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Abstract 9 

Measures of incidence are essential for investigating etiology. For congenital diseases 10 

and disorders of early childhood, birth year cohort prevalence serves the purpose of 11 

incidence. There is uncertainty and controversy regarding the birth prevalence trend of 12 

childhood disorders such as autism and intellectual disability because changing 13 

diagnostic factors can affect the rate and timing of diagnosis and confound the true 14 

prevalence trend. The etiology of many developmental disorders is unknown, and it is 15 

important to investigate. This paper presents a novel method, Time-to-Event Prevalence 16 

Estimation (TTEPE), to accurately estimate the time trend in birth prevalence of 17 

childhood disorders correctly adjusted for changing diagnostic factors. There is no 18 

known existing method that meets this need. TTEPE is based on established time-to-19 

event (survival) analysis techniques. Input data are rates of initial diagnosis for each 20 

birth year cohort by age or, equivalently, diagnostic year. Diagnostic factors form 21 

diagnostic pressure, i.e., the probability of diagnosing cases, which is a function of 22 

diagnostic year. Changes in diagnostic criteria may also change the effective 23 

prevalence at known times. A discrete survival model predicts the rate of initial 24 

diagnoses as a function of birth year, diagnostic year, and age. Diagnosable symptoms 25 

may develop with age, affecting the age of diagnosis, so TTEPE incorporates eligibility 26 

for diagnosis. Parameter estimation forms a non-linear regression using general-27 

purpose optimization software. A simulation study validates the method and shows that 28 

it produces accurate estimates of the parameters describing the trends in birth 29 

prevalence and diagnostic pressure. The paper states the assumptions underlying the 30 
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analysis and explores optional additional analyses and potential deviations from 31 

assumptions. TTEPE is a robust method for estimating trends in true case birth 32 

prevalence controlled for diagnostic factors and changes in diagnostic criteria under 33 

certain specified assumptions. 34 

Keywords 35 

Birth year prevalence; birth year cohort; incidence; time-to-event; survival analysis; 36 

diagnostic factors; diagnostic pressure; non-linear regression; autism; intellectual 37 

disability; childhood disorders; developmental disorders 38 

Introduction 39 

In epidemiology, incidence - the rate of new cases - is a fundamentally important metric 40 

for estimating causal associations of time-varying risk factors with rates of a disorder 41 

[1,2]. Incidence is different from prevalence, which is the proportion of a defined 42 

population with the disorder at a defined time. For some disorders including congenital 43 

diseases and developmental disorders such as autism and intellectual disability, birth 44 

year cohort prevalence is used instead of incidence [2,3] because disorder incidence is 45 

indistinguishable from birth prevalence, and diagnosis may occur later if at all. 46 

Sometimes “incidence” is used to mean the rate of incident diagnoses rather than true 47 

incidence, which refers to a disorder. While this usage is understandable because 48 

observations inherently represent diagnosis and identification, the difference can be 49 
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critically important when there is uncertainty about the rate and timing of diagnosing or 50 

identifying cases. Serious developmental disorders such as autism and intellectual 51 

disability are important topics of study because they cause a significant reduction in 52 

quality of life across the lifespan [4] for the individuals and their families, and they affect 53 

large numbers of people. 54 

 55 

Studies of time trends in birth year prevalence or incidence are subject to biases 56 

resulting from changes in diagnostic factors and diagnostic criteria [2]. Investigators can 57 

estimate incidence and birth prevalence directly from data on diagnoses. But concerns 58 

that diagnostic factors and diagnostic criteria may have affected the data can lead to a 59 

lack of confidence in the validity of direct estimates. Diagnostic factors are those that 60 

influence the probability of diagnosing or identifying cases. Examples include 61 

awareness, outreach efforts, screening, diagnostic practice, diagnostic criteria, social 62 

factors, policies, and financial incentives for diagnosis. Changes in diagnostic criteria 63 

can also have the additional effect of changing the effective birth prevalence by 64 

including or excluding as cases some portion of the population compared to prior 65 

criteria, with the changes occurring when the new criteria take effect. 66 

 67 

Consider, for example, this question. If reported birth prevalence increased over time, 68 

was this caused by changes in actual birth prevalence, the probability of diagnosing 69 

cases, diagnostic criteria affecting prevalence, or some combination of these factors? It 70 
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is challenging to disentangle these effects, and there is no known existing method 71 

capable of doing so correctly. 72 

Literature Review 73 

There are many studies on the prevalence of developmental disorders, yet very few of 74 

them directly address birth year prevalence trends and very few address methods of 75 

adjustment for diagnostic factors. The series of reports from the US Centers for Disease 76 

Control and Prevention’s (CDC) Autism and Developmental Disabilities Monitoring 77 

Network (ADDM) [5-13] estimate the prevalence of autism among children who were 78 

eight years old at each even-numbered year 2000 through 2016. Each report describes 79 

the prevalence of a single year birth cohort, subject to rounding, born eight years before 80 

the respective study year. The set of reports represents the trend in birth year 81 

prevalence, but the reports describe the findings as simply “prevalence,” and do not 82 

discuss birth year prevalence or similar names. The ADDM reports suggest that the 83 

observed increases in (birth year) prevalence may result from various factors, including 84 

changing composition of study sites and geographic coverage, improved awareness, 85 

and changes in diagnostic practice and availability of services. However, they do not 86 

suggest methods to quantify such effects or to adjust for them. Croen [14] examined 87 

birth year prevalence trends in autism and mental retardation in California for birth years 88 

1987 to 1994. They concluded that the data and methods available were insufficient to 89 

determine how much of the observed increase reflected an increase in true birth 90 

prevalence. Hansen [15] recommends using the cumulative incidence of diagnoses of 91 

childhood psychiatric disorders for each 1-year birth cohort as a measure of risk. They 92 
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do not suggest an analytical method to estimate or adjust for the effects of diagnostic 93 

factors. Nevison [16] presents California Department of Developmental Services data 94 

showing a sharp rise in birth year prevalence of autism over several decades but does 95 

not discuss methods to adjust for the effects of diagnostic factors.  96 

 97 

Elsabbagh [17] states that investigating time trends in prevalence or incidence requires 98 

holding diagnostic factors such as case definition and case ascertainment “under strict 99 

control over time,” but does not suggest a method for doing so. Campbell [18] reviews 100 

prevalence estimates and describes an ongoing controversy about them. They 101 

emphasize the distinction between prevalence and incidence but do not mention birth 102 

year prevalence. They summarized the CDC ADDM estimates and stated that one 103 

cannot infer incidence from the ADDM prevalence estimates. However, they did not 104 

mention that the ADDM estimates are birth year prevalence, which serves the purpose 105 

of incidence for childhood disorders. Campbell indicates that analyses should control for 106 

certain diagnostic factors, but they do not suggest a method for doing so. Baxter [4] 107 

examined prevalence and incidence but did not mention birth year prevalence and did 108 

not indicate whether their use of “incidence” refers to the incident diagnoses or 109 

incidence of the disorder. Later sections of this paper show why the distinction is crucial. 110 

Baxter adjusted for covariates that they assumed introduced bias, including the use of 111 

dichotomous variables representing the most recent diagnostic criteria. Such variables 112 

inherently represent the time each set of criteria took effect. However, Schisterman [19] 113 

shows that controlling for variables on a causal path from the input (time, in this case) to 114 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.05.20169151doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.05.20169151
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Time-to-Event Prevalence Estimation 

 
 

7 

the outcome (prevalence or incident diagnoses) constitutes inappropriate adjustment 115 

and biases the estimate of the primary effect (i.e., of time on prevalence or incident 116 

diagnoses) towards zero. Similarly, Rothman [2] states that controlling for intermediate 117 

variables typically causes a bias towards finding no effect.  118 

 119 

Keyes [20] used age-period-cohort analysis to attempt to disentangle the effects of birth 120 

year (cohort) from diagnostic year (period) and concluded that period effects best 121 

explain observed California data. They also argued that period effects represent 122 

diagnostic factors, without noting that birth year prevalence is inherently a cohort effect. 123 

Spiers [21], in a letter regarding Keyes, pointed out that the method used is extremely 124 

sensitive to the constraints specified and could as easily have concluded that period, 125 

i.e., diagnostic year, effects best explain the data. Spiers also disputed Keyes’ 126 

interpretation of cohort effects. King [22] implicitly used an age-period-cohort analysis, 127 

assuming that period effects are dominant and controlling for birth year. There is 128 

extensive literature on the problems with using age-period-cohort analysis to separate 129 

the effects of birth year (cohort) from diagnostic year (period). Rodgers [23] states that a 130 

constraint of the type used in King “in fact [it] is exquisitely precise and has effects that 131 

are multiplied so that even a slight inconsistency between the constraint and reality, or 132 

small measurement errors, can have very large effects on estimates.” O’Brien [24], in a 133 

book devoted to this topic, states, regarding the relationships of age, period and cohort 134 

to the dependent variable, “There is no way to decide except by making an assumption 135 

about the relationship between these three variables.” MacInnis [24] showed that 136 
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diagnostic factors are represented by the years of first diagnoses, formulates the 137 

problem as one of separating birth year from diagnostic year, and shows that age-138 

period-cohort approaches are not suitable for such analyses. In particular, implicit 139 

assumptions to make the model estimable cause the resulting estimates to conform to 140 

the assumptions, forming circular logic. 141 

 142 

Campbell [18] and McKenzie [26] both point out that various factors could potentially 143 

affect the rate of diagnoses without affecting the true case rate. 144 

Overview 145 

The primary aim of this work is to develop and specify a method to estimate birth 146 

prevalence trends, correctly adjusted for trends in the set of diagnostic factors and 147 

changes in diagnostic criteria. Armed with such a tool, researchers can quantify the 148 

effects of the set of variable causal factors separately from those of the set of diagnostic 149 

factors. Where covariates are available, investigators can estimate associations of birth 150 

prevalence with a variety of population characteristics that may be causal or 151 

explanatory. 152 

 153 

This paper presents a novel statistical method called time-to-event prevalence 154 

estimation (TTEPE). It uses time-to-event survival analysis to estimate the trend in true 155 

birth year prevalence, correctly adjusted for changes in the set of diagnostic factors and 156 

diagnostic criteria. It presents the derivation of the analytical method from first principles 157 

and states all the underlying assumptions. A simulation study shows that the method 158 
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effectively separates and quantifies the birth year trend and the trend in the effects of 159 

diagnostic factors, producing accurate estimates. 160 

Method of time-to-event prevalence estimation 161 

(TTEPE) 162 

Background 163 

Comparison of prevalence estimates across multiple studies generally is not suitable for 164 

informing tends in birth prevalence nor incidence [2]. Different prevalence estimates 165 

may use different mixes of birth years and ages, as well as numerous other possible 166 

differences between prevalence studies [27]. Many combinations of trends in birth 167 

prevalence and diagnostic factors could potentially explain observed prevalence trends. 168 

The Introduction section briefly describes the problems with age-period-cohort analyses. 169 

Age (A), diagnostic year (DY), and birth year (BY) are exactly collinear, 𝐷𝑌 = 𝐵𝑌 + 𝐴, 170 

subject to rounding, which leads to unidentified estimates when using a linear predictor. 171 

Another reason is that the age distribution of diagnoses can differ for different solutions 172 

of BY and DY, as shown below. It is challenging to estimate the age distribution correctly 173 

given the collinearity problem. 174 

 175 

Analysis of the cumulative incidence, to a consistent age, of diagnoses in each birth 176 

cohort comes closer to estimating the trend in true birth prevalence, but results are still 177 
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ambiguous. Here too, many combinations of trends in birth prevalence and diagnostic 178 

factors can produce similar trends in cumulative incidence.  179 

Ambiguity in estimation 180 

How should one interpret a dataset that produces any one of the cumulative incidence 181 

curves illustrated in Fig 1? The figure represents synthetic data; some real-world data 182 

may be similar. Observed data might produce a curve resembling any one of the curves 183 

in the figure. An exponential curve with a coefficient of 0.1 fits all three plotted lines 184 

reasonably well. Does this represent a true increase in birth prevalence with a 185 

coefficient of 0.1? Does it result from an exponential increase in the effects of diagnostic 186 

factors, with no increase in birth prevalence? Perhaps a combination of both? The three 187 

similar cumulative incidence curves represent quite different possible explanations. How 188 

to distinguish which one is correct?  189 

 190 
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Fig 1. Example of cumulative incidence under three models. 𝛽P	is the coefficient for birth 191 

prevalence; 𝛽H is the coefficient for the effect of diagnostic factors.	Red line with circles 192 

represents 𝛽P	=	0.1,	𝛽H	=	0;	green line with squares represents	𝛽P	=	0.08,	𝛽H	=	0.5;	blue line with 193 

crosses represents	𝛽P	=	0,	𝛽H	=	0.134.		194 

 195 

Fig 1 illustrates a hypothetical example of cumulative incidence to age ten over 20 196 

consecutive cohorts. The legend lists the parameter value pairs for the three cases. 𝛽8 197 

is the exponential coefficient of birth year prevalence, and 𝛽9 is the exponential 198 

coefficient of the effect of diagnostic factors by diagnostic year. The data generation 199 

process producing these data uses a survival process as detailed below. An Excel 200 

spreadsheet to generate all plots in this paper is available at OSF [28]. The variable ℎ 201 

represents diagnostic pressure, the effect of diagnostic factors, which is equivalent to 202 

hazard, as explained in the section Significance of birth year and diagnostic year. While 203 

the three cumulative incidence curves appear similar, the age distributions of diagnoses 204 

are strikingly different, as Fig 2 shows. The remainder of this paper explains how 205 

modeling the age distribution of first diagnoses enables accurate and unambiguous 206 

estimation of the coefficients for birth prevalence and diagnostic factors.  207 
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 208 

Fig 2. Distribution of diagnoses in the first and last cohorts under three models. 𝛽P	is the 209 

coefficient for birth prevalence; 𝛽H is the coefficient for the effect of diagnostic factors.	Red lines 210 

with circles represent 𝛽P	=	0.1,	𝛽H	=	0;	green lines with squares represent 𝛽P	=	0.08,	𝛽H	=	0.5;	211 

blue lines with crosses represent	𝛽P	=	0,	𝛽H	=	0.134.		212 
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 213 

If the disorder’s complete cause is in place at birth, then the incidence of the disorder is 214 

indistinguishable from birth prevalence. In contrast, diagnosis occurs later, if at all. The 215 

incidence of diagnosis represents the combination of birth prevalence and delays and 216 

omissions in diagnoses. 217 

 218 

One might consider controlling for diagnostic factors over time, for example, via 219 

regression, but that is not sufficient to distinguish between alternative explanations. 220 

Diagnostic factors are a function of time, and birth year prevalence is also a function of 221 

time. As the Introduction states, controlling directly for diagnostic factors biases the 222 

estimates of the main effect, typically towards zero, citing Schisterman [19] and 223 

Rothman [2]. Schisterman recommends, “clearly stating a causal question to be 224 

addressed, depicting the possible data generating mechanisms using causal diagrams, 225 

and measuring indicated confounders.” This paper directly addresses these issues. 226 

Significance of birth year and diagnostic year 227 

Diagnostic factors only affect the diagnosis of cases when those cases exhibit 228 

diagnosable symptoms, referred to as being eligible for diagnosis. Diagnostic pressure 229 

is the probability of diagnosing eligible undiagnosed cases, and it is an effect of the 230 

combination of all diagnostic factors. The Introduction lists examples. 231 

 232 
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Diagnostic pressure is equivalent to the hazard ℎ in time-to-event or survival analysis. 233 

For each case of the disorder, the information resulting from diagnostic pressure 234 

consists of the time of initial diagnosis, that is, the diagnostic year. Diagnostic pressure 235 

has no observable effect before the diagnosis of each case, and none after the initial 236 

diagnosis since TTEPE considers only initial diagnoses. Hence, the effect of diagnostic 237 

pressure on the input data is a function of diagnostic year.  238 

 239 

The directed acyclic graph (DAG) in Fig 3 illustrates the causal paths from birth year, 240 

diagnostic year, and age to diagnosis. Birth year drives etiologic (causal) factors, which 241 

produce the disorder and its symptoms. Diagnostic criteria determine whether each 242 

individual’s symptoms qualifies them as a case, and criteria may change at specific 243 

diagnostic years. Symptoms may vary with age. Diagnostic year drives diagnostic 244 

factors, which form diagnostic pressure. Diagnosable symptoms and diagnostic 245 

pressure together produce each initial diagnosis. 246 
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 247 

Fig 3. Directed Acyclic Graph Representing Year of Birth, Diagnostic Year and Age 248 

 249 

Changes in diagnostic criteria can affect the threshold of symptoms that qualify case 250 

status. Criteria changes may change the proportion of the cohort classified as cases, 251 

i.e., the effective prevalence. 252 

Development of the TTEPE method 253 

The TTEPE method is based on the DAG of Fig 3 and modeling the age distribution of 254 

initial diagnoses. The method avoids the identification problem associated with age-255 

period-cohort analysis, and it avoids the problem of inappropriate adjustment for 256 

diagnostic factors. 257 

 258 
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TTEPE is particularly applicable to disorders where case status is established by birth 259 

or by a known age, and diagnosable symptoms are present by some consistent age. It 260 

is also useful where cases develop diagnosable symptoms gradually over a range of 261 

ages.  262 

 263 

Data sources suitable for TTEPE analysis provide rates of initial diagnoses by age or, 264 

equivalently, diagnostic year for each birth cohort. The rate is the count of initial 265 

diagnoses divided by the population of the cohort at the respective age. 266 

 267 

TTEPE relies on these principles: for each birth cohort, the number of cases at risk of 268 

initial diagnosis decreases as cases are diagnosed, and diagnostic year is the time 269 

when diagnostic factors affect the probability of diagnosing cases exhibiting diagnosable 270 

symptoms. 271 

 272 

First, consider the case where the diagnostic criteria do not change the effective 273 

prevalence over the interval of interest. The section Changes in criteria affecting 274 

prevalence examines the alternative. 275 

 276 

The principle of finding the simplest model that fits the data, sometimes called Occam’s 277 

Razor, could lead to the conclusion that birth year effects best explain the observed 278 

birth year prevalence trends. However, the most parsimonious model is not always the 279 
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best one [29]. Specifically, diagnostic pressure as a function of diagnostic year could 280 

potentially be an essential component for explaining observed diagnosis data. 281 

 282 

TTEPE is an extension of established time-to-event methods. TTEPE simultaneously 283 

estimates the birth prevalence and diagnostic pressure functions by fitting a model to 284 

the rate of initial diagnoses at each data point. It models the age distribution of rates of 285 

initial diagnoses via a survival process as a function of birth year, diagnostic year (birth 286 

year plus age), and eligibility. 287 

 288 

TTEPE introduces the concept of eligibility. A case is eligible for diagnosis if the 289 

individual has diagnosable symptoms and not eligible if the individual has not yet 290 

developed diagnosable symptoms. For each birth cohort, undiagnosed eligible 291 

individuals form the risk set of cases at risk of initial diagnosis. The size of the risk set is 292 

denoted R. At each age there is some probability of diagnosis of each case in the risk 293 

set. This probability is the diagnostic pressure h. At each age, newly diagnosed cases 294 

are removed from the risk set, and newly eligible cases are added to the risk set. For 295 

any given value of h, as R decreases or increases, the rate of initial diagnoses D 296 

changes accordingly. This process generates the modeled age distribution. The survival 297 

function	S		refers to cases that “survive” diagnosis at each age. If all cases were eligible 298 

from birth, S  would equal R. More generally, however, some cases may initially be 299 

ineligible and become eligible as they age, so 𝑅 ≤ 𝑆. The prevalence P  is the proportion 300 
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of the population that are or become cases. The eligibility factor E  is the eligible 301 

proportion of P; 0 ≤ 𝐸 ≤ 1. 302 

 303 

In contrast, in typical survival or time-to-event analysis, including Cox proportional 304 

hazards analysis [30], the initial size of the risk set is assumed to have a known value, 305 

for instance, an entire population or an entire sample. If the risk set R consisted of the 306 

entire population without subtracting diagnosed cases, the estimate ℎCD = 𝐷C/𝑅C would 307 

be equivalent to the population-based rate of diagnoses D at time t. If the disorder is 308 

rare, it makes little difference whether the risk set is the entire population or the 309 

undiagnosed portion. 310 

 311 

Population-based rates of initial diagnoses D are observable while the other variables 312 

are not. Different values of diagnostic pressure ℎ produce different values of D	 for a 313 

given value of prevalence P, as shown in the Illustrative example section. 314 

Time-to-event analysis model 315 

The analysis model enables estimation of the temporal trend of birth prevalence 𝑃 over 316 

a range of cohorts, correctly adjusted for diagnostic pressure h. Both P  and h can vary 317 

with time. P  is a function of birth year, and h is a function of diagnostic year. Estimation 318 

of P  adjusted for h requires estimating the time-based parameters of both P  and	h		in 319 

the time-to-event model and specifying or estimating the eligibility function E.	320 

 321 
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Let 𝐷HI,J be the population-based rate of incident diagnoses, where BY	 is birth year, 322 

and A is age. The model generates predicted values 𝐷HI,JK . Modeling of proportions 323 

rather than counts accommodates changes in the population size of each cohort over 324 

time, e.g., due to in- and out-migration and deaths. Count values are useful for 325 

calculating p-values from chi-square goodness-of-fit measurements. Alternatively, the 326 

analysis could model counts directly. 327 

 328 

Let ℎLI be the diagnostic pressure at diagnostic year DY. 𝐷𝑌 = 𝐵𝑌 + 𝐴, subject to 329 

rounding, so ℎLI	is equivalent to ℎHI,J. Let 𝑃HI be the case prevalence of birth year 330 

cohort BY. Let 𝑅HI,J be the discrete risk set function of the population proportion of 331 

eligible cases at risk of initial diagnosis at age A		for birth year BY.  TTEPE uses R		rather 332 

than a discrete survival function S  to accommodate eligibility changing with age. Let 𝐸J 333 

be the discrete eligibility function, the proportion of cases that are eligible at age A, 334 

bounded by 0 ≤ 𝐸 ≤ 1. At each age 𝐴 ≥ 1, 𝑃 × (𝐸J − 𝐸JQR) is the incremental portion of 335 

prevalent cases added to R due to changes in eligibility. For simplicity, assume 𝐸J 336 

increases monotonically, i.e., non-decreasing, meaning that cases do not lose eligibility 337 

before diagnosis. 338 

 339 

Kalbfleisch [31] gives background on general time-to-event theory and equations.  340 

 341 

Consider three scenarios, differing by the characteristics of 𝐸J. Here we write ℎLI as 342 

ℎHI,J to clarify the effect of 𝐴 in 𝐷𝑌 = 𝐵𝑌 + 𝐴. 343 
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 344 

Scenario: constant 𝐸J = 1. All cases are eligible from birth, so 𝐸J = 1 for all values of	𝐴. 345 

This scenario is equivalent to standard time-to-event models that do not consider 346 

eligibility. For 𝐴 ≥ 1, 𝐸J − 𝐸JQR = 0. For the first year of age, 𝐴 = 0, 𝑅HI,T = 𝑃HI𝐸T = 𝑃HI 347 

and 𝐷HI,T = 𝑅HI,TℎHI,T = 𝑃HIℎHI,T. 348 

For 𝐴 = 1, 𝑅HI,R = 𝑃HI − 𝐷HI,T = 𝑃HI − 𝑃HIℎHI,T = 𝑃HI(1 − ℎHI,T) and 349 

𝐷HI,R = 𝑅HI,RℎHI,R = 𝑃HI(1 − ℎHI,T)ℎHI,R. 350 

For 𝐴 = 2, 𝑅HI,V = 𝑅HI,R − 𝐷HI,R = 𝑃HIW1 − ℎHI,TX − 𝑃HIW1 − ℎHI,TXℎHI,R = 351 

𝑃HIW1 − ℎHI,TX(1 − ℎHI,R) and 𝐷HI,V = 𝑅HI,VℎHI,V = 𝑃HI(1 − ℎHI,T)(1 − 𝐻HI,R)ℎHI,V. 352 

Similarly, for 𝐴 = 3,  353 

𝑅HI,Z = 𝑃HI(1 − ℎHI,T)(1 − ℎHI,R)(1 − ℎHI,V) and 354 

𝐷HI,Z = 𝑃HI(1 − ℎHI,T)(1 − ℎHI,R)(1 − ℎHI,V)ℎHI,Z. 355 

 356 

Generally, for 𝐴 ≥ 1, 357 

𝑅HI,J = 𝑃HI[(1 − ℎHI,\)
JQR

\]T

 358 

and 359 

𝐷HI,J = 𝑃HI[W1 − ℎHI,\X
JQR

\]T

ℎHI,J (1) 360 

 361 

In all three scenarios in this paper, the survival function is:  362 
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𝑆𝐵𝑌,𝐴 = 𝑃𝐵𝑌 −^𝐷𝐵𝑌,𝑎

𝐴−1

𝑎=0

(2) 363 

The summation term is the cumulative incidence of initial diagnoses through age 𝐴 − 1. 364 

 365 

Scenario: Increasing 𝐸J. 𝐸T < 1 and 𝐸J increases monotonically with A. For 𝐴 = 0, 366 

𝑅HI,T = 𝐸T𝑃HI and 𝐷HI,T = 𝐸T𝑃HIℎHI,T. For each 𝐴 ≥ 1, 𝑅HI,J = 𝑅HI,JQR − 𝐷HI,JQR +367 

(𝐸J − 𝐸JQR)𝑃HI. The incremental increase of 𝐸J causes an incremental increase in 𝑅HI,J. 368 

Then,  369 

𝐷HI,J = 𝑅HI,JℎHI,J = W𝑅HI,JQR − 𝐷HI,JQRXℎHI,J + (𝐸J − 𝐸JQR)𝑃HIℎHI,J (3) 370 

Equation (3) can be useful as a procedural definition. We can write equivalent 371 

expressions for 𝑅HI,J and 𝐷HI,J as sums of expressions similar to equation (1), where 372 

each summed expression describes the portion of 𝑃HI that becomes eligible at each 373 

age according to	𝐸J. For 𝐴 ≥ 1, 374 

 375 

𝑅HI,J = 	^(𝐸\ − 𝐸\QR)𝑃HI[(1− ℎHI,a)
JQR

a]\

JQR

\]T

 376 

 377 

𝐷HI,J = 	^(𝐸\ − 𝐸\QR)𝑃HI[W1− ℎHI,aX
JQR

a]\

JQR

\]T

ℎHI,J (4) 378 

 379 

where 𝐸QR is defined to be 0. 𝐸J can be defined parametrically or non-parametrically. 380 

 381 
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Scenario: Plateau 𝐸J. 𝐸J increases from 𝐸T < 1 and plateaus at 𝐸J = 1 for 𝐴 ≥ 𝐴𝐸, 382 

where 𝐴𝐸 is the age of complete eligibility, 𝐴𝐸 < 𝑀, and 𝑀 is the maximum age 383 

included in the analysis. Equation (3) applies, noting that for 𝐴 > 𝐴𝐸, (𝐸J − 𝐸JQR) = 0. 384 

Equivalently, combine equation (2) with the fact that 𝐸Jd = 1 to obtain 𝑅Jd = 𝑆Jd = 𝑃HI −385 

∑ 𝐷HI,\JdQR
\]T , so 386 

𝐷HI,Jd = 𝑅HI,JdℎHI,Jd = 𝑆HI,JdℎHI,Jd = (𝑃HI − ^ 𝐷HI,\)
JdQR

\]T

ℎHI,Jd (5) 387 

and for 𝐴 > 𝐴𝐸, 388 

𝑅HI,J = 𝑆HI,J = (𝑃HI − ^ 𝐷HI,\)
JdQR

\]T

[ (1 − ℎHI,a)
JQR

a]Jd

 389 

 390 

𝐷HI,J = (𝑃HI − ^ 𝐷HI,\)
JdQR

\]T

[ W1− ℎHI,aX
JQR

a]Jd

ℎHI,J (6) 391 

 392 

The scenario of increasing 𝐸J is a general formulation and may not be needed in 393 

practice. The plateau 𝐸J	scenario may be appropriate when external information, such 394 

as the definition of the disorder, indicates the value of AE, or when investigators specify 395 

AE  based on estimates of 𝐸J found using equation (4). Equations (5) and (6) do not 396 

model 𝐸J nor 𝐷HI,J for 𝐴 < 𝐴𝐸. Rather, they use the empirical values of 𝐷HI,J for 𝐴 <397 

𝐴𝐸. 398 
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Prevalence, cumulative incidence and censoring 399 

The case prevalence in each cohort is the cumulative incidence of initial diagnoses 400 

through the last age of follow-up plus the censored portion. This assumes that any 401 

difference in competing risks between cases and non-cases in the age range analyzed 402 

is small enough to be ignored. This assumption is consistent with Hansen [15]. If the 403 

rate of deaths of cases before initial diagnosis exceeds that of the entire population of 404 

the cohort at the same ages, that excess would constitute a competing risk and would 405 

reduce the estimated prevalence accordingly. 406 

 407 

In all three scenarios of 𝐸J, we can express P  as a function of S  and the cumulative 408 

incidence 𝐶𝐼 = 	∑ 𝐷HI,\JQR
\]T  for 𝐴 > 0, by rearranging equation (2) as 𝑃 = 𝑆J + 𝐶𝐼JQR. 409 

Assuming that eligibility at the last age of follow-up 𝐸i = 1, 𝑆i = 𝑅i. Then, 𝑃 = 𝑅i +410 

𝐶𝐼iQR and 𝐷i = 𝑅iℎi. The censored proportion is 𝑆ijR = 𝑆i − 𝐷i, which is equivalent 411 

to 𝑆ijR = 𝑅i − 𝑅iℎi =	𝑅i(1 − ℎi). After estimating the model parameters, the 412 

estimated censored proportion is 𝑆ijRK = 𝑅ik(1 − ℎik). 413 

Illustrative example 414 

Fig 4 illustrates an example according to the plateau 𝐸J scenario showing the 415 

relationships between prevalence, diagnosis rates, the survival function, and cumulative 416 

incidence CI  with two different values of diagnostic pressure h = 0.1 and h = 0.25 and 417 

prevalence 𝑃 = 0.01. In this example, 𝐸 = 1 for 𝐴 ≥ 𝐴𝐸 =	3 and h		takes on one of two 418 

constant values. The value of h		determines the shapes of these functions vs. age. This 419 
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example shows constant values of h	 purely for clarity, not as an assumption nor a 420 

limitation of TTEPE. 421 

 422 

Fig 4. Example of a survival process for two values of diagnostic pressure h.  423 

The green lines S  denote survival, the blue lines D  denote the rate of diagnoses, and the red 424 

lines CI  denote cumulative incidence. The solid lines represent h=0.1,	and the dotted lines 425 

represent h=0.25. 426 

 427 

As cases are diagnosed, S	 decreases and CI	 increases. R	 is not shown; 𝑅 = 𝑆 for 𝐴 ≥428 

𝐴𝐸 = 3. Only D	 is observable. 429 
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Assumptions 430 

Several baseline assumptions enable TTEPE analysis. Some assumptions may be 431 

relaxed, as discussed below. 432 

 433 

1. The eligibility function 𝐸J under consistent diagnostic criteria is consistent across 434 

cohorts. 435 

2. The diagnostic pressure applies equally to all eligible undiagnosed cases at any 436 

given diagnostic year. 437 

3. The case prevalence under consistent diagnostic criteria within each cohort is 438 

constant over the range of ages included in the analysis. 439 

4. Case status is binary according to the applicable diagnostic criteria. 440 

5. The discrete-time interval (e.g., one year) is small enough that the error 441 

introduced by treating the variable values as constant within each interval is 442 

negligible. 443 

6. No false positives. 444 

7. Data represent truly initial diagnoses. 445 

8. Any difference in competing risks between cases and non-cases in the age range 446 

analyzed is small enough to be ignored. 447 

 448 

The assumption of a consistent eligibility function means that cases develop 449 

diagnosable symptoms as a function of age, and that function is the same for all cohorts 450 
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under consistent diagnostic criteria. The section Changes in criteria affecting prevalence 451 

discusses a separate effect that might make the eligibility function appear inconsistent. 452 

Estimating parameters 453 

TTEPE performs a non-linear regression that estimates the parameters of a model of 454 

𝐷HI,J using general-purpose optimization software. The model is based on equations (1) 455 

through (6) selected based on the eligibility scenario. The model produces estimates 456 

𝐷HI,JK  from the parameters and independent variables, and the software finds the 457 

parameter values that minimize a cost function cost(𝐷, 𝐷D). One suitable implementation 458 

of optimization software in the Python language is the curve_fit() function in the SciPy 459 

package (scipy.optimize.curve_fit in SciPy v1.5.2). Its cost function is (𝐷 − 𝐷D)V, so it 460 

minimizes the sum of squared errors. Python software to perform this regression and 461 

the simulations described below is available at OSF [28]. 462 

 463 

Investigators should choose which model equation to use based on knowledge or 464 

estimates of the eligibility function 𝐸J. The constant 𝐸J scenario and equation (1) 465 

assume that all cases are eligible from birth, which may not be valid for some disorders. 466 

The validity of the assumption that all cases are eligible by a known age AE, i.e., the 467 

plateau 𝐸J scenario and equation (6), may be supported by either external evidence, 468 

e.g., the definition of the disorder, or estimation of 𝐸J. The least restrictive approach of 469 

the increasing 𝐸J scenario uses equation (4) to estimate 𝐸J. Non-parametric estimates 470 

𝐸Jk	can inform a choice of a parametric form of 𝐸J. The value of 𝐸J at the maximum age 471 

studied 𝑀 should be set to 1 to ensure the estimates are identifiable. If 𝐸J = 1 for all 𝐴 ≥472 
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𝐴𝐸, that fact and the value of 𝐴𝐸 should be apparent from estimates 𝐸Jk, and the plateau 473 

𝐸J	scenario applies. 474 

 475 

Investigators should choose forms of 𝑃HI and ℎHI,J appropriate to the dataset. Linear, 476 

first-order exponential, second-order exponential or non-parametric models may be 477 

appropriate. Graphical and numeric model fit combined with degrees of freedom can 478 

guide the optimum choice of a well-fitting parsimonious model. 479 

 480 

TTEPE preferably estimates P and h simultaneously over a series of cohorts, utilizing 481 

data points from all cohorts, thereby enabling well-powered estimation and flexible 482 

model specification. Alternatively, under some conditions, it may be possible to estimate 483 

h in a single cohort and estimate P	 based on ℎn. 484 

 485 

Suppose the population proportion of cases represented in the data is unknown for all 486 

cohorts. In that case, estimates of the absolute prevalence, or the intercept, may be 487 

underestimated by an unknown scale factor. If that proportion is known for at least one 488 

cohort, we can use it to calibrate the intercept. Proportional changes in prevalence 489 

between cohorts are unaffected by underestimation of the intercept. If the population 490 

proportion of cases included in the sample changes over time, that change reflects 491 

changing diagnostic factors, and the estimated parameters of h automatically represent 492 

such changes. 493 
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Changes in criteria affecting prevalence 494 

Changes in diagnostic criteria could potentially affect rates of initial diagnoses by 495 

changing the effective prevalence. This mechanism is distinct from diagnostic pressure. 496 

Changes in criteria may change the effective prevalence within a cohort, without 497 

affecting symptoms or etiology, by including or excluding as cases some portion of the 498 

cohort population compared to prior criteria. A criteria change may change the effective 499 

prevalence of the entirety of any cohort where the birth year is greater than or equal to 500 

the year the change took effect. For birth years before the year of criteria change, a 501 

change in criteria that changes the effective prevalence causes an increase or decrease 502 

in the size of the risk set R starting at the diagnostic year the change took effect. 503 

Generally, diagnostic criteria should be given in published documents, such that 504 

changes in criteria correspond to effective dates of new or revised specifications.  505 

 506 

Let o𝐶𝐹qrs be the set of criteria factors that induce a multiplicative effect on effective 507 

prevalence due to criteria changes that occurred at criteria years {𝑐𝑦} after the first 508 

𝐷𝑌	included in the study. 𝑃HI is the prevalence of cohort BY	 before the effect of any of 509 

o𝐶𝐹qrs. For each cohort BY, the effective prevalence 𝐸𝑃HI,J at age A is  510 

𝐸𝑃HI,J = 𝑃HI[ 𝐶𝐹qr
qrx(HIjJ)

(7) 511 

where 𝐶𝐹T, the value in effect before the first 𝐷𝑌 in the study, equals 1. The combination 512 

of 𝑃HI and the effects of all o𝐶𝐹qr|𝑐𝑦 ≤ 𝐵𝑌 + 𝐴s determines the final effective prevalence 513 

of each cohort. 514 
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 515 
For a given BY	 and increasing A, 𝐵𝑌 + 𝐴 crossing any 𝑐𝑦 causes a step-change in the 516 

effective prevalence EP. Using a general formulation of eligibility 𝐸J, per the increasing 517 

𝐸J scenario and equation (3), and for clarity substituting 𝐵𝑌 + 𝐴 for DY, we obtain the 518 

following. For 𝐴 = 0, 𝑅HI,T = 𝐸T𝐸𝑃HI,T and 𝐷HI,T = 𝐸T𝐸𝑃HI,TℎHI,T. For 𝐴 ≥ 1,  519 

𝑅HI,J = 𝑅HI,JQR − 𝐷HI,JQR + 𝐸J(𝐸𝑃HI,J − 𝐸𝑃HI,JQR) + (𝐸J − 𝐸JQR)𝐸𝑃HI,J 520 

and 521 

𝐷HI,J = [𝑅HI,JQR − 𝐷HI,JQR + 𝐸J(𝐸𝑃HI,J − 𝐸𝑃HI,JQR) + (𝐸J − 𝐸JQR)𝐸𝑃HI,J]ℎLI (8) 522 

The term 𝐸𝑃HI,J − 𝐸𝑃HI,JQR represents the change in the effective prevalence EP when 523 

𝐵𝑌 + 𝐴 crosses one of {𝑐𝑦}. As each 𝐶𝐹qr takes effect at 𝑐𝑦 = 𝐷𝑌 = 𝐵𝑌 + 𝐴, the newly 524 

effective 𝐶𝐹qr changes 𝐸𝑃HI,J and 𝑅 in all BY	 cohorts where cy corresponds to an age A 525 

in the range of ages studied. These changes in R affect the rates of initial diagnoses D. 526 

For cohorts born after cy, 𝐶𝐹qr applies to all ages. 527 

 528 

The parameters of 𝑃HI quantify the birth year prevalence controlled for diagnostic 529 

criteria changes, which are represented by {𝐶𝐹qr}. In other words, 𝑃HI is the cohort 530 

prevalence that would have occurred if the initial criteria had been applied at all 531 

diagnostic years included in the study. 532 

 533 

To estimate the parameters, use a software model of equation (8) with optimization 534 

software, as described in the previous section. 535 
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Potential violations of assumptions 536 

Suppose a dataset represents a non-homogeneous set of cases with different effective 537 

values of diagnostic pressure h applying to different unidentified subgroups at the same 538 

DY. That would violate the assumption that the diagnostic pressure applies equally to all 539 

eligible undiagnosed cases at any given DY. Cases may have differing degrees of 540 

symptom severity, and more severe symptoms may result in earlier diagnosis [32], 541 

implying greater diagnostic pressure. Fig 5 illustrates this situation. The figure illustrates 542 

constant values of h purely for clarity, not as an assumption nor a limitation. If data 543 

represent unidentified subgroups with differential diagnostic pressure, the distribution of 544 

diagnoses is a sum of distributions with different values of h. Such a sum of distributions 545 

with different values of h may impair fit with a model that assumes homogeneous h. For 546 

data where 𝐸 = 1 for 𝐴 ≥ 𝐴𝐸 (plateau 𝐸J), adjusting the assumed value of AE	 used in 547 

estimation, called AE*, may mitigate such errors, as shown in the Simulation study 548 

section. Stratified estimation using subgroup data, if available, can avoid the issue of 549 

unidentified non-homogenous subgroups. 550 
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 551 

Fig 5. Example where observed diagnosis rates represent two unidentified subgroups with 552 

different values of diagnostic pressure. The red and green lines represent rates of diagnosis of 553 

the two subgroups. The solid black line shows the aggregate diagnosis rates. The dotted line 554 

shows the exponential fit to the aggregate diagnosis rates. The age of eligibility AE = 3 in this 555 

example. 556 

 557 

Any imbalance of case prevalence between in-migration and out-migration to and from 558 

the region defining the population over the study period would violate the assumption of 559 

constant prevalence within each cohort.  560 

 561 

If some in-migrating cases were diagnosed before in-migration and their subsequent re-562 

diagnoses in the study region were labeled as initial diagnoses, that would violate the 563 
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assumption of truly first diagnoses. Such an effect would be most evident at greater 564 

ages after the diagnosis of most cases. Bounding the maximum age studied 𝑀 to a 565 

modest value, sufficient to capture most initial diagnoses, can minimize any resulting 566 

bias. 567 

 568 

Apart from subgroups with non-homogeneous h, it is theoretically possible for h to have 569 

different effective values for cases of different ages with the same symptom severity at 570 

the same DY. Such an effect would represent an age bias in diagnostic pressure, 571 

independent of symptom severity. If there is a reason to suspect such an age bias, 572 

investigators can add an age parameter to h in the model and estimate its parameters. 573 

 574 

For datasets where diagnosis follows best practices using gold-standard criteria, the 575 

lack of false positives may be a fair assumption. It would be difficult to discover any 576 

false positives in that case. Where diagnosis uses a less precise process, some false 577 

positives might occur. For example, diagnosticians might tend to produce a positive 578 

diagnosis of individuals who do not meet formal diagnostic criteria, perhaps under 579 

pressure from the patient or parents, or to facilitate services for the individual. In 580 

scenarios where the rate of false positives is significant, the age distribution relative to 581 

the rates of true diagnoses may be important. If false positives are uniformly distributed 582 

over the age range studied, they would cause a constant additive offset to the rates of 583 

diagnoses. True case diagnoses should be more common at younger ages, and less 584 

common as the risk pool is depleted, so false positives may be relatively more evident 585 
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at older ages. If false positives are more common at older ages, their effect may be 586 

even more obvious. 587 

Model fit 588 

To ensure robust conclusions, investigators should test the model fit to ascertain both 589 

model correctness and parameter estimation accuracy. The model fits well if summary 590 

measures of the error are small and individual point errors are unsystematic and small 591 

[33]. One can examine the fit both graphically and numerically. Plots of 𝐷HI,J vs. 𝐷HI,JK  at 592 

all ages for individual cohorts can illuminate any issues with fit, which might occur at 593 

only some cohorts or ages. Visualization of the model vs. data can expose aspects of 594 

the data that might not fit well in a model with few parameters, possibly suggesting a 595 

higher-order model or semi-parametric specifications.  596 

 597 

If the model uses an assumed age of complete eligibility AE*  that differs from the true 598 

value of AE	 represented by the data, model fit may be impaired, particularly if AE*<AE. 599 

As the Simulation study section shows, setting AE*<AE		can result in estimation errors. 600 

Setting AE*	>AE	 tends not to impair model fit and may improve it in the case of non-601 

homogeneous subgroups; see Fig 5. The presence of non-homogeneous subgroups 602 

may be evident from examining model fit. 603 

 604 

The chi-square test statistic, applied to the overall model, individual cohorts, and single 605 

ages across cohorts, is a numerical approach to assess absolute model fit. The p-value 606 
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associated with the chi-square statistic utilizes observed and expected count values, not 607 

proportions. The p-value incorporates the effect of the number of parameters in the 608 

model via the degrees of freedom.  609 

Simulation study 610 

We tested the TTEPE method via a simulation study where we know the ground truth of 611 

all parameters, following the recommendations in Morris [34]. There are six pairs of 612 

values of 𝛽9	and	𝛽8, each ranging from 0 to 0.1 in steps of 0.02, and each pair sums to 613 

0.1. In one parameter set, the prevalence increases as 𝑒T.R×HI and diagnostic pressure 614 

is constant; in another parameter set, the prevalence is constant and diagnostic 615 

pressure increases as 𝑒T.R×LI; and the other four parameter sets represent various rates 616 

of change of both variables. In all cases, 𝑃 = 0.01 at the final BY, h = 0.25 at the final 617 

DY, AE = 3, M = 10, and there are 20 successive cohorts. These simulations assume the 618 

investigators know the correct value AE* = 3 from either knowledge of the disorder or 619 

estimation of 𝐸J. The study synthesized each data model as real-valued proportions 620 

without sampling and with binomial random sample generation of incident diagnoses. 621 

For sampling, the population of each cohort is a constant 500,000. Monte Carlo 622 

simulation of parameter estimation bias and model standard error (SE) used 1000 623 

iterations of random data generation for each set of parameters. Parameter estimation 624 

is as described above, implemented using the Python SciPy curve_fit() function. 625 

 626 
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Table 1 shows results using real-valued proportions without sampling, isolating the 627 

estimation process from random sampling variations. It shows the bias in estimating 628 

each of the four model parameters for each of the six combinations of 𝛽9	and	𝛽8.	The 629 

biases are minimal; the greatest bias magnitude in 𝛽8k occurs with 𝛽P = 0 and 𝛽h = 0.1 and 630 

is on the order of 10-10.  631 

 632 

Table 1. Simulation results of parameter optimization using real-valued 633 

proportions with no sampling. 634 

True Parameters Bias 𝑷D 

at final BY 

Bias 𝜷𝑷k  Bias 𝒉D 

at final DY 

Bias 𝜷𝒉k  

𝛽P 𝛽h     

0.1 0 5.9E-12 8.9E-11 -5.5E-10 -1.8E-10 

0.08 0.02 0 0 -2.8E-17 -1.4E-17 

0.06 0.04 -1.7E-18 0 1.1E-16 1.4E-17 

0.04 0.06 3.5E-18 1.4E-17 -5.6E-17 -6.9E-18 

0.02 0.08 0 3.5E-18 5.6E-17 -1.4E-17 

0 0.1 -4.7E-11 -6.6E-10 2.2E-9 7.7E-10 

P	= 0.01 at the final BY, h =0.25 at the final DY, AE*=AE	=3, M = 10, and there are 635 

20 successive cohorts. 636 

𝛽8, 𝛽9 are coefficients for prevalence and hazard, respectively. 637 

P, prevalence; BY, birth year;	DY,	diagnostic year. 638 

 639 
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Table 2 gives results from Monte Carlo analysis of the same parameter sets where the 640 

data use binomial sampling. It shows the bias and model SE of each parameter for each 641 

parameter set. The bias of the primary parameter 𝛽8k remains small, on the order of 10-5 642 

or 10-6. The SE is relevant when considering sampling, and it shows the effect of 643 

sampling compared to Table 1.  644 

 645 

Table 2. Simulation results of parameter optimization using Monte Carlo with 646 

binomial sampling, 1000 iterations.  647 

True 

Parameters	

𝑷D	at final BY  𝜷𝑷k  𝒉	Dat final DY 𝜷𝒉k  

𝛽P 𝛽h Bias SE Bias SE Bias SE Bias SE 

0.1 0 -2.0E-6 1.0E-4 -2.0E-5 0.0013 3.3E-5 0.0070 -5.4E-6 0.00191 

0.08 0.02 -2.6E-6 1.1E-4 -3.2E-5 0.0012 1.5E-4 0.0072 4.4E-5 0.00191 

0.06 0.04 7.8E-6 1.2E-4 2.7E-5 0.0013 -4.4E-4 0.0079 -1.2E-4 0.00207 

0.04 0.06 6.5E-5 0.0015 6.5E-5 0.0015 -5.8E-4 0.0085 -1.6E-4 0.00224 

0.02 0.08 -2.0E-6 1.6E-4 -9.8E-6 0.0016 4.4E-4 0.0086 9.4E-5 0.00227 

0 0.1 4.5E-6 1.8E-4 7.1E-6 0.0017 2.0E-4 0.0094 2.7E-5 0.00234 

Population of each cohort = 500,000. P	=0.01 at the final BY, h	=0.25 at the final 648 

DY, AE*=AE	=3, M = 10, and there are 20 successive cohorts. 649 

𝛽8, 𝛽9 are coefficients for prevalence and hazard, respectively.  650 

P, prevalence; BY, birth year;	DY,	diagnostic year. 651 

 652 
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Table 3 gives results where estimation uses an assumed value AE* that, in some cases, 653 

does not match the true value of AE = 3 represented by the data. Synthesis uses one 654 

homogenous group with consistent h at each value of DY. Estimation using	AE* = 2 655 

results in substantial estimation errors and model misfit that is obvious from plots of 656 

data vs. model (not shown). Estimation using AE* = 3 , AE* = 4 , or AE* = 5 produces 657 

accurate results, with slightly more error where AE* = 5. Plots show that the model fits 658 

well in all three cases (not shown). The choice of AE* is not critical as long as 𝐴𝐸∗ ≥ 𝐴𝐸. 659 

These data use real-valued proportions to avoid confusing model mismatch with 660 

sampling effects. 661 

 662 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2020. ; https://doi.org/10.1101/2020.08.05.20169151doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.05.20169151
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Time-to-Event Prevalence Estimation 

 
 

38 

Table 3. Comparison of the effect of the choice of assumed 𝑨𝑬∗ vs. true value of 663 

𝑨𝑬 = 𝟑, with one homogeneous group of cases.	664 

AE*	used in 

estimation 

Bias 𝑷D	at 

final BY 

Bias 𝜷𝑷k  Bias 𝒉D 

at final DY 

Bias 𝜷𝒉k  

2 0.002 -0.019 -0.0096 0.036 

3 5.9E-12 8.9E-11 -5.5E-10 -1.8E-10 

4 -4.4E-12 -6.6E-11 4.8E-10 1.64E-10 

5 1.5E-11 2.2E-10 -1.85E-9 -7.18E-10 

AE, age of complete eligibility. True values: 𝛽P	= 0.1, 𝛽h = 0,	𝑃 = 0.01 at the final 665 

BY, h =0.25 at the final DY, AE = 3. Maximum age M = 10. 20 successive cohorts. 666 

Diagnostic pressure is consistent across cases at each DY. Simulation uses real 667 

values, no sampling.	668 

 669 

Table 4 shows results with an intentional mismatch between estimation assuming one 670 

homogeneous group and data representing two subgroups with different values of h, 671 

illustrated in Fig 5. Note the visible error of the exponential fit to the data at age = 3 and 672 

a good fit for age > 3. In this synthetic dataset, the two subgroups are of equal size, and 673 

the true value of h	 in one group is twice that of the other. This information is not known 674 

to the estimation, and the data do not indicate subgroup size nor membership. In the 675 

worst case, estimation uses AE* = AE = 3, and the 𝛽8k bias is 0.001, which is 1% of the 676 

actual value of 0.1. This error is due to the subgroups having different hazards, which 677 
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are not accounted for in the estimation. When using AE* = 4 or AE* = 5, the 𝛽8k bias 678 

becomes 6 × 10Q� or less, and model fit is improved (not shown). 679 

 680 

Table 4. Comparison of the effect of the choice of assumed AE*	 vs. true value of 681 

AE = 3, with two unidentified subgroups with different hazards, mismatched to 682 

analysis.	683 

AE*	used in 

estimation 

Bias 𝑷D	at 

final BY 

Bias 𝜷𝑷k  Bias 𝒉D 

at final DY 

Bias 𝜷𝒉k  

3 -4.3E-4 0.001 0.0018 -0.002 

4 -3.8E-4 6.1E-4 -0.004 -0.0016 

5 -3.3E-4 3.5E-4 -0.0097 -0.0011 

AE, age of complete eligibility. True values: 𝛽P	= 0.1, 𝛽h = 0,	𝑃 = 0.01 at the final 684 

BY, h =0.25 at the final DY, AE = 3. Two equal-sized groups of cases where the 685 

diagnostic pressure ℎ of one group is twice that of the other, while the estimation 686 

assumes one homogeneous group. Maximum age M = 10. 20 successive 687 

cohorts. Simulation uses real values, no sampling.	688 

Discussion 689 

Readers may suspect that the estimates are unidentified, i.e., not unique, due to 690 

possible interaction between age, diagnostic year, and birth year, such that estimates 691 

may be biased even if the model fit is excellent. While that concern is appropriate for 692 

analytical methods that assume an age distribution, ignore it, or estimate it 693 
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inappropriately, including age-period-cohort methods, TTEPE avoids that problem and 694 

produces uniquely identified estimates. TTEPE models the age distribution of initial 695 

diagnoses as a non-linear function of birth year, diagnostic year, and other variables.  696 

 697 

Keep in mind that the eligibility function 𝐸J is different from the age distribution of 698 

diagnoses; 𝐸J is an attribute of the disorder under study. 699 

 700 

This paper states the assumptions that underlie TTEPE analysis. The DAG of Fig 3  701 

illustrates the assumed causal paths from birth year, diagnostic year, and age, including 702 

the set of time-varying diagnostic factors and the effect of changes in criteria on 703 

effective prevalence. The DAG and associated analysis appear to cover all plausible 704 

mechanisms to explain observed trends in rates of initial diagnoses. 705 

 706 

TTEPE provides accurate estimates of prevalence parameters with a strong power to 707 

detect small differences. The Monte Carlo simulation study in Table 2 shows a 708 

magnitude of bias of the prevalence coefficient 𝛽8k not exceeding 6.5 × 10Q� or 0.0065% 709 

per year. The model SE of 𝛽8k ranges from 0.0012 to 0.0017, where the true 𝛽P ranges 710 

from 0 to 0.1. Using the largest observed SE and 1.96 × 𝑆𝐸 as a threshold for 95% 711 

confidence intervals, the method can detect differences in 𝛽P of 0.0033, i.e., 0.33% per 712 

year. Investigators can expect similar performance for real-world datasets that meet the 713 

baseline assumptions and have characteristics comparable to the simulated data. The 714 

population size and prevalence affect the SE. Note that in the simulation study, there 715 
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are 20 cohorts and 11 ages (0 through 10), so there are 220 data points. Each data 716 

point is an independent binomial random sample. The analysis estimates four 717 

parameters that define the curves that fit the data. The large number of independent 718 

data points and the small number of model parameters help to produce the small bias 719 

and model SE. If the population of each cohort or the prevalence was substantially 720 

smaller, or if the number of parameters was greater, we would expect the bias and SE 721 

to be larger. These could occur with small geographic regions, very rare disorders, or 722 

higher-order or semi-parametric models, respectively. 723 

 724 

TTEPE is useful for answering some important questions, such as the actual trend in 725 

case prevalence over multiple birth cohorts of disorders such as autism 726 

and intellectual disability, as described in Elsabbagh [17] and McKenzie [26] 727 

respectively. Accurate trend estimates can inform investigation into etiology. Where 728 

datasets include appropriate covariates, stratified analysis can estimate the 729 

relationships between various population characteristics and trends in true case 730 

prevalence and diagnostic factors. Example covariates include sex, race, ethnicity, 731 

socio-economic status, geographic region, parental education, environmental exposure, 732 

genetic profile, and other potential factors of interest. 733 

 734 

It may be feasible to extend TTEPE to disorders where the time scale starts at some 735 

event other than birth. For example, the time origin might be the time of completion of a 736 

sufficient cause, and various outcomes may serve as events of interest. It is important 737 
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to ensure that the eligibility function with respect to the time origin is consistent across 738 

cohorts. 739 

 740 

Investigators may utilize domain knowledge to inform specialized analyses. For 741 

example, they may incorporate knowledge of mortality rates and standardized mortality 742 

ratios, rates of recovery from the condition before diagnosis, or the characteristics of 743 

migration in and out of the study region. 744 
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