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Abstract 

Introduction - Thanks to improvement of care, cancer has become a chronic condition. But due 
to the toxicity of treatment, the importance of supporting the quality of life (QoL) of cancer 
patients increases. Monitoring and managing QoL relies on data collected by the patient in 
his/her home environment, its integration, and its analysis, which supports personalization of 
cancer management recommendations. We review the state-of-the-art of computerized systems 
that employ Data Science methods to monitor the health status and provide support to cancer 
patients managed at home. 

Objective - Our main objective is to analyze the literature to identify open research challenges 
that a novel decision support system for cancer patients and clinicians will need to address, 
point to potential solutions, and provide a list of established best-practices to adopt. 

Methods - We designed a review study, in compliance with the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines, analyzing studies retrieved from 
PubMed related to monitoring cancer patients in their home environments via sensors and self-
reporting: what data is collected, what are the techniques used to collect data, semantically 
integrate it, infer the patient’s state from it and deliver coaching/behavior change interventions. 

Results - Starting from an initial corpus of 819 unique articles, a total of 180 papers were 
considered in the full-text analysis and 110 were finally included in the review. Our findings are 
organized and presented in four main sub-topics consisting of data collection, data integration, 
predictive modeling and patient coaching. 
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Conclusion - Development of modern decision support system for cancer needs to utilize best 
practices like the use of validated electronic questionnaires for quality of life assessment, 
adoption of appropriate information modeling standards supplemented by 
terminologies/ontologies, adherence to FAIR data principles, external validation, stratification of 
patients in subgroups for better predictive modeling, and adoption of formal behavior change 
theories. Open research challenges include supporting emotional and social dimensions of well-
being, including PROs in predictive modeling, and providing better customization of behavioral 
interventions for the specific population of cancer patients. 

Keywords: Cancer, Decision Support System, Data Science, Data Integration, Patient 
Reported Outcomes, Quality of Life, Artificial Intelligence, Predictive modeling, Patient coaching 
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1. Introduction and background 

After the primary intervention, most cancer patient survivors are managed at home, facing long-
term (sequelae) treatments, making the disease comparable to a chronic condition [1]. Despite 
their benefit, strong therapeutic regimens often cause toxicity, severely impairing quality of life. 
This may decrease adherence to treatment, thus compromising therapeutic efficacy. Also due to 
age-related multimorbidity, patients and their caregivers develop emotional, educational and 
social needs. The CAncer PAtients Better Life Experience Horizon 2020 project (CAPABLE, 
H2020 875052) will develop a cancer patient coaching system with the objective of facing these 
needs, in the effort to fully exploit the potential of Data Science to support cancer care and bring 
it to patients’ homes. 

As one of the preliminary tasks of CAPABLE, we review the state of the art of computerized 
systems that employ data science methods to monitor the health status and provide support to 
cancer patients managed at home. In particular, in this article, we review the literature related to 
monitoring cancer patients in their home environments via sensors and self-reporting: what data 
is collected, what are the methods used to collect data, semantically integrate it, infer the 
patient’s state from it and deliver coaching/behavior change interventions.  

CAPABLE will indeed use a data science approach in order to provide support to patients and 
clinicians in two different pathways (Figure1); after (1) collecting data and (2) semantically 
integrating it, these data can be used to (3) build predictive models that help clinicians infer the 
patient state and (4) drive patient coaching systems that provide patients with personalized 
evidence-based recommendations on how to improve their wellbeing. Because the data science 
cycle encompasses all of these four areas [2], they define the scope of the review. The findings 
of the analyses will be used to identify open research challenges that CAPABLE will need to 
address, providing solutions that go beyond state of the art of the currently available systems 
examined in this review. 

 

Figure 1 - The four areas that constitute the scope of the review. In the cancer 
domain: data collection, integration, predictive modeling, and coaching. 

Data collection 

Data integration 

Coaching Predictive modeling 
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2. Methods 

2.1. Search strategy 

We designed a review study in compliance with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines [3]. We conducted a literature search of the 
PubMed repository for studies published in the last 5 years (2014-2019) describing AI-enabled 
systems focusing on the monitoring and decision support of cancer patients. The last search 
was conducted on March 15, 2020. Our search strategy consisted in the union of four search 
queries, one addressing each of the identified sub-topics: data collection, data integration, 
AI/prediction models and coaching systems. The queries were built looking for search terms in 
TextWord [tw] (which includes title, abstract, Mesh terms and author-identified keywords) in 
order to increase query recall compared to searching just the title [ti] [4]. Queries included 
(system[tw] OR app[tw] OR application[tw]) in order to identify research that produced some sort 
of computerized clinical decision support system. Finally, specific terms for each of the four sub-
topics were added to scope down each of the specific search queries. We report below the 
query used to collect papers dealing with coaching systems for cancer patients, while the 
complete search strings employed in the article identification phase are reported in 
supplementary Table s1.  After collecting the results in a Zotero library (www.zotero.org), 
duplicates were removed. Titles and abstracts of each paper were screened using Abstrackr[5], 
and irrelevant articles removed before full-text analysis. 

cancer[tw]  
AND (system[tw] OR app[tw] OR application[tw])  
AND ((coach[TW] OR coaching[tw]) OR ("behavior change"[tw] OR "behavioral change"[tw])) 

2.2. Eligibility criteria 

We considered articles written in English and published in peer-reviewed journals or conference 
proceedings in the last five years. Upon initial screening of title and abstract we excluded 
articles meeting any of the following criteria: 

1) Papers dealing exclusively with imaging, genetics or other -omics 
2) Papers on statistical survival analysis 
3) Papers not dealing with home/outpatients 
4) Papers not including the development of a computer-based DSS or computerized 

behavioral interventions 
5) Papers describing protocols for future studies 
6) Papers discussing patients being managed for undiagnosed cancer (i.e., no screening 

tools, even if they are computer-based) 
7) Papers on novel drug development, prediction of response to a certain drug, drug-drug 

interaction, and drug repurposing 
8) Papers dealing with animal models (i.e. no human patients) 

Note that review articles were excluded from the review itself, but were used to inform the 
discussion in the present article. Similarly, the references of such review papers were screened 
to identify relevant articles which, when found, where added to the list of articles considered in 
the review. The complete list of articles analyzed in this review appears in the Bibliography.  
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3. Results 

Figure 1 reports the PRISMA flow-diagram of the systematic review. A total of 179 papers were 
included in the full-text analysis. 69 articles were excluded after accessing their full text, for the 
reasons listed in Table 1. 

 

Figure 1 - PRISMA flow diagram. The numbers reported at each stage before the total refer 
to the data collection, data integration, predictive modeling and coaching subtopics. 

Table 1. Number (n) of articles that were excluded, after full-text analysis, for each subtopic of 
the review and the reasons for exclusion. 

Reason for exclusion Data Collection Data Integration Predictive 
modeling 

Coaching 

Focus was on a 
different topic 

(10) 
1 focused on the 
design of a general 
architecture for 
speeding up the 
acquisition of PROs 
3 focused on the 

(5) 
1 focused on 
security  
4 focused on 
patient-reported 
outcomes  

(14) 
8 dealt with 
screening/diag
nosis of 
cancer 
4 statistical 
hypothesis 

(5) 1 dealt with 
organizational  
integration with 
standard care, 
1 focused on 
the language 
used in 
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needs assessment 
before developing 
and designing the 
eHealth tool.  
1 is about a result of 
a cancer treatment 
(lymphedema) but 
not on cancer 
monitoring itself 
1 focuses on the 
graphical 
representation of 
medical data 
1 focuses on patient 
feedback about 
'user-friendliness' of 
the system 
1 focuses on 
software 
optimisation 
1 focused on 
physical exercise 
1 deals with 
paediatric patients 

testing 
1 focused only 
on genetic 
data 
1  about 
chemistry and 
drug discovery 

available apps, 
1 described 
coaching by 
humans over 
the phone, 1 
discussed the 
design of a 
hypothetical 
app, 1 
described 
design process 
of an app 
presented in 
another 
(included) 
paper   

Paper did not detail the 
methods or was an 
abstract 

(4) (1) (3) (2) 

Paper was a review (2) (1) (2) (2) 

Paper described a 
protocol for a future 
study 

(15)   (3) 

Total #excluded 
articles 

31 7 19 12 

 

3.1. Data collection 

In order to monitor health status following cancer treatment, different types of data should be 
collected; in addition to physician-provided clinical data, laboratory tests, and imaging results, 
the data should include patient-provided data and sensor data. Patients may complete patient-
reported outcomes (PROs) to report data actively, without an interpretation of patients’ response 
by a clinician or anyone else. PROs are usually collected through (online) questionnaires. They 
assess different constructs, consisting of disease or treatment related symptoms, (general) 
health status or health-related quality of life (HRQoL) outcomes. Another form of collecting data 
from patients is via sensors. Mobile sensors may be used to collect vital signs from patients in 
their home environment.   
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3.1.1. Methods of collecting data from patients  

The majority of papers in the Data Collection category (49 of 50) collected data via manual input 
through electronic PROs implemented inside mobile apps running on smartphones, tablets or 
using dedicated websites. More popular collection methods were mobile apps, used in 59% of 
the papers, vs. websites, used in 41% of the papers. In ten papers, sensor data was 
automatically gathered using sensors embedded in smart bands, smartwatches and other 
electronic devices. Smartphones were used mainly to gather data from dedicated sensors, 
which measured physical activities (step count) and vital signs (weight, blood pressure, oxygen 
saturation, pulse, heart rate and temperature). Among the reviewed papers, “built-in” 
smartphones’ sensors were not used to collect data.  
                  

3.1.2. Patient Reported Outcomes  

Patient Reported Outcomes (PROs) are usually collected online, through questionnaires, and 
assess different constructs, consisting of disease or treatment related symptoms, (general) 
health status or health-related quality of life (HRQoL) outcomes. HRQoL is fundamentally 
subjective and multidimensional. HRQoL is measured from the perspective of the patient and 
covers a range of dimensions from patients' life, including physical-, social-, emotional-, mental-, 
social well-being and functioning [6]. The European Platform of Cancer Research (EORTC) 
adds that HRQoL covers the subjective perceptions of the positive and negative aspects of 
cancer patients’ disease symptoms and side effects of treatment, and stresses the cognitive 
aspect of functioning. [7] 
  
PROs focusing on HRQoL were measured generally before and after the intervention instead of 
during the use of the eHealth tool, whereas PROs regarding symptom monitoring were collected 
during the intervention and treatment. Computer Adaptive Testing (CAT) can be applied to 
shorten the number of questions being asked. CAT is a method to select item sets for individual 
patients based on a patient's responses to previous items. The algorithm then selects new items 
from item banks to maximize the obtained information. Therefore, fewer items are needed to 
precisely measure patients’ scores. Patient scores can also be directly comparable, even when 
not answering the same item lists, which is done by item response theory (IRT) methods [8].  
 
In most included papers, combinations of questionnaires were used to collect patient-reported 
data. Most articles used at least one validated PROs questionnaire and comprised large sample 
sizes (up to 4345 patients). Patient populations were biased since recruited patients were a-
priori in favor of using an eHealth application. PROs questionnaires used for data collection in 
this review are listed in Table 2. This table presents the reviewed PROs according to well-being 
dimensions that were defined by Linton et al. [6]. Furthermore, this table presents additional 
PROs on symptoms. PROs were added to this table when used in 3 or more papers.  
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Table 2. Patient Reported Outcomes (PROs) questionnaires used in the studies. Questionnaire 
instruments listed in the table are all validated and have been used by at least 3 studies. 

Questionn
aire 

Type of data collected #Articles  
(% 
papers 
used) 

 Global 
well-
being 

Mental 
well-
being 
 
 
 

Social 
well-
being 
 

Physical 
well-
being 

Activities 
and 
functioning 
 

Patient-
reported 
symptom
s 

#items in 
question
naire 

 

EORTC 
QLQ-C30 

x x x x x x 30 14 
[9][10–
22] 
(28%) 

PROMIS  x x x   4-20 
(short 
forms), 
but holds 
multiple 
item 
banks 

7 
[15,17,2
3–27] 
(16%) 

EQ-5D-5L  x  x x  5 4 
[22,28–
31] (8%)  

SF-
8/14/36 

 x x x x  8/14/36 4 
[15,32–
34](8%)  

HADS  x     14 3 (6%) 
[31,35,3
6] 

FACT-G  x x x x  27 3 [36–
38] 
(6%) 

EORTC 
QLQ- 
cancer 
specific 
modules 

   x  x Differs 
per 
subscale 

7 (14%) 
[8,9,15,1
6,19,34,
38] 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.07.20170191doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.07.20170191
http://creativecommons.org/licenses/by-nc-nd/4.0/


PRO-
CTCAE 

     x 124 5 (10%) 
[10,11,2
7,39,40] 

Abbreviations: 
EORTC QLQ-C30: European Organisation for Research and Treatment of Cancer Quality of Life 
Questionnaire Core 30; EORTC QLQ-cancer specific modules: European Organisation for 
Research and Treatment of Cancer Quality of Life Questionnaire cancer specific modules; EQ-5D-
5L: EuroQol-5 Dimensional-5 Likert; HADS: Hospital Anxiety and Depression Scale; PROMIS: 
Patient-Reported Outcomes Measurement Information System; SF: Short-Form; PRO-CTCAE: 
Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events; 
FACT-G: Functional Assessment of Cancer Therapy - General 

 

3.1.2.1 Patient Reported Outcomes: health-related quality of life  

In this review, the most commonly used validated PRO questionnaire for collecting HRQoL data 
is the EORTC QLQ-C30, used in 28% of the 50 included papers [10–22]. It is a European widely 
used core generic questionnaire for cancer patients, and comprises most dimensions of well-
being as described by Linton et al. [6], excluding spiritual wellbeing and personal circumstances. 
In fact, these dimensions were not captured by any of the PROs used in the reviewed papers. 
The Functional Assessment of Cancer Therapy - General (FACT-G), also a cancer-specific 
HRQoL questionnaire is more frequently used in America, but was less frequently used for data 
collection -- in 6% of included papers [36–38]. The second most used questionnaire in this 
review was Patient-Reported Outcomes Measurement Information System (PROMIS), a set of 
person-centered measures (enabled by CAT and IRT), used in 16% of the papers [12,14,16,22–
26]. Third most used (8%) questionnaire was the EQ-5D-5L [19[21,27–30] questionnaire that 
can be used to compute Quality-adjusted Life Years (QALY’s), a generic measure of disease 
burden, including both the quality and the quantity of life lived. Therefore, the EQ-5D-5L 
questionnaire can be used for cost-effectiveness analyses.  

 

3.1.2.2. Patient Reported Outcomes: symptoms  

Several PRO questionnaires were used to collect data regarding patient reported symptoms. 
The  EORTC QLQ-cancer specific modules were used to collect cancer-specific patient-
reported symptoms in 7 out of 50 included papers [6,7,13,14,17,20,21]. These modules are 
specific to tumour site, treatment modality, or a HRQoL dimension, to be administered in 
addition to the core questionnaire (EORTC QLQ-C30) [39]. Furthermore, the Patient-Reported 
Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) was 
a commonly used (10%) questionnaire to capture information on symptomatic adverse events 
[11,12,28,40,41]. The PRO-CTCAE Item Library includes 124 items representing 78 
symptomatic toxicities drawn from the Common Terminology Criteria for Adverse Events 
(CTCAE), reported by patients [42].  
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3.1.3 Collection of patient data in their home environment using sensors 

In this section we discuss the use of sensors to automatically collect additional data (typically 
vital signs) in the patient home environment. Such data complements PROs captured with 
questionnaires described in the previous section. Since using sensors imposes no (or limited) 
burden on the patient (no manual data entry), such modality can be used for frequent and long-
term data collection. Reviewed papers described several systems of diversified complexity in 
terms of the range of employed sensors and the scope of collected data. Group 1 systems 
consist of a mobile device (smartphone or tablet) connected to a smartband or bracelet (an app 
usually performs preprocessing and transmits data to a backend; interestingly, none of the 
described systems relied on sensors embedded in a smartphone). Group 2 is further extended 
by external sensors (like activity tracker or accelerometers attached to the body), while the 
smartphone still acts as a hub where the data is collected, processed and transmitted. Group 3 
includes systems with standalone devices, which work independently (sometimes) without 
smartphones. They are more complex and utilize specialized devices like EEG/EMG monitors. 

The first group includes simple systems where a smartphone or a tablet is expanded with a 
wearable device, typically a consumer smartband. Soh et al. [11] described an app providing 
self-monitoring for gastrointestinal cancer patients. In addition to electronic questionnaires, 
patients were equipped with wearable bands connected to the app via Bluetooth and used to 
collect physical activity (PA) information, such as  steps count and burned calories. A similar 
solution was presented by Sun et al. [29]. It employed  online questionnaires to record HRQoL 
and smartbands (Vivofit 2 and Garmin Ltd) to monitor PA. PA was monitored  by checking the 
number of patient's daily steps during recovery. Data from the smartband was being collected 3 
to 7 days before surgery, during the patients' stay at the hospital and approximately 2 weeks 
after their release from the hospital. Finally, Pavic et al. [21] described a system where patients 
were provided with a smartphone with preinstalled ‘‘Activity Monitoring’’ app and a commercial 
sensor-equipped bracelet (Everion). The app recorded motion sensor data (GPS, acceleration), 
phone call statistics (anonymized), and selected vital signs measured by the bracelet, which 
was automatically connected to the smartphone via Bluetooth Low Energy. The collected data 
included step count, step speed and resting heart rate (RHR). Encrypted data was sent once 
daily to a secured server. 

The second group includes systems with additional sensors, which transfer collected data to the 
smartphones. Timmerman et al. [43] described a system for collecting self-reported symptom 
severity, mood, medication use and weight. Along with the smartphone, the patient was also 
equipped with three sensors attached to the body -- an accelerometer (to measure PA). heart 
rate sensor and oxygen saturation sensor (PPG). Data collected by the wearable devices and 
the symptom scores were summarized into graphs and made available to doctors and patients. 
Due to adding wearable sensors, results collected via the symptom questionnaires  could be 
confronted with the collected vital signs. Nápoles et al. [27] presented a solution where a 
commercial-grade activity tracker was used together with the app to monitor and display 
progress toward a personalized daily steps goal. 

The third group of systems includes solutions where multiple sensors are used in order to 
collect the required information. Rahman et al. [15] presented a Secure Occupational Therapy 
(OT) Framework, which aims at HRQoL monitoring. The proposed system uses multiple 
sensors to detect activities of daily life.  The OT movements are mapped to QoL measurements 
metrics. The collected data can be shared with an oncologist or palliative care unit for real-time 
decision support. The hardware includes a set of IoT devices such as an LIFX light bulb, door 
lock, Emotiv EEG device, MYO EMG device, LEAP motion hand gesture tracking sensor, Kinect 
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body gesture tracking sensor, and Eye Tribe pupil tracing sensor. The captured data is 
transmitted through the secure digital wallet to distributed apps (DApp). These apps apply the 
privacy and encryption model and offload the data to the edge network for further storage and 
sharing. Authors proposed DApps for patients, family members, cancer therapists, a secure 
online doctor on demand, hospital personnel, and medical IoT devices to be able to record the 
data of cancer patients, caregivers to be able to be in touch with the patients, and data 
management planning. 

We note that using Kinect (and similar) sensors to monitor and provide feedback to patients 
performing intervention or rehabilitation exercises is an upcoming trend in healthcare. However, 
the joint positions measured by the Kinect sensor are often unreliable, especially for joints that 
are occluded by other parts of the body. In addition, users' motion sequences differ significantly 
even when doing the same exercise and are not temporally aligned, making the evaluation of 
the correctness of their movement challenging. Chiang et al. [44] presented a Kinect-based 
intervention system, which can guide the users to perform the exercises more effectively.   

Metcalf et al. [45] presented a health care application to provide  more extensive patient 
education and more thorough perioperative monitoring. Patients with home Wi-Fi access were 
equipped with tablets preloaded with the health care application (m.Care), an accelerometer 
and additional equipment for measuring selected vital signs. Specifically, patients participating 
in the study were provided with the wireless weight scale, the upper arm blood pressure 
monitor, and the external wireless pulse oximeter. All of these devices were Bluetooth capable 
and could sync directly to the m.Care application. Participants were asked to perform 5 vitals 
assessments daily (weight, blood pressure, oxygen saturation, pulse and temperature) for 5 
days preoperatively and daily upon hospital discharge until the first postoperative visit. 

As can be seen from the above examples, the majority of systems measure the PA of patients. 
This information is collected based on step count, step speed, which are collected by 
accelerometers [11,21,43] and burned calories [11]. Solutions that are more complex measure 
heart rate, oxygen saturation [43] or weight, blood pressure, oxygen saturation, pulse and 
temperature [45]. There are also Kinect-based solutions, which can help patients to perform the 
recommended physical exercises [15,44]. 

3.2. Data integration 

Data integration is needed when data are partitioned horizontally (i.e., when the same attributes 
are stored in multiple datasets for different individuals) and/or vertically (i.e., when attributes 
about individuals are spread out over multiple databases).  Several of the reviewed papers 
highlight the need to integrate data from different organizations and systems to allow creating a 
big-data cohort, in terms of volume and variety of data. Such cohorts could be analyzed 
statistically [46], can allow clinical study data to be searched and compared [47], or can be used 
to create more accurate predictive models using machine learning methods [46][48][49]. Other 
works focus on the need to apply generic models of clinical decision support onto patient data in 
order to generate patient-specific recommendations [50,51]. 

Our review focuses on methods for the data integration task. The methods used in the papers 
that we reviewed leverage patient data standards (information models) or 
ontologies/terminologies to facilitate the data integration task. Third, integration facilitated by 
machine-learning methods is addressed. 
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3.2.1. Data integration via information models 

The review paper by Bodenreider [52] stresses that HL7 standards support information 
exchange by providing an information model for different types of patient data, such as 
observations, medication requests, procedures, and encounters. Such HL7 classes include 
attributes for specifying the time stamp, the focus of messages (e.g., (e.g., blood pressure 
observation, Gemcitabine medication request) according to controlled terminologies such as 
ICD, LOINC, SNOMED CT and RxNorm, and more specialized attributes, depending on the 
FHIR class.  

Indeed, several of the data integration systems that we have reviewed rely either on simple HL7 
messages [53] or on the HL7 Fast Healthcare Interoperability Resources (FHIR) standard 
[46,50,54] to provide semantics to the data that is integrated and allow standardized access to 
it. In some works, the databases that are accessed via FHIR-APIs, already provide clinical 
semantics that are richer than simple storage of medical terminology codes. For example, in 
KETOS [46] an extract, transform, load (ETL) process exports data from EHRs or data 
warehouses into an Observational Medical Outcomes Partnership (OMOP) common data model 
(CDA) database. In the work of Ulrich et al. [47], consortium data is uploaded into an i2b2 
(‘Informatics for Integrating Biology and the Bedside’) database. Furthermore, that framework 
supports the definition of relations between individual data elements and their specification with 
the help of a suggestion system that uses the LexEVS terminology system of the National 
Cancer Institute. In [55], the authors develop and leverage a repository of medical data models, 
represented using CDISC ODM (Clinical Data Interchange Standards Consortium - Operational 
Data Model https://www.cdisc.org/standards/data-exchange/odm) format.This repository 
enables manual semantic annotation of data models, as well as construction of data sets that 
comply to existing data models. 

Still, data integration using proprietary information models occurs. For example, Hill-Kayser et 
al. [51] developed an ETL process to populate LIVESTRONG Survivorship Care Plans with Epic 
EMR data so that these care plans become patient-specific. 

Some systems also use other standards. For example, [50] describes instantiation of a 
Bayesian Network for a patient using a combination of Arden Syntax Medical Logic Modules 
that specify the logic of the required processing of data. The “curly brace” statements in Arden 
Syntax describe the needed data elements by calling a FHIR resource that refers to the patient 
ID or a SNOMED code for clinical findings. Ulrich et al. [47] use the ISO 11179-3 metadata 
repository standard. Metadata about data elements is represented according to the FHIR 
standard. For example, Case Report Forms are represented as a FHIR questionnaire. The 
FHIR-based processing allows exchange of data elements with clinical and research IT systems 
as well as with other metadata systems. 

3.2.1.1 Integration of genomics and EHR data 

While the integration challenge often involves reaching consensus on similar data elements 
represented differently, either in different information models, or using different vocabularies, an 
additional challenge is the integration of vertically partitioned data of different modalities, coming 
from different realms, such as genomic data and clinical data. Several of the reviewed papers 
discuss this emerging need for integrating genomic (omics) data and clinical and 
epidemiological (non-omics) data. Integration of omics and non-omics (OnO) data shows 
promise in improving predictive models, phenotyping patients and finding clinical risk factors. 
Integration of cancer genomic data with EHR systems could also improve clinical decision 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.07.20170191doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.07.20170191
http://creativecommons.org/licenses/by-nc-nd/4.0/


making and the use of personalized care. However, efforts are still scarce as integration of OnO 
data poses a range of challenges, such as the heterogeneous nature of clinical data and the 
lack of consistent standards for both genomic and clinical data. López de Maturana et al. [56] 
reviewed attempts of OnO data integration in clinical and epidemiological studies. Although few 
of their reviewed studies explicitly address this type of modeling, joint modeling approaches are 
recommended by López de Maturana et al. [56] for integration of large-scale OnO data. Joint 
modeling approaches capture a larger complexity than the modeling approaches more 
frequently seen such as conditional or independent modeling. Additionally, joint modeling 
accounts for the correlation structure between the two data types. 

Mihaylov et al. [57] present a framework for this joint modeling of clinical and omics data. A 
network is presented with the aim to predict survival time. Utilizing semi-structures for each data 
type (such as clinical, expression and mutation data), relations are found that represent the 
internal network. Enrichment of these data and relations is possible by linking data to external 
domain knowledge sources. Mihaylov et al. show the utility of semantic OnO data integration as 
survival time prediction models bear improved results using the relational OnO data network 
compared to separate omics and non-omics survival prediction. 

Focusing on integrating genomic data with EHR systems, Warner et al. [54] discuss the status 
(as of 2016) and the challenges. Although well-established nomenclatures exist for omics data, 
a lack of consistent modeling standards prevents integration of omics laboratory results into 
EHRs. Currently, laboratory results are included in PDF format which does not allow for any 
secondary use of data or for clinical decision support. Deemed as most useful of the emergent 
solutions is the use of application programming interfaces (APIs) or RESTful web services. 
Particularly, SMART on FHIR clinico-genomics apps were highlighted as solutions that 
incorporate the presentation and contextualization of genetic test results into the clinician 
workflow. 

3.2.2. Data integration via ontologies and vocabularies 

The review paper by Bodenreider [52] provides an overview of how ontologies can be used for 
data integration. First, in the warehousing approaches, controlled vocabularies can be used to 
describe the focus of data items in local sites, facilitating their later integration. The integration 
can span data sets with different content that may be combined. For example, LOINC has been 
used for integrating laboratory data with adverse events, the Foundational Model of Anatomy for 
the integration of genomic information sources, and SNOMED CT for the integration of disease 
and pathway information. 

Second, mediation-based approaches use ontologies for defining a common global schema for 
data elements (common data elements, CDE) and mappings between the global schema and 
local schemas are then defined. This allows composing queries to the local schemas in terms of 
the common schema. 

The data integration approaches from recent years use a combination of both approaches. 
Several papers [46–48,58–60] present ETL database functions that allow pulling data from a 
source database and placing it into a target database. The first three of these papers define 
manual processes by which local sites define mappings between source data elements (SDE) 
to a set of needed common data elements (CDE). Use of controlled vocabularies such as 
SNOMED CT and LOINC facilitates the agreement. Similar to the terminology-suggestion 
system of Ulrich et a[43[44]scribed in Section 3.2.1, Mate et a[56]55] support term matching 
further via an algorithm that supports fuzzy matching of terms, utilization of synonyms, and 
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sentiment tagging to suggest mapping of SDEs to CDEs. A final step of data alignment replaces 
the source value sets with those from the target terminology, as well as converts between 
different data types according to expert-curated mapping rules. 

3.2.3 Data integration supported by machine learning  

While the methods described above have a focus on manual or rule-based integration based on 
ETL-procedures, increasingly machine learning methods are applied for data integration. 
Mariette et al. [49] propose an approach that uses combined kernels in kernel self-organizing 
maps (KSOM) to cluster and visualize multi-omics breast cancer datasets. This clustering is 
relevant to discriminate between different breast cancer subtypes and to identify their relations 
and has the strength that it can be performed in an unsupervised manner, removing much of the 
burden of integration based on information models and ontologies. 
Isoviita et al. [48] present an open-source, cloud-based machine learning system where 
datasets from multiple (live) sources (EHR databases and research databases) are integrated 
using extract, transform, load (ETL) processes and melded into a single database, but with 
minimal transformations. These merged but heterogeneous data are used for the training of ML 
predictive models. In this case study where primary therapy outcomes in high-grade serous 
ovarian cancer were predicted, results again demonstrated the benefit of combining information 
from multiple sources. 
These papers show that machine learning enables analyses on integrated data without the need 
to perform supervised transformation of data, which is generally a resource-intensive task. 

3.3. Predictive modeling 

3.3.1 Input data for predictive modeling 

One of the main preconditions for building an accurate and reliable prediction model is the 
availability of high-quality, large-enough dataset to serve as the model training set. This is true 
in cancer, as well as in other medical domains. In addition to the choice of a particular ML 
algorithm, the performance of a predictive model largely depends on what input data has been 
used for training. The availability, promoted in recent years, of publicly accessible databases 
and registries focusing on cancer patients has proven to be a major driver of interest for studies 
on predictive modeling of cancer outcomes. One outstanding example is Surveillance, 
Epidemiology, and End Results (SEER) database, which has been used in a number of the 
analyzed articles [61–67]. On the other hand, availability of one own organization original data 
(e.g. from EHR) can constitute a significant competitive advantage with the possibility of 
accessing a wider array of patient data variables, and combining them for improved knowledge 
discovery and ultimately better predictive performance for specific populations. For example 
Soguero-Ruiz and colleagues [68] were able to leverage EHR clinical notes to build a model to 
predict anastomosis leakage in patients with colorectal cancer starting from NLP-extracted 
features. In another study[69] the same authors complemented EHR free text data with detailed 
labs and vital signs data to improve adverse event prediction. Again, Alabi et al.[70,71] used 
data coming from a federation of hospitals (in Finland and Brazil respectively) to build 
prognostic models for oral cancer tumor recurrences. 

Large, publicly available datasets can provide the optimal conditions when size of the training 
data, standardization of variables and reproducibility (also comparability to other published 
research) of results are considered of the utmost importance. However, dealing with an original, 
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unpublished dataset, usually owned by partnering clinical organizations, can provide a 
competitive edge in originality of the research and access to an extended number of 
independent predictors (e.g. detailed labs, or -omics data) that might prove useful for achieving 
the best predictive performance.  

An additional finding that emerged from the analysis of the articles is that current research in 
predictive modeling should strive to generate generalizable models (i.e. models that perform 
well when applied to cohorts different from the one used for the original development and 
validation). Thus the use of a restricted set of easily collectable predictors is to be regarded as a 
desirable feature. One example can be found in Oliveira et al.[67] where a set of only 6 features 
from the SEER dataset proved effective in predicting survival of colorectal cancer patients at 
different time points (year 1,2,3,4 and 5). A notable characteristic of such model is the use of a 
dynamic set of predictors that evolve over time, to achieve best performance. The fact that the 
knowledge elicited by ML models should be validated over time is also a focal point to promote 
model generalizability, especially after some years from the original model elicitation. Indeed 
Kleinen and colleagues [64] advocate for knowledge embedded in predictive models for breast 
cancer to be updated every ten years to maintain good performance. 

3.3.2 The quest for “fancier” machine learning models 

Once the issue of possessing a good input dataset to train a well-performing model is solved, 
the next question researchers in this field face is what ML algorithm to use. In recent years, in 
light of the big-data era, there has been some debate[72–74] on whether cutting-edge ML 
models could deliver better performance than well-established statistical methods (e.g. Cox 
regression for survival analysis) that have been traditionally employed in cancer outcomes 
research. Whereas most of the articles analyzed employ a quite traditional approach where an 
array of ML algorithms is applied looking for the best-performing one, some notable exceptions 
occur. Deep Learning (DL) is for sure one of the paradigms that is drawing attention especially 
in cases where large and unstructured (e.g. -omics) data is available. The application of DL to 
medical predictive modeling is out of the scope of the present review (which focuses on 
predictive modeling mainly using clinical data) and deserves the undivided attention of the 
research community [75–77]. However we did find two instances where DL was applied within 
the scope of the present review [78,79]. Another family of models that consistently perform well 
in cancer outcomes prediction is the one comprising different forms of ensambles: i.e. instances 
where a set of models is trained, instead of a single one, and their output is combined in various 
ways in order to provide the final prediction. Some of the most notable are approaches using 
bagging like random forests (RF)[67,78,80], approaches based on boosting (e.g. XGB or 
gradient boosted decision trees)[62,81,82] and voting ensambles[63,67]. A rather original 
approach is employed by Morino [83] who used temporal expert advice (TEA) where a set of 
“experts”, each represented by another patients' time series, were combined in a weighted 
voting scheme. 
Despite the good performance that more complex ML algorithms provide, it is also worth 
mentioning the fact that simpler models also bring value, especially when the predictive model 
has to be deployed in the clinical setting to assist decision making. Complex models indeed 
quickly lose appeal when interpretability, and ease of use come into the picture.  Models where 
a limited set of features is used as input (e.g. and selection is performed through features 
selection) may favor implementation in web [70,84] and mobile[67] tools that are ready to use at 
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the bedside. Finally, feature selection and feature engineering can be effective tools to take 
advantage of prior knowledge, in order to boost an ML model performance[85,86] 
complementing a purely data-driven approach with expert knowledge. 

3.3.3 Precision medicine principles help predictive modeling 

Some research efforts about predictive modeling in cancer can significantly benefit from 
principles promoted by precision medicine, especially considering its strong focus on 
oncological applications[87]. Subgroup analysis based on patient similarity, clustering based on 
big data and unsupervised phenotype discovery[88] can all improve cancer outcome prediction.  

In the current review, two papers [61,66] highlight how developing stage-specific models, 
despite the potential reduction in the size of patient-cohorts, proved to be beneficial to 
performance, while evaluating predictive models for survivability on all the stages together might 
lead to systematically overestimating their predictive performance. 

As in the above example, some studies found evidence that being able to stratify patients before 
the actual modeling is beneficial. Kawakami et al.[81] advocate that use of predictive algorithms 
(in particular a combination of supervised and unsupervised approaches) may facilitate 
personalizing treatment options through pretreatment stratification of patients. Another example 
of successful application of unsupervised ML algorithms can be found in Lynch et al.[65], who 
used unsupervised data analysis techniques like self-ordering maps and k-Means to classify 
patients by defining the classes as effective proxies for survival prediction. Their study on lung 
cancer patients from SEER suggests comparable results to state-of-the-art supervised 
regression techniques, such as gradient-boosting machine. Despite some evidence of their 
potential usefulness, we report an under-utilization of unsupervised ML approaches in the 
analyzed articles. 

3.4. Coaching  

Given improved cancer treatments and increasing survival rates, there arises a need to manage 
HRQoL of cancer patients [89]. Evidence suggests that HRQoL is a significant prognostic 
predictor, where lower levels are associated with poorer survival, yet it is affected by a number 
of disease- and treatment-related side effects. Multiple attempts of addressing these side effects 
with digital interventions implemented as mobile or web-based apps have been described in the 
literature, and in this section we review selected works. In Section 3.4.1 we focus on different 
aspects of patient behavior that correspond to specific HRQoL dimensions. Moreover, in 
Section 3.4.2 we present behavior change techniques and other theoretical models employed 
by the reviewed systems. 

3.4.1. Addressed aspects of patient behavior 

The prevalent aspect of patient behavior is physical activity (PA) that is discussed in [90–93]. 
Reviewed studies involve both generic apps developed for general audiences, as well as 
specialized apps aimed specifically at cancer patients. Use of generic apps and activity trackers 
for encouraging and monitoring physical activity in breast, prostate and colorectal cancer 
patients was described in [90] and [91]. While these interventions resulted in increased physical 
activity and better awareness of lifestyle (e.g, through idle alerts), the patients pointed at several 
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shortcomings. The major one was lack of customization for specific patients that would take into 
account limitations imposed by their disease and treatment. Such customization should for 
example cover the type of suggested activities with walking being considered as the easiest and 
safest one, and the frequency and tone of reminders. Other shortcomings included inability to 
define goals for such activities as swimming or cycling and to automatically track them. 
Moreover, patients suggested such interventions should be prescribed as a routine part of care 
and there should be a possibility of discussing them with a healthcare provider, e.g., a nurse 
specialist.  
 
A dedicated web-based system - RiseTx - for reducing sedentary behavior in prostate cancer 
patients was described by Trinh et al. [92]. RiseTx offers a multi-phase intervention that involves 
self-monitoring to establish baseline, action planning and progressive release of self-regulatory 
strategies, consolidation and maintenance. The system also uses incentives to increase 
engagement -- patients obtain reward points that they can redeem for various items or donate to 
charity. In the feasibility study the authors observed significant decrease of sedentary time at 
post-intervention, but this change was lost at follow-up which suggests challenges with 
sustaining engagement once the intervention had been completed. Another specialized app 
targeting PA is BENECA presented in [93] and implemented as a mobile app. BENECA 
supports cancer patients in managing their energy by monitoring its intake (diet) and 
expenditure (PA) and by providing immediate feedback and recommendations based on 
guidelines and systematic reviews. The system was verified in 8-week study - while its use 
posed some challenges with collecting diet-related data, it improved several QoL scores 
(captured with EORTC QLQ-C30), e.g., global health, physical functioning or cognitive 
functioning. Moreover, its users felt more motivated to increase the level of PA. 
 
Other frequently discussed aspects of behavior are related to mental well-being and include 
depression [94], distress and anxiety [95,96]. In [94] Chow et al. present the iCanThrive mobile 
app that helps women’s cancer survivors reduce symptoms of depression. The app offers 8 
modules with interactive exercises, e.g., challenging a negative thought. In a 6-week pilot study 
the authors observed a significant reduction in symptoms of depression at post-intervention. 
Moreover, there was no significant difference between post-intervention and follow-up. Smith et 
al. in [95] described application of the PTSD Coach mobile app developed by the US 
Department of Veteran Affairs to manage post-traumatic stress disorder in cancer patients. The 
app provides educational resources, self-assessment tools extended with interpretative 
feedback and a set of mind-body exercises. PTSD Coach was tested in an 8-week pilot study 
where most of the participants were satisfied with the app and nearly half of them reported 
improvement in their symptoms. Finally, Kubo et al. [96] described the use of the Headspace 
app to improve mental well-being of cancer patients undergoing chemotherapy and their 
caregivers. Results of an 8-week study showed benefits in terms of statistically significant 
reduction of distress, anxiety and depression. It also revealed several interesting findings -- the 
baseline level of distress and anxiety was higher for caregivers than for patients, and patients 
who participated with their caregivers demonstrated better adherence with the app and 
experienced stronger reduction in depression. 
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The last group of papers focuses on efficacy (improved skills) for handling problems associated 
with disease and its symptoms [97,98]. Wiklander et al. [97] describe the web app developed as 
part of the Fex-Can (Fertility and Sexuality Following Cancer) project aimed at adolescent and 
young adults. The app supports the patients in improving their skills to target sexual and fertility-
related problems by delivering a mixed educational content including articles, exercises and 
video vignettes (real stories patients can relate to). The app underwent a 2-month feasibility 
study where more than half participants remained active throughout that period and considered 
the content to be relevant and informative. Finally, Beck et al. [98] describe the 
SymptomCare@Home system focused on patients receiving chemotherapy. The system 
facilitates reporting of relevant symptoms through IVR (interactive voice response), it also 
delivers immediate feedback and self-management coaching appropriate for the patient’s state 
and treatment toxicity. The coaching is evidence-based  -- it builds on clinical guidelines and 
literature and covers a whole range of topics, such as preventing weight gain, improving eating, 
improving concentration and thinking and relieving pain. The system underwent a randomized 
clinical trial where its users had significantly less overall symptom severity and reduction in the 
number of days with moderate and severe symptoms. 

3.4.2. Applied behavior change techniques and other models 

Authors of selected studies also discussed behavior change techniques (BCTs) and other 
theoretical constructs employed in considered apps. First, Kalke et al. [99] reviewed 30 apps for 
breast cancer patients available to the general public in popular app stores and covering nearly 
all cancer continuum with the exception of end-of-life support. The authors used the taxonomy 
for coding BCTs in mobile cancer apps [100] (this taxonomy is based on the original proposal by 
Abraham and Michie[101]) and identified 12 BCTs coming from 6 categories: customization, 
information/behavior relationship, intention, facilitation, self-efficacy and social influence. BCTs 
from the first four categories were the most prevalent ones -- they were found in at least half of 
the reviewed apps. Moreover, BCTs aimed at facilitation (i.e., providing instructions, materials 
and education) were implemented in 80% of the apps. The authors also found out that the apps 
with user star ratings offered significantly more BCTs than these without ratings.  
 
Similarly, Roberts et al. [91] identified BCTs in generic PA mobile apps that can be used by 
cancer patients. They identified the same categories of BCTs and in the previous study with the 
exception of customization, however, this difference could be attributed to using the original 
taxonomy by Abraham and Michie that does not explicitly mention the customization and 
personalization category. BCTs were also mentioned in the context of the RiseTx system [92] 
where in addition to intention-related BCTs as action and coping planning the authors also 
employed contingent awards (incentives) to increase engagement with the intervention. Finally, 
the BENECA system [93] employed BCTs from the intention, facilitation and self-efficacy 
categories. 
 
Finally, the authors of the iCanThrive app [94] employed the efficiency model of support that 
identifies failures that prevent users from benefiting from a digital intervention, including issues 
related to the usability of the app, its fit to the user’s needs, knowledge on how to use the app 
and implementation failures. The model was used to develop protocols supporting phone calls 
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aimed at improving engagement with the app, promoting knowledge of the skills found in the 
app and encouraging implementation of these skills in daily life.  
 

4. Discussion 

Our analysis of the papers identified dimensions that emerged and were common to papers 
from the four scope areas. Table 3 summarizes the how papers in the four scope areas 
addressed the dimensions of cancer type, cancer stage, the evaluation done, and year of 
publication. 

 

Table 3. Common metadata about the papers reviewed. Cancer types have been ordered top-
to-bottom according to their incidence (incidence source data [102]). 

 Scope area Data 
Collection 
(50 papers) 

Data 
Integration 
(13 papers) 

Predictive 
modeling 
(36 papers) 

Coaching  
(10 papers) 

Dimension      

Cancer type Lung 3 
[24,25,109] 

1 [53] 6 
[57,58,60,74,
75,110] 

 

 Breast 5 
[13,14,16,2
7,103] 

5 
[46,49,51,57,
59] 

5 [61,64,104–
106] 

8 [90,91,93–
97,99] 

 Colorectal 2 [11,37] 4 
[46][47][51][6
0]  

6 [67–
69,82,107,10
8] 

1 [91] 

 Prostate 2 [7,112]  5 [78,81,113–
115] 

3 [85,87,90] 

 Head & Neck 5 
[18,22,35,1
09,110] 

1 [50] 5 [70,71,111–
113] 

 

 Gynaecologic 3 [9,28,34] 1[43] 3 [73,76,111] 1 [89] 

 Bladder 1 [97]  1 [98]  

 Hematologic    3 [95–97] 

 Other / not 
specified 

29  
[9,15,17,19
–
21,23,25,26

4 [54–57] 5 
[61,84,85,126
,127] 

3 [96–98] 
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,28,29,32,3
3,36,38,40,
41,114–
125] 

Cancer stage Diagnosis  1 
[49] 

  

 Treatment 33 
[10,14,15,1
7,18,23,25,
28–
36,38,41,45
,103,109,11
4,115,117–
125,128] 

1 
[48] 

7 
[70,83,85,104
,113,127,129] 

3 [92,96,98] 

 Post-treatment 4 
[9,12,37,11
0] 

1 
[57] 

5 
[71,80,82,86,
130] 

4 
[90,91,93,94] 

 Both treatment 
and post-
treatment 

3 [22,40,43] 
1 
[51] 

9 
[68,79,81,84,
107,111,112,
131] 

 

 Palliative 4 
[11,19,21,2
6] 

   

 Other / not 
specified 

6 
[13,16,20,2
4,27,116] 

5 
[46][47][58][5
9][56] 

15 [61,63–
67,69,78,105,
106,108,126,
132–134] 

3 [95,97,99] 

Evaluation 
done 

Data set size 
used for 
evaluation of 
integration: 
 
 
 
Small (<100 
patients, <50 
elements): 
 
Medium 
(<1000 
patients, <100 
elements): 
 

 
 
 
 
 
 
 
Small: 27 
[9,10,12–
14,16,18,19
,22,23,25,2
7–
29,33,36,37
,41,43,103,
109,110,11
4,116,124,1

 
 
 
 
 
 
 
1 [47] 
 
 
 
5 
[46][51][48,49
,57] 
 
 

Applicable 
only to 
studies 
reporting 
external 
validation 
 
Small: 3 
[70,71,104] 
 
 
 
 
 

 
 
 
 
 
 
 
Small: 8 [90–
97] 
 
 
Medium: 1 
[98] 
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Large: 25,128] 
 
 
Medium: 7 
[11,17,24,3
1,32,35,38] 
 
 
Large: 3 
[20,120,121
] 

 
 
4 
[50][58][55,57
]  

Publication 
year 

2015 
2016 
2017 
2018 
2019 
2020 

2 
3 
7 
5 
17 
16 

1 
5 
0 
2 
5 
0 

2 
4 
9 
4 
15 
2 

0 
0 
2 
3 
3 
2 

 

The above Table 3 allows some interesting observations. First, Breast cancer is the most 
represented in the group of papers we analyzed. Neither melanoma or kidney cancer, which are 
the focus of the CAPABLE research project, have been explicitly addressed in any of the 
retrieved articles. Number of articles focusing on a certain cancer type are correlated to different 
cancer types incidence. The topic of our review that covered the least prevalent types of 
cancers is coaching. However lung and head&neck cancers had no coaching system explicitly 
addressing them, probably because of their short course and limited survival. 

Secondly, we chose to only focus on already diagnosed cancer patients. For this reason Table 3 
reports cancer stages other than diagnosis, thus starting from the treatment stage. What is 
more, cancer stage did not make a difference for works about data integration. Finally, the 
palliative stage is generally under-supported, and indeed no data integration, predictive 
modeling or coaching paper addressed it. However, it is worth mentioning that, especially for 
coaching systems, not only patients but also home caregivers are likely to benefit from support 
in this end-of-life stage. 

For what regards size of the evaluation, most papers 37/50 of the data collection area 
performed some evaluation: most of them (27) on a small sample size, and less (7 and 3) on a 
medium or small sample. On the other hand, only three articles on predictive modeling 
performed external validation on small sets of patients. Most (9/10) coaching system papers 
performed evaluation. However these evaluations were mostly on small cohorts. 

Finally, a trend for a generalized growing interest in all data science areas can be pointed out 
from Table 3 data. In particular, electronic data collection and predictive modeling are becoming 
more popular in the last 2 years. 

4.1  Best-practices and open research challenges 

We present the best practices and open challenges that we identified in each scope area.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.07.20170191doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.07.20170191
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4.1.1 Data Collection Best Practices 

We identified the following best practices regarding data collection: 
a. Use validated questionnaires to collect PROs 
b. Choose a set of PRO questionnaires that covers multiple aspects of wellbeing, including 

physical, mental, social, activities and functioning, and symptoms.  
c. EORTC QLQ-C30 has good coverage of well-being dimensions and is validated. It is the 

most widely used PRO questionnaire in Europe (used in 14 of the 50 studies reviewed in 
the area of data collection). Specific cancer versions are available or currently under 
validation (e.g. QLQ-MEL38) 

d. Collect outcome data at least at baseline and after the intervention, but preferably during 
the intervention as well. 

e. Presently, sensors offered by smartphones are not a reliable and accurate source of 
measurable data. 

4.1.2 Data Collection Open Challenges  

i. Develop easy methods for collecting PROs and symptoms from recovering patients and 
survivors in their home environments, while they are undergoing the intervention. This 
could be facilitated by the two methods below. 

ii. Develop computer-adapted testing versions of validated PRO questionnaires that have 
over twenty questions in order to make it easier for patients to complete them. 

iii. Reliable and easy to use mobile/wearable sensors could be used to collect vital signs, 
symptoms and PRO data (e.g., activity and functioning) when possible, relieving patients 
from the burden of self-reporting of symptoms and from the bias of reporting untruthful 
data. The degree of correlation between monitors routinely used in clinical practice and 
the smartphone-based applications is insufficient to recommend clinical utilization of the 
latter. This lack of correlation suggests that the smartphones-based applications do not 
provide clinically meaningful data. The inaccurate data provided by these applications 
can potentially contribute to patient harm. 

 

4.1.3 Data Integration Best Practices 

We identified the following best practices regarding data integration: 
a. Semantic data integration makes the data set more comprehensive -- larger data sets or 

data sets that include more data items about the patients. This improves the ability to 
infer more valid results from data analysis.  

b. Data integration should include extract, transform, load (ETL) functions that allow pulling 
data from a source database (e.g., hospital information system) and storing it in a target 
database. 

c. The ETL process can benefit from basing the target database on the Observational 
Medical Outcomes Partnership (OMOP) common data model (CDM), as in KETOS [46].. 
OMOP provides services (based on R) to perform distributed analysis of data based on 
the OMOP semantics. It will help researchers to compare their data and results. 
Observational Health Data Sciences and Informatics (OHDSI), which is the organization 
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that develops OMOP, focuses on horizontal partitioning of data sets with similar 
attributes. Projects that span multiple sites, such as CAPABLE, can benefit from this 
platform for distributed analysis. 

d. Data should meet principles of findability, accessibility, interoperability, and reusability 
(FAIR). OMOP provides the basis for Interoperability of the data. Findability and 
Accessibility are facilitated by depositing metadata in a repository (e.g., Zenodo) that 
describes the data and the access conditions. Reusability is realized by clear and as-
open-as-possible licensing, targeting at CC-BY (which allows others to distribute in 
altered or unaltered form, also commercially, as long as credit is given) and CC-0 (i.e., 
“No Rights Reserved”). 

e. The most popular patient information model used was FHIR.  It is a standard used by 
commercial vendors for health information exchange. Supporting it will ease data 
exchange and potential commercialization. 

f. Standard vocabularies (ICD, LOINC, SNOMED CT and RxNorm) are used by most of 
the papers to capture the foci of FHIR or OMOP objects. 

g. The ETL process can be done manually in a process by which local sites define 
mappings between source data elements (SDE) to a set of needed common data 
elements (CDE). The manual process could best be supported by terminology services 
to locate standard terms and their meaning. 

h. The integration process may also be supported by the use of machine learning, either to 
harmonize data, or to perform analyses on pluriform data that has not been harmonized. 

 

4.1.4    Data Integration Open Challenges  

i. Best-practice ETL processes benefit by exporting data from EHRs or data warehouses 
into an OMOP common data model database. However, OMOP does not provide a data 
exchange/communication standard. We recommend adding a FHIR API layer to allow 
components of a complex personalized knowledge-based and prediction-based 
decision-support system to semantically share data and knowledge through a 
standardized API. Combining OMOP, FHIR, and controlled terminologies for the ETL 
target database, leverages the benefits of all of these standards resulting in a “best of 
breed” approach for storage and exchange. 

ii. The papers reviewed above do not address the semantic gap that exists between 
formalized clinical knowledge used for decision support and raw data stored in 
integrated ETL target databases. The knowledge sources, such as computer-
interpretable clinical guidelines [135], contain abstract terms (e.g., complicated diarrhea) 
that can be computed from raw data about symptoms that are stored in the database. A 
component such as Knowledge-Data Ontology Mapper [136] or the Medical Database 
Adaptor (MEIDA) [137] could be added to bridge the semantic gap by allowing modelers 
to provide ontological definitions of abstractions in terms of a standard patient data 
model and based on it, automatic query generation. However, both of these mediators 
have shortcomings, described in  [136], and should be extended to support the full range 
of abstractions needed for decision support.  

 

4.1.5 Predictive modeling Best Practices 

We identified the following best practices regarding predictive modeling: 
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a. Some articles deal with unbalanced data and cope with it mostly with undersampling. 
b. Stratifying patients in subgroups before predictive modeling promotes better predictive 

performances. 

4.1.6 Predictive modeling Open Challenges  

i. Predictive models should be validated on unseen patients datasets. Most studies do not 
perform external validation, but instead rely on more conventional cross validation or 
train-test splits, which tend to overestimate performance [133,134].  

ii. None of the predictive modeling papers have considered using PRO data as predictors 
of good/bad outcome or survival. The validity of AI-based inference of patients’ 
psychobehavioral dimensions [138] (e.g., stress, anxiety, sleep quality, depression) from 
PRO and sensor data needs to be assessed.  

iii. Unsupervised approaches are underutilized for prediction of a patient’s state based on 
clinical, PRO and sensor data. 

4.1.7 Coaching Systems Best Practices 

We identified the following best practices regarding patient coaching . 
a. Behavioral interventions (e.g., physical exercise) for cancer patients offered by apps 

should be suited for the characteristics of cancer patients rather than be general-
purpose. Robertson et al. [140] presented a hypothetical app that provided interesting 
suggestions given by cancer patients which should be considered: 

● Messages to patients should use a casual (not clinical), concise, and positive 
tone. This is in line with recommendations from the IOM on the language that 
should be used in mHealth apps [141] 

● The app should include tools that support personal goal attainment (e.g., 
reminders, role model narratives) 

● Value-based goals should be included (e.g., “I want to see my grandchildren 
married”). They should be attained by short-terms goals (e.g., for physical 
activity) that are easy to attain.  

● Recommendations should come from a trusted source, and should include 
layman summary of the relevant literature justifying the recommendation 

● Recommendations should preferably include video demonstrations, preferred 
over text and pictures. Exercises could be presented by other cancer patients.  

● Interventions should deliver an experience that is tailored to the user’s 
characteristics (cancer-related information, age,...), also  taking into account the 
location of the patient and weather 

● Whenever possible, wearables should be used to track patients; this lowers the 
burden of data entry.  

● Adherence should be rewarded (e.g., by congratulations messages), yet 
competition (e.g., leader boards) was not well received; patients preferred more 
private social experience, with a small group of friends and family [140]. 

● Novel ways that provide patients with social support via the app should be 
developed and validated. Social support is not included in most existing apps. 

b. Ginossar et al. presented a set of recommendations related to the usability of mHealth 
apps for breast cancer patients and the language used in these apps [141] that are 
applicable to other types of cancer: 
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i. Usability recommendations include easy access to home page and clearly 
labeled back button, in-app simple search and browsing of provided content and 
use of images to facilitate learning 

ii. Language recommendations include using the pronoun “you”, present tense, 
active voice and action words, limiting the length of sentences and paragraphs, 
and using common everyday words and defining technical terms 

c. According to Prochaska et al. [139] participation in content creation results in a stronger 
intention for behavior change (e.g. quitting smoking). Moreover, posting photos is 
associated with stronger engagement than for other types of posted materials. 

It is interesting to note that the aspects of behavior most frequently considered when providing 
coaching include physical activity/sedentary behavior (also combined with diet), distress and 
anxiety, and self-efficacy. 
 

4.1.8 Coaching Systems Open Challenges  

i. App design should rely on sound behavioral theories or models. Many available apps 
are intuitive and use formally defined digital interventions (e.g., captured by the initial 
taxonomy by Abraham and Michie [101] and by taxonomies revised for cancer apps 
[100]), and the frequently used categories of digital interventions involve: customization, 
information/behavior relationship, intention, facilitation, self-efficacy and social influence. 
However, identification of applied interventions is often performed only during post-hoc 
analysis, instead of being part of the design process. 

ii. A controlled study should be used to measure improvement in QoL. Yet attributing 
improvement to particular system functionality necessitates large cohorts partitioned into 
groups receiving different app versions or a study in which different features are 
exposed over time, or even several studies (e.g., as for the CHESS system where 
different trials were conducted to assess the impact of several combinations of patient-
oriented support [140]). 

iii. Coaching systems for the palliative stage could potentially be developed; none of the 
papers in our review addressed this important stage, although home caregivers are likely 
to benefit from such systems. 

 

4.3 Limitations 

Our review study presents some limitations. First of all, the results presented in Section 3, and 
the discussion of best-practices and open research challenges presented in Section 4.1 are 
based solely on our particular set of papers reviewed.  
A second limitation is that we did not include “well-being”, an important construct in cancer 
outcomes research, as part of our search keywords. However this was mitigated by the fact that 
the multidimensionality of QoL refers to a broad range of content, including the concepts of well-
being [6].  

5. Conclusion 

We reported results of a systematic literature review about the state-of-the-art of computerized 
systems that employ Data Science methods to monitor the health status and provide support to 
cancer patients. Our analysis identified best practices that we intend to adopt in the CAPABLE 
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project. In addition, we plan to address some of the open research challenges that are not 
currently addressed. These include supporting emotional and social dimensions of well-being, 
unobtrusive monitoring through wearable sensors, including PROs in predictive modeling and 
providing better customization of behavioral interventions for the specific population of cancer 
patients. 
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