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ABSTRACT 41 

 42 
Mutations in the genes of the F420 signaling pathway, including dnn, fgd1, fbiA, fbiB, fbiC, and fbiD, of 43 
Mycobacterium tuberculosis (Mtb) complex can lead to delamanid resistance. We searched for such 44 
mutations among 129 Mtb strains from Asia, South-America, and Africa using whole-genome 45 
sequencing; 70 (54%) strains had at least one mutation in one of the genes. For ten strains with 46 
mutations, we determined the minimum inhibitory concentration (MIC) of delamanid. We found one 47 
strain from a delamanid-naïve patient carrying the natural polymorphism Tyr29del (ddn) that was 48 
associated with a critical MIC to delamanid. 49 
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In 2014, the new anti-tuberculosis (TB) drug, delamanid (also known as OPC-67683 or Deltyba™) was 58 
introduced (1). The World Health Organisation (WHO) recommends the administration of delamanid if 59 
a standard effective drug regimen cannot be prescribed due to drug toxicity or resistance (2, 3). Thus, 60 
the European Medicines Agency (EMA) conditionally approved delamanid for the treatment of 61 
multidrug-resistant (MDR) TB (1, 3, 4). Of note, six years after its market launch, robust and widely 62 
accepted breakpoints that define susceptibility and resistance to delamanid still do not exist (5). The 63 
few available studies suggest a critical MIC between 0.125 mg/L and 0.2 mg/L, and an Epidemiological 64 
Cutoff Value (ECOFF) of 0.04 mg/L (6-9). This ECOFF is in line with the WHO (10).  65 
 66 
Delamanid is a drug of the bicyclic nitroimidazole class with potent anti-TB activity (1, 11). It is a pro-67 
drug which is activated by the deazaflavin (F420) dependent nitroreductase (ddn) through hydride 68 
transfer, forming unstable intermediates, which in turn lead to the formation of reactive nitrogen species 69 
(nitric oxide, nitrous acid) (12, 13). Activated delamanid thus has a dual bactericidal mode of action as 70 
the primary decomposition product prevents mycolic acid synthesis while the reactive nitrogen species 71 
cause respiratory poisoning (12-15). Loss of function mutations in ddn or one of the five coenzymes 72 
(fgd1, fbiA, fbiB, fbiC, and fbiD) have been proposed as a mechanism of resistance to delamanid (12, 73 
13, 16, 17). In vitro, frequencies of delamanid resistance-conferring mutations in the Mycobacterium 74 
tuberculosis (Mtb) laboratory strain H37Rv and in M. bovis range from 2.51 × 10−5 to 6.44 × 10−6 (13). 75 
Previous studies have found several resistance-conferring mutations, including Leu107Pro (ddn), 51-76 
101del (ddn), Trp88STOP (ddn), Gly81Asp (ddn), Gly81Ser (ddn), Gly53Asp (ddn), c.146_147insC 77 
(fgd1), Gln88Glu (fgd1), Lys250STOP (fbiA), Arg175His (fbiA), and Val318Ile (fibC) (6-8, 18-22).   78 
 79 
This multicentre study has been described in detail elsewhere and is part of the International 80 
epidemiology Databases to Evaluate AIDS (IeDEA) (23). We identified putative delamanid resistance-81 
conferring mutations in Mtb strains from TB patients living with HIV (PLWH) and HIV negative TB 82 
patients naïve to delamanid using whole-genome sequencing (WGS) and MIC determination. We 83 
collected demographic and clinical characteristics of patients that were recruited between 2013-2016 84 
in Peru, Thailand, Côte d’Ivoire, Democratic Republic of the Congo (DRC), Kenya, and South Africa 85 
(24, 25). The Cantonal Ethics Committee in Bern, Switzerland, and local institutional review boards 86 
approved the study. Written informed consent was obtained at all locations, except in South Africa, 87 
where consent was not required for archived samples. 88 
 89 
The sequencing pipeline has been described previously (25). In brief, Mtb DNA was extracted and 90 
sequenced using Illumina HiSeq 2500 (Illumina, San Diego, CA, USA). For the analysis, we used the 91 
well-established pipeline TBprofiler (https://github.com/jodyphelan/TBProfiler (26, 27)). It aligns short 92 
reads to the Mtb reference (H37Rv: NC_000962.3) with bowtie2 v2.3.5, BWA v0.7.17 or minimap2 93 
v2.16 and then calls variants with SAMtools v1.9 (28-31). To identify putative delamanid resistance-94 
conferring mutations, we analysed F420 genes (ddn, fgd1, fbiA, fbiB, fbiC, and fbiD) with variant 95 
frequencies ≥75%. A subset of Mtb strains with at least one mutation in F420 genes were re-cultured in 96 
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liquid medium and subjected to delamanid MIC determination (Supplementary Figure 1). We assumed 97 
that 0.04 mg/L indicates a critical MIC (9).  98 
 99 
We included 129 Mtb isolates among them 52 (40.3%) from Peru, 14 (10.9%) from Thailand, 51 (39.5%) 100 
from Côte d’Ivoire, 14 (10.9%) from DRC, and 1 (0.8%) each from Kenya and South Africa. We identified 101 
70 (54.3%) isolates with polymorphisms in at least one of the six F420 genes as compared to the 102 
reference genome (Supplementary Table 1). None of the patients infected with either of these strains 103 
had a history of TB and all were naïve to delamanid. We selected strains fulfilling the following criteria: 104 
i) mutations in a part of the gene encoding regions of catalytic or structural importance predicted by 105 
ARIBA and then the PhyResSE pipeline (32, 33), ii) culture of the strain available iii) bacterial growth 106 
amenable to microdilution (25). MIC determination was performed on ten isolates with mutations in the 107 
F420 genes. Four isolates showed a MIC >0.015 mg/L: 0.5 (patient 1), 0.03 (patients 6 and 10), and >8 108 
mg/L (patient 9; Table 1; Supplementary Figure 1). The isolate from patient 1 had a polymorphism in 109 
fgd1 (Lys270Met), was susceptible to the six tested drugs (isoniazid, rifampicin, ethambutol, 110 
pyrazinamide, moxifloxacin, and amikacin). The patient was cured. The isolate from patient 9 had two 111 
alterations, a deletion in ddn (Tyr29del) and carried a nucleotide change in fgd1 (T960C). The strain 112 
showed an elevated delamanid MIC and was phenotypically susceptible to six other drugs tested. The 113 
patient died. Isolates of patient 10 (and 6) had a MIC above 0.015 but below 0.04 mg/L (Table 1). This 114 
suggests a low-level resistance to delamanid (22), which could be due to the combination of various 115 
mutations: Ala416Val (fbiC), Trp678Gly (fbiC), Arg64Ser (fgd1), and T960C (fgd1). 116 
 117 
In summary, in the subset of ten isolates with polymorphisms in the six targeted genes, six had no 118 
elevated MIC in the microdultion, while four isolates had (Table 1).  In line with previous studies, we 119 
found that Lys270Met in fgd1 is a natural polymorphism characteristic of Mtb lineage 4.1.2.1, which 120 
may (patient 1 and 6) or may not (patient 7) lead to an increased delamanid MIC (19, 34, 35). All 16 121 
strains of lineage 4.1.2.1 showed this lineage-specific marker (Supplementary Table 1). Furthermore, 122 
T960C (fgd1) is a synonymous substitution and was found in three other patient isolates which 123 
expectedly did not have a critical MIC. The increase in the delamanid MIC in the isolate of patient 9 was 124 
due to the deletion in ddn (7). Our results thus suggest that Tyr29del is a natural polymorphism leading 125 
to an increased delamanid MIC. Our study was too small to estimate the prevalence of strains that are 126 
naturally resistant to delamanid. Lee et al. 2020, screened 14,876 Mtb strains and found two strains 127 
with Tyr29del, for a prevalence of 0.013% (36). However, in their study, only the ddn gene was screened 128 
and the prevalence of natural resistance could, therefore, be higher. 129 
 130 
In conclusion, we confirm that mutations in F420 genes can confer an elevated delamanid MIC (13, 19). 131 
Whether our findings also apply to the related drug pretomanid should be investigated in future studies. 132 
The occurrence of clinical Mtb isolates with naturally elevated MICs to delamanid from previously 133 
untreated patients calls for careful drug susceptibility testing (DST) prior to delamanid treatment (5, 36). 134 
However, access to DST is limited in high burden countries. This dilemma highlights the conflict 135 
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between making new drugs available in high-burden countries and avoiding spread of drug-resistant 136 
strains.  137 
 138 

Data availability. WGS data from patients Mtb strains shown in Table 1 have been submitted to the 139 
NCBI (PRJNA300846; Supplementary Table 1). 140 
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TABLE 1. Observed polymorphisms in F420 genes and minimal inhibitory concentration values for delamanid.  298 

No. Lineage Country HIV 

status 

Age at 

TB 

diagnosis 

Gender Mutations in the F420 genes Treatment Treatment 

outcome 

MIC mg/L in 

the micro-

dilution 

0 H37Rv 

ATCC 

27294 

- - - - Control (wt) - - ≤0.015 

1 L4.1.2.1 Côte d'Ivoire Negative 29 Female fgd1 Lys270Met 2HRZE, 4RH Cured 0.5 

2 L4.6.2.2 Côte d'Ivoire Negative 51 Male ddn C168T 2HRZE, 4RH Died ≤0.015 

3 L2.2.1 Kenya Positive 40 Male fgd1 T960C 2HRZE, 4RH Died ≤0.015 

4 L2.2.1 Peru Positive 28 Male fgd1 T960C 2HRZE, 4RH Unknown ≤0.015 

5 L4.3.2 Peru Negative 21 Male fbiC C1161T  2HRZE, 4RH Cured ≤0.015 

6 L4.1.2.1 Peru Positive 45 Male fgd1 Lys270Met 2HRZE, 4RH Unknown 0.03 

7 L4.1.2.1 Peru Positive 36 Male fbiC G-11A 

fgd1 Lys270Met  

2HRZE, 4RH Unknown ≤0.015 

8 L4.1.2 South Africa Negative 57 Female fbiA Ile208Val  2HRZE, 4RH Cured ≤0.015 

9 L2.2.1 Thailand Unknown 76 Male fgd1 T960C  
ddn 85-87del (Tyr29del) 

2HRZE, 4RH Died >8 

10 L1.1.1 Thailand Negative 42 Male fbiC Ala416Val, Trp678Gly 
fgd1 Arg64Ser, T960C  

2HRZE, 4RH Unknown 0.03 

Abbreviations: MIC, minimal inhibitory concentration; No, number; L, lineage; wt, wild-type; H, isoniazid; R, rifampicin; Z, pyrazinamide; E, ethambutol. 299 
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