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Abstract

In order to prepare for and control the continued spread of the COVID-19 pan-
demic while minimizing its economic impact, the world needs to be able to es-
timate and predict COVID-19’s spread. Unfortunately, we cannot directly ob-
serve the prevalence or growth rate of COVID-19; these must be inferred using
some kind of model. We propose a hierarchical Bayesian extension to the clas-
sic susceptible-exposed-infected-removed (SEIR) compartmental model that adds
compartments to account for isolation and death and allows the infection rate to
vary as a function of both mobility data collected from mobile phones and a la-
tent time-varying factor that accounts for changes in behavior not captured by
mobility data. Since confirmed-case data is unreliable, we infer the model’s pa-
rameters conditioned on deaths data. We replace the exponential-waiting-time
assumption of classic compartmental models with Erlang distributions, which al-
lows for a more realistic model of the long lag between exposure and death. The
mobility data gives us a leading indicator that can quickly detect changes in the
pandemic’s local growth rate and forecast changes in death rates weeks ahead of
time. This is an analysis of observational data, so any causal interpretations of
the model’s inferences should be treated as suggestive at best; nonetheless, the
model’s inferred relationship between different kinds of trips and the infection
rate do suggest some possible hypotheses about what kinds of activities might
contribute most to COVID-19’s spread.

1 Introduction

In response to the coronavirus pandemic of 2020, countries around the world instituted non-
pharmaceutical interventions in an attempt to slow the spread of the disease. These interventions
included such measures as social distancing, mandatory wearing of masks, and shutting down non-
essential businesses and services. Understanding the impact of these measures on the spread of the
disease is critical to informing decisions and designing interventions, but due to the delay between
infection and obtaining test results, it can be weeks before the effect of such an intervention can be
seen in case counts and death counts [1]. Ideally, policymakers would have a current estimate (a
“nowcast”) showing how the growth rate of the disease is responding to various interventions and
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other factors, as well as a forecast that quickly adapts to changing conditions and generates “what-
if” estimates of how changes in behavior might affect disease spread. Unfortunately, case and death
counts are lagging indicators; a new infection may take weeks to lead to a confirmed case and/or
death. To draw inferences earlier, we need more-responsive correlates of infection rates.

As part of a wider effort to understand the impact of the non-pharmaceutical interventions, many
institutions such as the New York Times [2], Google [3], and Apple [4] have released data about
mobility trends. This aggregated mobility information measures movement trends at various levels
of granularity (county, state), and across different mobility categories (going to the grocery or work,
etc.). Such aggregated mobility data lacks individual-level detail, and may not be a representative
sample of the broader population’s behavior, but it may still hold useful signals for understanding
the current rate of spread of coronavirus. Given our understanding of how coronavirus spreads, we
expect that more movement in society results in more infections. We thus hope the mobility trends
correlate with the unobserved infection rate of COVID-19. The breakdown of overall mobility into
categories based on destination-type or distance also provides an opportunity to gain intuitions about
what types of trips most spread the disease (although these intuitions should be treated as hypotheses
needing further validation, since the data are observational).

With this available mobility data, the next step is building models that can use it to make reliable
predictions. One approach would be to incorporate a mobility signal into a discriminative predic-
tive model. Although it is more difficult to incorporate assumptions and prior knowledge into a
discriminative model, the results from [5] indicate that that the correlation between mobility and
infection rate is strong enough to make good forecasts. On the other hand, compartmental models
[e.g., 1, 6, 7] assume a flexible, causal story for the spread of a disease and can also incorporate
mobility data as a covariate for predicting the time-varying infection rate of a disease.

In this paper, we explore the use of mobility data in compartmental models and find that:

• Mobility data can be used to forecast for the spread of the disease.

• Mobility data is a promising low-lag control signal that can be used to infer the invisible
spread of COVID-19 and assist policy makers.

• Incorporating mobility data into compartmental models suggests that some types of trips
influence the infection rate more than others.

2 Background

2.1 Compartmental models for epidemiology

Compartmental models for epidemiology partition a population into “compartments” depending on
which stage of a disease’s life cycle a member is in. A simple model is the Susceptible-Infectious-
Recovered, or SIR model [8], which partitions a population into “Susceptible”, the people who are
not yet infected, “Infectious”, the people who have the disease and are actively spreading it to others,
and “Recovered”, the people who are no longer infected with the disease, often including both those
who successfully recover and those who die from the disease. In practice, we may want to include an
“Exposed” compartment, for individuals who have contracted the disease but are not yet infectious,
resulting in an SEIR model. An SEIR model assumes an initial state (i.e. some initial numbers
(S0, E0, I0, R0) and a population size N , S0 +E0 + I0 +R0) and a set of parameters that govern
a simulation that evolves this initial state over time. The parameters include β, the infection rate, α,
the incubation rate, and γ, the recovery rate. The evolution of the state over time is prescribed by a
set of differential equations: dS

dt = −β IS
N ; dE

dt = β IS
N − αE; dI

dt = αE − γI; dR
dt = γI .

When using a compartmental model, we are often interested in obtaining the values of each of the
compartments at a set of input times. A compartmental model defines a continuous-time process and
it is conventional to choose the unit of time to be days. Thus, integrating the equations to obtain the
values of each compartment at a set of discrete times τ = {0, 1, 2, . . . , T} corresponds to obtaining
the values at the beginning of each day for T days moving forward from the initial state. We focus on
these daily values that are the output of integrating the compartmental model equations; we define
“simulating” a compartmental model as the process of obtaining these values via numerical methods
like Euler or Runge-Kutta integration.
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Formally, we assume a compartmental model is a series of differential equations associated with a
set of simulation parameters θ. Besides the parameters that govern the differential equations, we
also include the initial state s in its parameters. For an SIR model we have θ = (β, γ, s); the SEIR
model adds an incubation-rate parameter α. The simulation function MSIR(θ) or MSEIR(θ) outputs
the values of each compartment at the beginning of a set of days τ = {0, 1, . . . , T}. For example,
MSEIR(θ) = (S0:T , E0:T , I0:T , R0:T ).

2.2 Fitting compartmental models

Compartmental models provide a convenient, mechanistic formulation for how a disease spreads in
a population. However, most often though we don’t know the parameters of the model beforehand,
but we do have some data that can provide a learning signal to fit the parameters, One such signal
is the daily number of new cases of a disease, which can be predicted by a compartmental model
as the change in I + R between each day. Formally, assume we observe a time-series of daily
case counts c1:T . From a set of simulation parameters θ, we obtain I0:T , R0:T from M(θ), the
total number of infected and recovered on each day. We can compute the predicted case counts
ĉ1:T = (I +R)1:T − (I +R)0:T−1, and compute a loss l(c1:T , ĉ1:T ) (e.g. mean-squared error). We
can then optimize the parameters with respect to this loss with an algorithm like gradient descent.

Case count data is readily available for COVID-19 but is problematic for a few reasons. First, many
(perhaps most) people who are infected are not tested; many mild cases are not tested either because
individuals do not know that they are infected or because they have sufficiently mild cases that they
either cannot or do not feel the need to get tested. Testing availability and policies are inconsis-
tent across different regions, so the amount of underreporting is presumably also inconsistent across
different datasets. Furthermore, demographic differences introduce selection bias: if patients with
severe cases are more likely to get tested, then regions with a higher fraction of severe cases (e.g.,
because they have an older population) will have less underreporting. Second, there can be a signif-
icant delay between when tests are administered and when they show up in case counts; this delay
is not consistently reported. Finally, there will be false positives and false negatives, and these error
rates are also likely to vary by region since training is needed to get a good sample for polymerase
chain reaction (PCR) tests.

Death counts are more reliable than case counts and should also correlate with infection rate of the
disease, albeit with a larger lag than case counts. We expect there to be a smaller underreporting
factor for deaths because it is more unlikely that a death from COVID-19 goes unnoticed than an
asymptomatic case. While there will still be false positives and negatives in the data due to misdi-
agnosed and misreported cases, we expect the death counts to be less noisy and biased than the case
counts. Unfortunately, using death counts as a learning signal comes with a significant challenge:
time lag. With COVID-19, it may take on the order of 2 to 3 weeks until death after infection,
meaning any uptick in infections will not be visible in the death counts for 2 to 3 weeks [7, 9].
This introduces a modeling challenge, where a compartmental model that models the recovery pe-
riod incorrectly will likely learn incorrect values for the other parameters in order to compensate
for the incorrect delay. Furthermore, compartmental models do not usually directly simulate deaths
in a population but rather the sum of deaths and proper recoveries. Observing deaths requires in-
troducing a new parameter into the model, ω, the infection-fatality-ratio (IFR) in order to convert
“recoveries” into the subset that die (and whose deaths are reported as due to COVID-19).

2.3 Bayesian models for epidemiology

Several studies have aimed to identify values for the parameters of COVID-19’s behavioral dynam-
ics, such as the lengths of the incubation and recovery periods [9]. Even then, it is unlikely that we
can identify a single value for each of these parameters given the differences in methodology and
assumptions between studies. However, given the surrounding literature, it is possible to construct a
distribution over possible parameters that reflects the uncertainty that comes from both a lack of con-
sensus and an inherently noisy process. A strong prior distribution over parameters also helps with
identifiability issues, as adding more parameters to an SIR model often results in nonidentiability.

Bayesian modeling is a flexible framework for incorporating these prior assumptions and capturing
the resulting predictive uncertainty. A Bayesian compartmental model proceeds by putting prior
distributions over the parameters and initial state of a compartmental model. These priors are op-
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Figure 1: A diagram representing the flow of individuals through an SEIQR models with rates on
arrows.

portunities to incorporate external evidence from studies, like observed lengths of incubation and
recovery periods. The model assumes that the observed data are sampled with some measurement
noise from the output of the simulation given the parameters. Inference about the model parameters
proceeds by applying Bayes’s rule.

We define a generative process for an observed death count time series d1:T , where θ are the param-
eters of a compartmental model. We define additional parameters φ = (r, ω), where r is the shape
parameter for a negative binomial likelihood, and ω the infection-fatality-ratio (IFR).

θ, (r, ω) ∼ p(θ, φ); R0:T =M(θ)

d̂1:T = ω (R1:T −R0:T−1); d1:T ∼ NegBinomial

(
r,

d̂1:T

d̂1:T + r

)
In this generative process, we simulate a compartmental model forward and compute its predicted
daily deaths, which is the used as the mean of a noisy observation process. The distributions of
interest are the posterior distribution over parameters p(θ, φ|d1:T ) and the posterior predictive dis-
tribution p(d∗|d1:T ) =

∫
p(d∗|θ, φ)p(θ, φ|d1:T )dθdφ. The former is useful for exploratory data

analysis and provides uncertainty estimates over the parameters in the model and the latter is the
distribution needed for forecasting and nowcasting. Unfortunately, we cannot analytically compute
these distributions so it is common to use methods that approximate the posterior and predictive
distributions like sequential Monte Carlo (SMC) and Markov Chain Monte Carlo (MCMC).

3 Extensions to SEIR for COVID-19 modeling

3.1 Quarantine compartment and Erlang waiting times

Estimates of the recovery period for COVID-19 are around 15-20 days and we observe this in the lag
between observed infections and recoveries. In the basic SEIR model, everyone in the I category is
infectious at a constant rate for the entire duration of that recovery period. But in reality, it is unlikely
that people remain equally infectious during the entirety of the recovery period due to isolation at
home and in hospitals. To better model this drop in infectiousness, we add a “Q” compartment to the
model that contains “isolated” or “quarantined” individuals. Isolated/quarantined individuals behave
like infectious ones in that they contribute to the flow from Susceptible to Exposed, but at a fraction
of the rate. The new parameter governing the rate of flow between I and Q we call the “isolation
rate” η and the fraction governing the reduction in infection rate we call the “quarantine reduction”
q. We call this an SEIQR model (visualized in Figure 1) which has the following dynamics: dS

dt =

−β S
N (I + qQ); dE

dt = β S
N (I + qQ)− αE; dI

dt = αE − ηI; dQ
dt = ηI − γQ; dR

dt = γQ.

Compartmental models implicitly assume that individuals spend an amount of time in each com-
partment that is exponentially distributed with that compartment’s rate parameter. An exponential
distribution will correctly model an average waiting time, but the overall shape of the waiting time
distribution may completely differ from the observed distribution and will put mass on small waiting
times. This can be problematic if say we know that a disease often at least 3 days to recover from.
A commonly used remedy for the exponential time waiting assumption inherent to SIR and SEIR
dynamics is to expand each compartment into several subcompartments and modify the compart-
ment’s rate parameter to match the original’s expected value. A new hyperparameter of our SEIQR
model is thus the number of subcompartments for each of the compartments.

3.2 Incorporating mobility data

In conventional compartmental modeling, the infection rate parameter β is time-invariant, freely
parameterized and directly learned from data. This is a strong assumption about how a disease
might spread; for example, we might expect that the true number of infections on a given day is
noisy and that there are likely strong day-of-week effects that come from commuting and varying
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travel patterns on weekends. (The smoothing effect of the lag between infection and death would
make such day-of-week effects invisible in daily death counts.) Furthermore, with COVID-19, we
hope that resultant lockdowns cause a drop in the infection rate thereby slowing the spread of the
disease. Thus, for modeling COVID-19, we’d like a compartmental model with a time-varying
infection rate that captures any drop resulting from non-pharmaceutical interventions.

Mobility data measures the relative change in how many trips are taken daily relative to pre-
lockdown behavior. Each datapoint in mobility data is a K-dimensional time-series m0:T ; each
individual series tracks mobility trends (the higher the values the more trips are being taken, and
vice versa). Mobility is further aggregated at the county level, so we have a K-dimensional time-
series for each of C counties {mc

0:T }Cc=1.

To model infection rate using mobility data, we define a generalized linear model (GLM) that pre-
dicts infection rate. We use a noncentered hierarchical model over GLM weights where we inde-
pendently sample city-specific base coefficients {wc}Cc=1. We then sample a normally-distributed
K-dimensional vector of feature-specific coefficient adjustments f and sample a base infection rate
b. We finally compute a county-specific infection rate βc(t) = Softplus((wc+f)Tmc

t+b). The city
coefficients wc model the differences in how mobility affects infections between different counties
and the feature coefficients f model the infection patterns of different types of mobility.

Mobility is a potential predictor of infection rate because it correlates with the quantity lockdowns
are designed to lower– infections coming human-to-human interaction. Some trips may have more
human-to-human interactions than other, but in aggregate we expect the numbers of total interactions
(and thereby infections) to drop if there are less total trips. Mobility data can be collected and
processed relatively quickly and therefore offers the potential to become a signal for forecasting and
nowcasting. However, mobility data does not capture all aspects of how disease spreads.

3.3 Adding a changepoint

The second modification is incorporating a changepoint to model a broader set of latent factors that
influence the infection rate. For example, mobility data does not reflect the change in infection rate
due to changes in human behavior, such as the widespread wearing of masks and maintaining social
distance. These effects are harder to measure but are still relevant to predicting a time-varying infec-
tion rate; a changepoint, or a function of time that captures a drop in infection rate, is a convenient
means of lumping together all unknown latent factors into a parameterized time-varying infection
rate.

We define a changepoint to be a point in time at which there is a monotonic drop in infection rate,
modeled as a negative sigmoid. We parameterize it with three parameters: κ, or time at which the
change happens, ρ, a number between 0 and 1 determining the amplitude of the sigmoid, and ν, the
slope of the sigmoid that dictates the rate of the change. We thus have the parameterized function
π(t) = ρ+ (1− ρ)σ(−ν(t− κ)) where σ is the sigmoid function.

Unlike mobility data, a changepoint cannot model complex changes in infection rate but it can,
however, capture factors like differences in human behavior that is not reflected in mobility data. By
itself, a changepoint can model the flattening of the death count curves we observe in COVID-19
data (i.e. β(t) = π(t)), but a changepoint is not useful for forecasting and nowcasting because we
can only infer a changepoint has happened after observing the case or death counts weeks after.
Thus, we desire a hybrid model that can leverage the strengths of both approaches to time-varying
mobility rate. When modeling multiple counties, we model county-specific changepoints and merge
the changepoint with the mobility model by multiplying it by the output of the mobility GLM , i.e.
βc(t) = Softplus((wc + f)Tmc

t + b)πc(t).

4 Related work

[7] proposed one of the first Bayesian SIR models of COVID-19 based on observed death counts.
Rather than treat death as a compartment, they convolve the new-infection curve in a simple SIR-
with-observed-changepoint model with a time-to-death distribution. [10] develop a Bayesian semi-
mechanistic (rather than compartmental) model linking Google mobility data and a latent time-
varying factor to a time-varying reproductive number Rt, which is combined with a latent IFR and
time-to-death distribution to model observed deaths. [11] develop a changepoint model similar to
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Figure 2: Mobility trends for New York
City. There are strong day-of-week ef-
fects in the data indicated by the small
weekly spikes.

Figure 3: The forecasted value of
Rt for New York City according to
a CMSEIQR model.

ours, informed by lockdown dates rather than mobility data. [12] strongly argue for the importance
of relaxing the exponential-waiting-time assumption in compartmental models; see also [13, 14].

Concurrently with this work, [15] proposed a very similar Bayesian compartmental model regressing
from Apple mobility data to a time-varying infection rate β(t). The most salient difference is that we
consider a latent changepoint to account for changes in behavior that are not captured by mobility
data. We find that this factor is important for making accurate long-term forecasts, although it makes
relatively little difference over the 8-day forecast window they consider.

5 Experiment setup

Datasets We use unprocessed COVID-19 case and death count numbers from the New York Times
[2], which produces daily reports of new infections and deaths at both state and county level. For
mobility, we use the Community Mobility Reports published by Google [3] in our evaluation of
Bayesian compartmental models. Google’s Community Mobility Datasets are created with aggre-
gated, anonymized sets of data from users who have turned on the Location History setting, which
is off by default [16]. No personally identifiable information, like an individual’s location, contacts
or movement, is made available at any point. Trends are aggregated to the county level (including
Washington, DC and independent cities that are not otherwise included in county boundaries), and
available daily from February 16th through May 21th, 2020. The Google dataset also breaks down
mobility trends into several categories. We consider two usages of the mobility data: (1) using each
category as a feature (except for residential) and (2) aggregating the categories into a single
overall mobility feature.

We normalize the dataset to have 0 represent “normal” mobility and deviations represent positive
and negative relative changes in mobility (e.g. a value of 0.3 represents a 30% increase in mobility).
Figure 2 shows the daily mobility changes in New York City for each category in Google’s Com-
munity Mobility Reports, where “overall“ represents the aggregated category. In New York City,
we observe a dramatic decrease in many of the mobility categories and in overall mobility after the
official non-pharmaceutical intervention occurred in late March. Since mid-April, the number of
park visits in New York City has also increased, while the number of visits in other categories is
relatively small.

Model priors and hyperparameters The hyperparameters of the model are the number of sub-
compartments in the Erlang-based models, for which we chose 2 subcompartments for each of the
E, I and Q compartments. The priors of the various model parameters are defined in Table A.2.
Priors were chosen to match estimates found in [9], which aggregates parameter estimates from rel-
evant literature. The compartmental model parameters (except for infection rate) are shared across
counties, and the rest of the parameters in the model are county-specific, with the exception of f ,
which is mobility-feature specific.

Numerical integration We simulate compartmental dynamics with an Euler-discretization of the
differential equations with a step size of 1. Despite such a large step size, we found the dynam-
ics to be stable with reasonable parameter settings. However, with extreme values for parameters,
we found that the dynamics become unstable and numerical issues arise. We address this by con-

6

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 7, 2020. ; https://doi.org/10.1101/2020.08.06.20169664doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.06.20169664


straining certain parameter values in the prior distribution to avoid extreme values. We also find no
significant performance improvement with a lower step size.

Bayesian inference We use an adaptive sequential Monte Carlo (SMC) method for Bayesian in-
ference. We utilize the algorithm from [17] which adaptively constructs a series of annealed dis-
tributions that interpolates between the prior over latent variables and joint distribution over latent
variables. We then initialize a set of particles that are iteratively updated with a Hamiltonian Monte-
Carlo (HMC) kernel to be representative of each of the annealed distributions [18, 19]. In practice,
we map parameters into an unconstrained space and modify the prior to take into account the vol-
ume difference resulting from change-of-variable, and we execute SMC in this unconstrained space.
We run 5 chains in parallel with 1000 particles each, collecting a total of 5000 samples from the
posterior distribution. Inference is implemented using TensorFlow Probability [20, 21] and were
executed on a GPU where training a single model took around 20 minutes.

6 Results

We focus on the period starting on 3/7/2020 extending to 5/21/2020. We fit various versions of
the models described above to the aforementioned mobility trend and ground-truth death counts,
and evaluate their ability to forecast, nowcast, and offer insights into how mobility influences
COVID-19’s infection rate. To evaluate the extensions proposed in the paper, we we consider a
baseline SEIQR model (time-invariant infection rate), a changepoint SEIQR (CSEIQR), an SEIQR
model with a infection rate varying as a function of mobility data from both multiple and an aggre-
gated category (MSEIQR[Multi] and MSEIQR[Overall]), and a model that combines both multiple
category mobility-based regression and a changepoint (CMSEIQR).

6.1 COVID-19 forecasting

To evaluate the overall effectiveness of modeling COVID-19 using the proposed models, we con-
struct a COVID-19 forecasting task on the 25 most populous US counties (treating the five boroughs
of New York City as one county). In three variants of this task, we choose a date (4/22/20) and fit a
model to the data up to this date. We compute the predictive log-likelihood for the next 7, 14, and
28 days worth of data, using mobility data from the held-out period when forecasting2. To measure
the quality of each model’s forecasts, we report the average daily marginal log-likelihood numbers
for the held-out data, which we estimate by taking the log-mean-exp of of the log-likelihoods for
every sample, and averaging across days. This measures how well on average the model can predict
the number of deaths on a randomly chosen day in the future.

Comparing mobility datasets We first evaluate whether having access to more fine-grained infor-
mation about mobility trends is valuable for forecasting. To accomplish this, we examine held-out
log-likelihood of MSEIQR[Multi/Overall] models in Table B.4a and Table B.5. We find that the
MSEIQR[Multi] consistently achieves a higher average log-likelihood than the MSEIQR[Overall]
mobility model in all forecast windows. Investigating further, it appears that the overall mobility-
trained model “overfits” to the slow increase in mobility we observe towards the end of the fore-
cast period and predicts upticks in deaths where the data continues to trend downwards. This
problem is reduced in the multiple-category model; we thus hypothesize that there are certain
types of mobility that better correlate with infection rate and aggregating over different mobility
types adds noise to these signals. For example, Figure B.3 shows that despite high uncertainty
changes in grocery_and_pharmacy are a stronger signal of changes in infection rate than, say,
transit_stations—this observed association does not imply that interventions targeting grocery
stores and pharmacies will reduce COVID-19 spread more than closing subways, but it does suggest
that these relative changes should not be weighted equally when trying to estimate its spread.

Comparing model variants We report held-out log-likelihood numbers for all model variants in
subsection B.2. We observe that all mobility models tend to latch onto mobility upticks in in late
April and May. MSEIQR[Multi/Overall] models were trained without these upticks and can only
explain infection rate in terms of mobility, so subsequently we see a forecasted uptick in deaths
for those models. On the other hand, the changepoint model is often correct but every so often,

2In a real forecasting application, one would also need a forecast of how mobility would change over the
forecast period; this experiment assumes a perfect mobility forecast. Note that the influence of this mobility
forecast should be relatively minor due to the weeks-long lag between infections and deaths.
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(a) CMSEIQR (b) CSEIQR (c) MSEIQR[Multi]

Figure 4: Top row: 28 day death count forecasts for Los Angeles. Bottom row: Rt forecasts
for Los Angeles. We observe that the combination of mobility data and a changepoint enables the
CMSEIQR model to widen its prediction interval to include a continued flattening of the death curve
where other models are unable to predict that pattern.

(a) CMSEIQR (b) CSEIQR (c) MSEIQR[Multi] (d) SEIQR

Figure 5: Nowcast vs. hindcast estimates of Rt in New York City on 4/21/20. Nowcast estimates
are obtained by training a model on data up to some time t and hindcasts are obtained by training
a model up to t + 21. Nowcasts from the mobility-based models tend to be sharper, but only in
CMSEIQR models do we see the nowcast distributions consistent capture the hindcast.

misidentifies the drop in the infection rate and makes a blatantly wrong forecast (see Figure 4). The
CMSEIQR model tends to forecast somewhere in between, predicting a decay in death counts but
with a slight uptick towards the end of the forecast. However, it has a much wider interval due to the
inclusion of the changepoint, which mitigates the effect of mobility towards the end of the forecast
period. We visualize the rest of forecasts in subsection C.1.

6.2 Nowcasting Rt

Our Bayesian models are able to nowcast the reproductive number Rt for COVID-19 from the
posterior and recent mobility data, using the equation: Rt = β(t) ∗ (1/η + q/γ), but it is hard
to evaluate the accuracy of Rt estimation due to lack of ground truth data. Instead we conduct a
held-out-data experiment to validate the consistency and sharpness of a model’s nowcasting results.
We pick a date t, fit a model trained up to t, and compute the distribution over Rt. This model has
not seen the deaths that result from infections happening to dates near t, so we expect its estimate
of Rt to have a wide interval, our “nowcast” estimate. We compare our nowcast distribution to a
“hindcast” distribution, a distribution over Rt from a model trained on data up to t+21. In Figure 5
and Figure B.4, we plot a kernel-density estimate of Rt from a range of models. We expect this
hindcast distribution has a tighter estimate of Rt since it has access to more data, but we also hope
that it lies within the nowcast distribution. We find that CMSEIQR tends to have more conservative
but less incorrect nowcasts. After including more data, the CSEIQR and MSEIQR[Multi] models
collapse to a sharp estimate, but to an area with low mass in the nowcast, whereas the CMSEIQR
model collapses to a less-sharp distribution that is closer to the nowcast. This indicates that the Rt

estimates coming from CSEIQR and MSEIQR[Multi] models can be confidently incorrect.
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7 Discussion
We find that mobility is a promising signal for nowcasting and forecasting the spread of COVID-19,
but it is important to understand its limitations. Notably, our experiments suggest that mobility
signals alone cannot explain all variation in infection rates; for example, increases in mobility in
May do not appear to have caused massive increases in infections. However, we can alleviate these
limitations by assuming the existence of and marginalizing other latent factors.

8 Broader Impact

It goes without saying that the impact of COVID-19 has been massive and overwhelmingly negative.
Our hope is that this paper contributes usefully to the discussion about how best to predict, monitor,
and control the spread of COVID-19 using the limited data available. Unfortunately, there is always
the danger that work in this space may be misinterpreted or overinterpreted, especially by non-
experts. Journalists, policymakers, and politicians may not have the technical training to critically
evaluate these models, but they also do not have the luxury of not having an opinion; in the real
world, decisions must be made by agents with bounded rationality using imperfect data.

This problem of overinterpretation is particularly salient to this work—it is easy to forget that a
model’s error bars are only as reliable as its assumptions. For example, we found that changepoint-
only and mobility-only models tend to be overconfident when making long-term forecasts, whereas
a more flexible changepoint+mobility model is able to consider a wider variety of scenarios3. This
should give pause to anyone relying on forecasts from simplistic models for decision-making—
“simpler” does not necessarily imply “fewer assumptions” or “more reliable”.

All of this is cause for caution, but not inaction. Even imperfect models are still useful tools for
rigorously and honestly integrating our prior beliefs and the limited evidence we can collect, as long
as we remember that they are imperfect.
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A Prior distributions

We report our choice of prior distributions in Table A.2.

Parameter Prior Notes
β (base infection rate) LogNormal(0, 0.5)
α (incubation rate) LogitNormal(logit(1/5.), .1)
η (isolation rate) LogitNormal(logit(1/3.), 2.)
γ (recovery rate) LogNormal(− log 16, 0.1)

q (quarantine reduction) Uniform(0, 0.1)
wc (city mobility coefficient) LogNormal(0.5, 1) Mobility models only

f (mobility feature adjustments) N (0, 1) Mobility models only
b (mobility intercept) N (0, I) Mobility models only
κ (changepoint time) Uniform(0, 1) Changepoint models only

ρ (changepoint magnitude) Uniform(0, 1) Changepoint models only
ν (changepoint rate) LogNormal(1, 1) Changepoint models only

ω (infection fatality ratio) LogitNormal(logit(0.007), 0.1) Likelihood parameter
r (neg-binomial shape parameter) LogNormal(log 30, 0.1) Likelihood parameter

Table A.2: Prior distributions used when defining Bayesian models. Priors were informed by sur-
rounding literature and in some cases were constrained (i.e. the use of LogitNormal) to avoid the
inference machinery finding degenerate parameter settings that exploit numerical issues in the sim-
ulator.

B SMC results

B.1 Trace plots
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(a) CMSEIQR (b) CSEIQR (c) MSEIQR[Multi]

(d) MSEIQR[Overall] (e) SEIQR

Figure B.2: Trace plots for SMC inference.
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(a) CMSEIQR (b) MSEIQR[Multi]

Figure B.3: Trace plots for the posterior over mobility feature adjustments.

Figure B.4: Nowcasted versus hindcasted Rt in 5 counties on 4/21/20.

B.2 Average log-likelihood tables
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County Average log likelihood
7 days 14 days 28 days

Alameda -1.805156 -1.662518 -1.802649
Allegheny -3.186325 -3.340498 -3.483470
Bexar -0.959646 -0.903106 -0.979916
Broward -2.368410 -2.510518 -2.242344
Clark -2.533194 -2.741874 -2.647359
Cook -4.640322 -4.806947 -5.120203
Dallas -2.311769 -2.384542 -2.800348
Harris -2.240939 -2.491233 -2.775150
Hillsborough -0.541387 -0.988776 -1.235414
King -2.389840 -2.709270 -3.006466
Los Angeles -4.242733 -4.509036 -4.896326
Maricopa -2.213264 -2.467703 -2.703712
Middlesex -4.218091 -4.438977 -4.829757
Nassau -4.969311 -4.863658 -4.864648
New York City -6.437211 -6.462852 -6.663937
Oakland -3.721284 -3.424004 -3.488531
Orange -1.422873 -1.670011 -1.775280
Palm Beach -2.443538 -2.346675 -2.290002
Philadelphia -3.995246 -4.098030 -4.020165
Riverside -2.704821 -2.870829 -3.248466
Sacramento -0.759634 -0.785069 -0.932866
San Bernardino -2.322682 -2.397025 -2.707970
San Diego -2.635985 -2.630289 -2.758858
Santa Clara -1.821952 -1.734964 -1.746657
Suffolk -4.666887 -4.777514 -4.617457
Tarrant -2.049820 -2.204860 -2.597216

Average -2.830858 -2.931568 -3.085968

(a) CMSEIQR

County Average log likelihood
7 days 14 days 28 days

Alameda -1.924844 -1.829179 -1.896707
Allegheny -3.969419 -4.156231 -4.197860
Bexar -0.995449 -0.953217 -0.947519
Broward -2.416855 -2.541591 -2.383080
Clark -2.679481 -2.760530 -2.694144
Cook -4.796444 -4.963584 -5.193301
Dallas -2.416288 -2.574192 -2.884297
Harris -2.243834 -2.450947 -2.419313
Hillsborough -0.542507 -0.992626 -1.237179
King -2.242868 -2.513453 -2.703380
Los Angeles -4.845088 -5.314340 -5.935399
Maricopa -2.334888 -2.591515 -2.795349
Middlesex -4.638676 -5.109296 -5.706739
Nassau -4.948283 -4.802747 -4.383533
New York City -6.311386 -6.303164 -5.883533
Oakland -3.398327 -3.421807 -3.417070
Orange -1.406245 -1.668412 -1.745455
Palm Beach -2.676199 -2.562493 -2.465058
Philadelphia -3.919084 -4.020305 -3.922651
Riverside -3.467556 -3.589041 -3.920702
Sacramento -0.678720 -0.660565 -0.712895
San Bernardino -2.665582 -2.763247 -2.979651
San Diego -2.814375 -2.902713 -2.974583
Santa Clara -2.040895 -2.214339 -2.474922
Suffolk -4.808112 -4.825914 -4.654398
Tarrant -2.043914 -2.099305 -2.164217

Average -2.970205 -3.099414 -3.180498

(b) CSEIQR

Table B.3: Average held-out log-likelihood numbers for the CMSEIQR and CSEIQR models.

County Average log likelihood
7 days 14 days 28 days

Alameda -1.941917 -1.898938 -2.209571
Allegheny -4.120355 -4.641402 -5.322266
Bexar -1.061481 -1.046292 -1.279297
Broward -2.314555 -2.431405 -2.549056
Clark -2.784373 -2.759879 -3.028625
Cook -5.388243 -5.783539 -6.445794
Dallas -2.292249 -2.382559 -2.933259
Harris -2.123558 -2.447905 -3.096194
Hillsborough -0.624889 -1.034706 -1.281427
King -2.275556 -2.411990 -2.643679
Los Angeles -4.115656 -4.462821 -5.127166
Maricopa -2.296176 -2.573672 -2.861312
Middlesex -4.290277 -4.649723 -5.297894
Nassau -5.175982 -5.086145 -5.163589
New York City -6.327564 -6.438626 -6.871012
Oakland -3.396171 -3.380931 -3.967062
Orange -1.380548 -1.652348 -1.936067
Palm Beach -2.501350 -2.413094 -2.451845
Philadelphia -4.583649 -4.776245 -4.778602
Riverside -2.917191 -3.091515 -3.587790
Sacramento -1.169727 -1.328938 -1.748418
San Bernardino -2.552280 -2.750232 -3.312456
San Diego -2.693846 -2.771011 -3.134873
Santa Clara -1.775860 -1.643758 -1.650531
Suffolk -4.628869 -4.619520 -4.499186
Tarrant -2.089763 -2.377877 -3.033103

Average -2.954696 -3.109810 -3.469618

(a) MSEIQR[Multi]

County Average log likelihood
7 days 14 days 28 days

Alameda -2.937002 -3.258774 -3.742917
Allegheny -6.123350 -6.734803 -7.382790
Bexar -2.271807 -2.483115 -2.794290
Broward -4.109977 -4.437871 -4.822750
Clark -3.954728 -4.268075 -4.649240
Cook -7.323644 -7.789396 -8.011054
Dallas -3.125684 -3.595619 -4.170963
Harris -4.016520 -4.471059 -5.121323
Hillsborough -2.476348 -2.771177 -3.330322
King -2.548971 -3.096598 -3.537627
Los Angeles -7.030132 -7.666184 -8.354698
Maricopa -3.825458 -4.154868 -4.678446
Middlesex -6.566622 -7.104847 -6.947969
Nassau -5.265346 -5.229929 -5.673818
New York City -7.852048 -7.927436 -8.573578
Oakland -5.646735 -5.637297 -5.004018
Orange -2.544306 -2.837187 -3.374748
Palm Beach -4.240720 -4.535281 -4.780920
Philadelphia -4.677451 -4.624163 -4.004301
Riverside -4.164426 -4.501913 -5.110999
Sacramento -2.508047 -2.769431 -3.263854
San Bernardino -3.816447 -4.203642 -4.673937
San Diego -3.860036 -4.206855 -4.692338
Santa Clara -2.560659 -2.919540 -3.399987
Suffolk -5.913140 -5.779053 -4.911084
Tarrant -3.147025 -3.648633 -4.271632

Average -4.327178 -4.640490 -4.972292

(b) SEIQR

Table B.4: Average held-out log-likelihood numbers for the MSEIQR[Multi] and SEIQR models.
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County Average log likelihood
7 days 14 days 28 days

Alameda -2.272243 -2.472632 -2.921608
Allegheny -5.290524 -5.886054 -6.561562
Bexar -1.243805 -1.303534 -1.624272
Broward -2.475610 -2.601691 -2.922158
Clark -2.874675 -2.874134 -3.124725
Cook -5.792146 -6.284522 -6.955929
Dallas -2.441165 -2.762431 -3.360741
Harris -2.133428 -2.422409 -3.047185
Hillsborough -0.825620 -1.166549 -1.419374
King -2.240625 -2.512409 -2.757119
Los Angeles -4.267687 -4.723704 -5.405117
Maricopa -2.463335 -2.714478 -2.977257
Middlesex -4.919390 -5.490939 -6.170833
Nassau -5.413037 -5.358217 -5.134870
New York City -6.433594 -6.645010 -7.161345
Oakland -3.410262 -3.364388 -3.953322
Orange -1.462976 -1.734681 -2.040418
Palm Beach -2.711717 -2.611960 -2.749688
Philadelphia -4.698258 -4.810053 -4.510210
Riverside -3.496074 -3.653838 -4.152404
Sacramento -1.288776 -1.481599 -1.875778
San Bernardino -2.881672 -3.168224 -3.732581
San Diego -2.868105 -3.010828 -3.412882
Santa Clara -2.058977 -2.258750 -2.665601
Suffolk -4.725725 -4.737740 -4.986308
Tarrant -2.140717 -2.446194 -3.086203

Average -3.185775 -3.403730 -3.796519

Table B.5: Average held-out log-likelihood numbers for MSEIQR[Overall].

C Additional plots

C.1 Additional forecasts
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Figure C.5: All forecasts for CMSEIQR except Los Angeles.
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Figure C.6: All forecasts for CSEIQR except Los Angeles.
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Figure C.7: All forecasts for MSEIQR[Multi] except Los Angeles.
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Figure C.8: All forecasts for MSEIQR[Overall].
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Figure C.9: All forecasts for SEIQR.
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C.2 Additional Rt forecasts
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Figure C.10: All Rt forecasts for CMSEIQR except Los Angeles.
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Figure C.11: All Rt forecasts for CSEIQR except Los Angeles.
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Figure C.12: All Rt forecasts for MSEIQR[Multi] except Los Angeles.
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Figure C.13: All Rt forecasts for MSEIQR[Overall].
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Figure C.14: All Rt forecasts for SEIQR.
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