they should be removed from the model population,
reducing N to Ne f f . Since the IFR only enters the model through the combination f N, the true value of f would be higher
than the estimate given in Table 2 by the factor N/Ne f f . For example, for Ne f f = N/2, the best-fit model estimate for f
would double. Since roughly half of the Cook County population lives in suburban areas, with lower population density
than the city, one might expect it to have a larger value of N/Ne f f than for NYC; even so, this difference does not by itself
appear to account for the nearly order of magnitude difference in the estimated values of f between the two regions.

Interestingly, the model parameter degeneracies in the two regions show both similarities and differences. In both
regions, R0 and X are strongly positively correlated, and in both regions the fact that D∞ is well determined implies a tight
inverse relation between r∞ and f , as shown in Table 2. However, for NYC, X (or R0) and f are weakly positively correlated
(see Fig. 5), while for Cook County they are strongly and tightly negatively correlated (see Fig. 9); also, for NYC R0 and
R∞ are negatively correlated, while for Cook County they are positively correlated. For Cook, unlike NYC, the contact
reduction parameter X appears to ‘saturate’ at a value of about 55%, well away from the boundaries of the prior.

This difference in parameter degeneracies between R0 and f has important implications for the model parameter credible
ranges for the two places. For models that fit the data, we have i(t) = (dD(t + ∆t)/dt)(R0 − 1)/ f Nc, where c = 0.25(0.21)
for NYC (Cook). The coefficient of the dD/dt term in this expression varies by only 18% over the 95.45% credible interval of
model parameters for NYC, but it varies by nearly an order of magnitude for the corresponding parameter range for Cook
County. In other words, the NYC fatality data constrain the model curve of infections, i(t), to lie within a narrow range
in amplitude, e.g., the peak in number of individuals infected is INYC

peak = 225, 830− 285, 227 at 95.45% CL, while for Cook

County a much broader range in the amplitude of i(t) can reproduce the dD/dt data, with ICook
peak = 73, 536− 1, 007, 386 at

the same CL. This is reflected in the larger range of allowed parameter values for Cook, particularly for r∞.
From Table 2, the asymptotic model projection for NYC is about 270 deaths per 100,000 population, while for Cook

County it is only about 100. Yet as just noted, the inferred value of R∞ for NYC appears lower than for Cook County and
its contact reduction factor, X, is correspondingly higher. Other things being equal, we would expect larger social contact
reduction to lead to fewer fatalities. In the model, this counterintuitive difference is due to the much lower IFR for Cook.
Recall that the asymptotic fatalities per population are given by D∞/N = f r∞. While the estimated r∞ for Cook is higher
than for NYC, this is more than compensated by the lower estimated value of f , resulting in the 2.7 ratio for D∞/N values
between the two places. According to the model, early in the pandemic D(t)/N for NYC rose more rapidly than for Cook
due to (a) the larger exponent γ(R0 − 1) for growth and (b) the inference that mitigation measures in Cook County were
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Figure 11: Left panels: Best-fit model for NYC with fixed f = 1.1% (2nd row of Table 2), with R0 = 2.82 and 100X = 73.4%
reduction in social contact; 24.3% of the population get infected. Right panels: Best-fit model for Cook County with f = 1.1%
(bottom row of Table 2), with R0 = 1.24, 100X = 16.5%, and 8.7% asymptotically infected.

imposed ∼ 2 days earlier and more rapidly, relative to the time of initial outbreak, than in NYC. Accordingly, the ratio of
D(t)/N values peaked at a value of 8.3 before declining toward its asymptotic value of 2.7. This difference in ‘response
times’ is seen in the upper panels of the preceding model Figures: for Cook County, Rt reached its asymptotic value R∞
well before the peak in the number of individuals infected occurred, while for NYC Rt was still falling when infections
peaked. An important note of caution regarding differences in D/N is that Cook County reported deaths are likely a
smaller fraction of true deaths than NYC Public Health reported deaths, since the Cook County Medical Examiner does not
appear to include probable COVID-related deaths in its public database. For NYC, about 20% of the total reported deaths
are classified as probable, and I have included them in the data without differentiation from confirmed deaths.

As Table 2 indicates, the credible ranges of values for f for NYC (Cook County) appear high (low) compared to expecta-
tions, since they are at or near the limits of the adopted prior, and surprisingly different from each other; the ranges for r∞
seem correspondingly low (high), and the MLE value for NYC social contact reduction X is clearly unrealistically high. As
Table 2 also indicates, the fits in both locations with fixed values of f away from the high/low extremes of the prior are not
dramatically worse—the likelihood is a weak function of f —which suggests that even a modestly informative prior on f
would shift the results. Suppose that external information indicated f = 1.1% in both locations. This would flip the above
interpretation of the NYC-Cook difference in D∞/N: it would be attributed not to the difference in f but to the fact that a
2.7 times higher (not lower) fraction of those in NYC were infected than in Cook, 24 vs. 9%. In this case, one would need
to explain not the large difference in f but the large difference in X, 73 vs. 17%, and in mean removal time γ−1, 7.3 vs. 1.1
days. Fig. 11 shows the best-fit models for both locations with f = 1.1%.

Finally, as noted above, the goodness of fit measures RDMLE of the MLE NYC and Cook County models differ signif-
icantly from each other. Fig. 12 shows the cumulative contributions to RDMLE for each location. For Cook County, the
trend is roughly linear in time, as would be expected. For NYC, roughly half of the contribution to RDMLE comes from
the relatively short periods before 15 days and after 100 days, suggesting that those periods are less well described by the
model; for the intermediate period, RD ' 200 for about 85 degrees of freedom for NYC.
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Figure 12: Cumulative contributions vs. time to the goodness of fit measure, RDMLE, for the MLE models for NYC (black
points) and for Cook County (blue points).

6 ‘Re-opening’: Easing of Contact Reduction Measures

In the previous sections, I assumed that mitigation measures taken in mid-March in NYC and Cook County remained in
place through early/mid June, which is consistent with the fatality data to the end of June in both locations. If they continue
to remain in place in until a vaccine or effective treatment becomes available, then the pandemic should remain under
control in those two areas. However, at this writing (mid-July), other parts of the country have ‘re-opened’, leading to a
surge in U.S. cases that could potentially seed new outbreaks in NYC and Cook County. In addition, both urban areas
have begun and are planning further steps in phased processes of easing of mitigation measures that are likely to result in
increasing the reproduction number, Rt, above its current value. In this section, I consider the potential impacts of such
easing on the future course of the pandemic in NYC and Cook County, adopting the same model assumptions as above,
including continued constancy of f and γ over time.

I model this ‘re-opening’ by assuming that at a time te > tm, social contact is increased by a factor Xe over a time period
ω−1, which introduces 3 additional parameters into the model for Rt, i.e.,

Rtanh
t (τ) = (1− X)R0 +

XR0

2

[
1− tanh

(
α

γ
(τ − τm)

)]
+

XeR0

2

[
1 + tanh

(
ω

γ
(τ − τe)

)]
. (15)

In this model, Rt decreases from its initial value, R0, to (1−X)R0 around time tm and then increases to R̃∞ = (1−X + Xe)R0
around time te, where in this section x̃ denotes the asymptotic value of parameter x after the 2nd wave. Assuming te � tm,
at times tm � t � te the dynamical SIR variables will have approximately reached their asymptotic values from the initial
mitigation stage, e.g., r ' r∞, where r∞ values are given in Table 2, before subsequently evolving due to the easing of
measures. An approximate condition for the disease to again become pandemic is therefore R̃∞ > 1/s∞ = 1/(1− r∞),
which implies a second wave will occur if

Xe > Xcrit
e ≡ X− 1 +

1
R0(1− r∞)

= X− 1 +
1

R0(1− (D∞/ f N))
, (16)

where again D∞ is the asymptotic model fatality count at the end of the first wave. The corresponding values of Xcrit
e are

given in Table 2.
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For the NYC best-fit models with unconstrained f (first row of Table 2), the value of Xcrit
e is tightly constrained to about

20%, nearly independent of the parameter degeneracies; this is because the condition Xcrit
e = 0.2 traces out a locus in the

R0-X parameter space, X − 1 = 0.2− 1/(R0(1− r∞)), that is close to that in the upper right panel of Fig. 5. For NYC, this
value of Xcrit

e is relatively small compared to the values of the initial contact reduction factor X & 0.8 for the corresponding
models, which means that only modest re-opening measures are likely to trigger a second wave. However, the severity of
the 2nd wave will depend on f and on the exponential growth rate of the 2nd wave, γ(R̃∞ − 1).

Fig. 13 illustrates this. The left panel starts with the MLE model of Fig. 3 (1st row of Table 2) and introduces an easing
of mitigation parameterized by Xe = 0.25 over an 1/ω = 17-day transition period with mid-point at te = tm + 100 days, or
June 22, which yields R̃∞ = 1.33. That date is late enough that it has little impact on the fatality data to June 30, but daily
fatalities bottom out around Day 134 (July 23). In this example, new cases peak in late July 2021, and daily fatalities peak at
a value just over 530 per day around the beginning of Sept. 2021. Here, with f = 4.9%, asymptotically D̃∞ = 172, 545, and
41% of the NYC population ends up infected. (This model makes the unrealistic assumption that mitigation measures would
not be reinstituted once the second wave starts or alternatively demonstrates a possible outcome if they are not reinstituted.)
By contrast, the right panel of Fig. 13 implements the same easing of mitigation (same values of Xe, te, ω), but starting from
the best-fit NYC model with fixed f = 1.1% given in the 2nd row of Table 2. While the values of R̃∞ are comparable in
these two examples, in the left (right) panel γ(R̃∞ − 1) = 0.02(0.06) inverse days, so the 2nd-wave growth rate is faster in
the latter. In addition, the IFR in the left panel is 4.5 times higher. As a consequence of these two differences, the evolution
in the model of the right-hand panel is faster but of lower amplitude, with asymptotic fatalities of D̃∞ = 34, 945, with 37%
of the population ending up infected. The lower fatality count directly reflects the lower value of f , since the asymptotic
fraction of people who get infected, r̃∞, is nearly the same as for the left-hand model. While the right-hand scenario is vastly
improved from a public health standpoint, it still involves nearly 12,000 additional NYC fatalities compared to the present
day (mid-July).

In the above reopening example, the value of Xe = 0.25 is not much higher than the critical value, Xcrit
e = 0.2. For

larger values of Xe, the 2nd wave fatality total is larger and peaks earlier than in the left panel of Fig. 13. Given the high
estimated values of f for the NYC models, to keep future fatalities under control as NYC reopens it will be imperative either
to keep the easing below Xcrit

e or to take other measures to drive down the IFR through improved treatment and/or extra
protections for at-risk subpopulations, as well as widespread and rapid testing and quarantine to reduce the mean removal
time γ−1.

For Cook County, there is much wider variation in the values of Xcrit
e within the family of best-fit models (those in the

first row of Cook County entries in Table 2). As a result, it is much more challenging to set acceptable reopening thresholds
for Cook County. However, for values of f at the upper end of the allowed range for Cook County, the re-opening threshold
for triggering a 2nd wave is quite low, of order 10% increase in social contact (last two rows of Table 2). As an example, Fig.
14 shows a re-opening scenario for Cook County, starting from the f = 0.4% model of Fig. 8 (2nd row of Cook entries in
Table 2). Here, Xe = 0.18, so the increase in social contact is half of the initial X = 0.36 reduction, with the re-opening taking
place over 17 days centered on te of mid-July. Since Xe > Xcrit

e = 0.12 for these model parameters, there is a second wave in
which fatalities peak in December; while flatter than the first wave, it nevertheless yields D∞ = 7291, a significant increase
compared to the present. On the other hand, for the MLE model of Fig. 7, the same re-opening parameters would not cause
a second wave, since Xe < Xcrit

e .
The important conclusions from this study are that the impact of reopening measures depend critically on (a) whether

they are ‘above threshold’, i.e., Xe > Xcrit
e , (b) the value of the IFR, f , and (c) the removal timescale, γ−1, which impacts the

2nd-wave growth rate and thus the asymptotic number of infections. Depending on those parameters, the same reopening
measures can have dramatically different impacts in amplitude and duration.

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.10.20170506doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.10.20170506
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 200 400 600 800

0
1

2
3

4
5

time (from Mar. 11)

Fr
ac
tio
n

Susceptible: s
sRt
Rt

0 200 400 600 800

0
50
00
0

15
00
00

time (from Mar. 11)

N
um
be
r

Deaths: D
Infected: I/5
New Cases
Infected to Date: (I+R)/20

0 200 400 600 800

0
50
00
0

15
00
00

time (days from Mar. 11)

N
Y

C
 D

ea
th

s

Model
Data

0 200 400 600 800

0
20
0

40
0

60
0

80
0

time (days from Mar. 11)

N
Y

C
 D

ea
th

s 
pe

r d
ay

Model
Data

0 100 200 300 400 500 600

0.
5

1.
0

1.
5

2.
0

2.
5

time (from Mar. 11)

Fr
ac
tio
n

Susceptible: s
sRt
Rt

0 100 200 300 400 500 600

0
20
00
0

40
00
0

60
00
0

time (from Mar. 11)

N
um
be
r

Deaths: D
Infected: I
New Cases
Infected to Date: (I+R)/20

0 100 200 300 400 500 600

0
10
00
0

30
00
0

time (days from Mar. 11)

N
Y

C
 D

ea
th

s

Model
Data

0 100 200 300 400 500 600

0
20
0

40
0

60
0

80
0

time (days from Mar. 11)

N
Y

C
 D

ea
th

s 
pe

r d
ay

Model
Data

Figure 13: Left panels: SIR MLE model of Fig. 3 (1st row of Table 2) for NYC, now with 100Xe = 25% increase in social
contact phasing in over 17 days in mid to late June 2020, leading to a large 2nd wave that peaks in the summer of 2021.
Right panels: Best-fit model for f = 1.1% (2nd NYC row of Table 2 and Fig. 11) followed by the same ‘re-opening’ (contact
increase) measures. For this case, the 2nd wave curve is much flatter, even though the easing is identical.
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Figure 14: SIR model of Fig. 8 (2nd row of Cook entries in Table 2) for Cook County, with 100Xe = 18% increase in social
contact phasing in over 17 days centered in mid-July, leading to an extended 2nd wave. For the MLE model (first row of
Cook entries in Table 2), the same reopening does not trigger a 2nd wave, since Xe < Xcrit

e .
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7 Conclusion

I draw several conclusions from this modeling exercise: (1) SIR models with a single transition to reduced social contact in
mid-March appear to describe the fatality data to the end of June for NYC at least qualitatively and for Chicago quantita-
tively; (2) despite significant parameter degeneracies, the model for NYC became quasi-predictive in the sense that model
fits made soon after fatalities started to decline accurately predicted the subsequent month’s evolution of fatalities; (3) the
evolution of the "first-wave" pandemic differed markedly between the two locations, pointing to different values of the
model parameters—the public health reasons behind these differences would be interesting to explore; (4) only modest
easing of contact reduction measures (‘re-opening’) may be needed to trigger a second wave in either city, in the absence
of other measures; (5) the threshold for ‘safe’ reopening appears well-constrained by the model for NYC but not for Cook;
and (6) the impact of such easing will depend critically on the amplitude of contact increase, Xe, the infection fatality rate,
f , and the mean removal time from the population, γ−1.

This document was prepared using computing resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S.
Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA),
acting under Contract No. DE-AC02-07CH11359.
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A Critical Slowing Down in the SIR Model

For the SIR model, the condition Rts = 1 marks a critical transition from growth to decay of the pandemic. The approach to
critical transitions often involves a qualitative change in behavior of the system. The dynamics for Cook County shown in
Figs. 7 and 8 shows a transition from exponential to roughly linear time dependence for D(τ). To understand when this is
expected to occur, we can define new variables,

s = 1− ε1(τ) , i = ε2(τ) , Rt = 1 + δ(τ) . (17)

Here, ε1 and ε2 are the dynamical variables of the evolution, and δ(τ) is fixed by the mitigation model, e.g., Eqn. (8).
Substituting these expressions into Eqns. (6), we find

dε1

dτ
= ε2(1 + δ− ε1 − δε1) ,

dε2

dτ
= ε2(δ− ε1 − δε1) , r = ε1 − ε2 . (18)

If the mitigation model Rt is such that, over some time interval, δ ' ε1/(1− ε1), then over that interval, dε1/dτ ' ε2,
dε2/dτ ' 0, and dr/dτ = ε2 ' constant. Over this time interval, s decays linearly, r grows linearly, and i is approximately
constant: the number of infected hits a plateau, which will lead to a plateau in daily deaths a time ∆τ later. This appears to be
an example of the phenomenon of “critical slowing down" in the approach to equilibrium in second-order phase transitions
as well as in certain dynamical systems: in this case, the time evolution transitions from early exponential behavior to linear
behavior [12].

Note that I have not assumed that ε1, ε2 or δ are very small compared to 1. For the best-fit Cook County models (first
Cook County row in Table 2), δ ' 0.07 − 1.2. For the mitigation model of Eqn.(8), δ is nearly constant over the time
interval of interest, while ε1 is a growing function of time (s is monotonically decreasing), so this quasi-equality will only
last for a limited time interval, given our assumptions. Since ε1 grows linearly during this stage, ε1 ' εi

1 + ε
plat
2 (τ − τi), the

characteristic length of the plateau stage in real time should be of order ∆tplat ' δ/γε
plat
2 = (Rt − 1)/γiplat, where iplat is

the value of i at peak. This is about 30− 35 days for the models in Fig. 7 and 8.

B Semi-Empirical Model

In the body of the paper, I adopt and test the assumption that social contact reduction measures in both locations were
implemented in a single monotonic transition of limited duration, after which social contact rates were stable in the pop-
ulation. The analysis led to inferences about the parameters describing this transition. An alternative, discussed here, is
to adopt a semi-empirical approach that infers features of the model directly from the fatality data to the extent possible.
The advantage of the semi-empirical approach is that it does not make the above assumptions about monotonic behavior
between two asymptotic regimes of constant social contact. The disadvantages of the approach are that (a) it is not informed
by public information about mitigation measures, which led to the hypothesis of Eqn. (8), (b) since it infers the SIR func-
tions directly from the fatality data (up to unknown model parameters), it does not allow one to project the model forward
in time, i.e., to make predictions, and (c) in the absence of other data or priors, it does not enable one to derive constraints
on the parameters f , γ, and R0: the data map onto models with arbitrary values of these parameters.

From Eqns. (5) and (6), we can write the SIR model functions in terms of the fatality data as

i(t) =
1

f Nγ

(
dD
dt

)
(t + ∆t) , r(t) =

1
f N

D(t + ∆t) , s(t) = 1− i(t)− r(t) , (19)

and we can infer the time-dependent reproduction number via, e.g.,

Rt = −
(ds/dt)

γis
. (20)

Since the latter involves differentiation of the noisy daily fatality data, a suitable smoothing over a several-day window can
be applied. The semi-empirical approach is thus a model with k + 2 parameters, where k is the number of days of fatality
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Figure 15: Semi-empirical model for NYC with same values of f and γ as the tanh MLE model of Fig. 3, f = 4.9% and
γ−1 = 16.6 days, superimposed on the tanh MLE model (shown as dashed lines). For plotting purposes, the inferred Rt has
been filtered through a five-day window. Lower panels illustrate that this approach uses the daily and cumulative fatality
data as input, as opposed to forward modeling of the data.

data, and f and γ are the two additional parameters. This model therefore achieves no data reduction in the usual sense of
the term.

As an example of the semi-empirical approach, Fig. 15 shows the model of Eqns. (19) and (20), with five-day smoothing
of Rt, for f = 4.9% and γ−1 = 16.6 days, the same values as for the NYC tanh MLE model, superimposed on the tanh MLE
model (dashed lines).
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