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Abstract 15 

Metabolic homeostasis emerges from the interplay between several feedback systems that regulate 16 
the physiological variables related to energy expenditure and energy availability, maintaining them 17 
within a certain range. Although it is well known how each individual physiological system 18 
functions, there is little research focused on how the integration and adjustment of multiple systems 19 
results in the generation of metabolic health. The aim here was to generate an integrative model of 20 
metabolism, seen as a physiological network, and study how it changes across the human lifespan. 21 
We used data from a transverse, community-based study of an ethnically and educationally diverse 22 
sample of 2572 adults. Each participant answered an extensive questionnaire and underwent 23 
anthropometric measurements (height, weight, waist), fasting blood tests (glucose, HbA1c, basal 24 
insulin, cholesterol HDL, LDL, triglycerides, uric acid, urea, creatinine), along with vital signs 25 
(axillar temperature, systolic and diastolic blood pressure). The sample was divided into 6 groups of 26 
increasing age, beginning with less than 25 years and increasing by decades up to more than 65 27 
years. In order to model metabolic homeostasis as a network, we used these 15 physiological 28 
variables as nodes and modeled the links between them, either as a continuous association of those 29 
variables, or as a dichotomic association of their corresponding pathological states. Weight and 30 
overweight emerged as the most influential nodes in both types of networks, while high betweenness 31 
parameters, such as triglycerides, uric acid and insulin, were shown to act as gatekeepers between the 32 
affected physiological systems. As age increases, the loss of metabolic homeostasis is revealed by 33 
changes in the network’s topology that reflect changes in the system-wide interactions that, in turn, 34 
expose underlying health stages. Hence, specific structural properties of the network, such as 35 
weighted transitivity, can provide topology-based indicators of health that assess the whole state of 36 
the system. 37 
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1. Introduction 38 

Metabolic homeostasis arises from the interchanges between multiple chains of biochemical reactions 39 
and their mechanical responses. These exchanges maintain variables related to energy expenditure 40 
and energy availability within suitable ranges for the organism. The components of these chains are 41 
shared by multiple others, thereby constituting a metabolic network. Unfortunately, many processes 42 
of this network are not readily accessible in the clinical setting. Therefore, to make inferences about 43 
the underlying energy metabolism, various biomarkers –either biochemical or anthropometric– have 44 
been used to assess the state of the different physiological sub-systems that constitute the network. 45 
These physiological variables represent either regulated variables or physiological response systems 46 
(Fossion, Rivera, & Estañol, 2018). The lability of the values of physiological response variables, 47 
and the consequent stability of regulated variables, characterizes the robustness of a complex 48 
homeostatic system that resorts to pathological states only in order to preserve vital variables (Kitano 49 
et al., 2004). Thus, homeostasis can be established by the interplay between physiological variables, 50 
allowing its study through a metabolic physiological network. 51 
 52 
Over time, the physiological compensatory systems that maintain homeostasis become worn down 53 
due to the cumulative impact of metabolic insults, transitioning from healthy to maladaptive states 54 
that precede disease onset (Stephens et al., 2020). An already existing medical notion of this system-55 
wide progression of states before the overt onset of disease is metabolic syndrome (MetS), whose 56 
prevalence increases strongly with age (Hildrum et al., 2007) and unhealthy lifestyles. At early 57 
stages, MetS biomarkers indicate invisible alterations, wherein homeostasis can still be preserved 58 
(Huang, 2009). Insulin resistance, dyslipidemia, endothelial dysfunction, prothrombotic, 59 
proinflammatory states and, more recently, oxidative stress are then employed to diagnose a 60 
condition of increased cardiometabolic risk (Reaven, 1993; Vona et al., 2019). With this in mind, 61 
several medical organizations established operational diagnostic criteria (Xu et al., 2018), starting 62 
with preexisting diagnostic thresholds for each associated disease, and then lowering them in order to 63 
provide a preventive focus for the diagnosis of MetS (Parikh & Mohan, 2012). In the continued 64 
presence of metabolic insults, as each physiological regulatory system fails, the cascade is absorbed 65 
downstream by the next system. Eventually, what were originally reversible pathological states 66 
progress to become irreversible diseases. This is the final stage, characterized by the lability of the 67 
regulated variables, wherein the physiological response systems become overwhelmed. These states 68 
correspond to clinical diseases that were the basis for the first historical descriptions of MetS, where 69 
gross anatomical changes and clinically overt symptoms, comprising obesity, hypertension, gout, 70 
atherosclerosis and obstructive apnea were first associated (Enzi et al., 2003). However, it is usually 71 
on a scale of decades that these physiological interactions change substantially. Disease appears only 72 
once the robustness of the metabolic physiological network is broken, and regulated variables lose 73 
their tight control.  74 
 75 
The current approach to determining metabolic health relies on using the thresholds of individual 76 
biomarkers, without considering the overall physiological network itself. As threshold values are the 77 
result of a compromise between sensitivity and specificity, they must be tailored adequately for both 78 
screening and diagnostic purposes in each population (Almeda-Valdes, et al., 2016). However, 79 
current thresholds consider neither age stratification nor the duration of the pathological states, 80 
resulting in medical interventions that are targeted towards single variables and only late in life 81 
(Easton et al., 2019). Furthermore, standard of care for these complex states is no different from the 82 
treatment of each of its individual components (Kahn, 2007). Although targeted approaches for age 83 
have been proposed, for providing further insight on the etiology of risk factors and guide disease-84 
prevention strategies (Xu et al., 2019; Leatherdale, 2015; Leventhal, Huh, & Dunton, 2014), it has 85 
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been argued that the principle utility of MetS as a concept relies on the preventive nature of its scope, 86 
and the idea that single interventions could improve simultaneously all of the current five MetS 87 
criteria (Vassallo, Driver, & Stone, 2016). However, there is still doubt as to how to weight the risk 88 
associated with each factor, or their combinations (Sattar, 2008). Indeed, given the increasing 89 
abundance of metabolic biomarkers that predict disease, there is not even a universal consensus on 90 
which criteria should be included and excluded in the first place in order to best assess metabolic 91 
health (O’Neill & O’Driscoll, 2015). As metabolic health is an emergent property, arising from the 92 
interaction of multiple physiological systems over time, the framework of complexity provides the 93 
means for a whole-system analysis (Haring et al., 2012; Lusis, Attie, & Reue, 2008; Sun et al., 2012), 94 
rather than a reductionist variable-by-variable approach. In previous work (Stephens et al., 2020), we 95 
considered how ageing was an important driver of metabolic change across a wide variety of 96 
metabolic biomarkers (anthropometric, fasting blood test and vital signs measurements), considering 97 
each one individually and noting a substantial degree of heterogeneity as to the impact of aging 98 
across them. In contrast, in the present study, we have used networks of these biomarkers as a means 99 
to give a more holistic, systems-biology perspective in order to demonstrate how the changes in the 100 
coupling between regulated variables and those regulatory systems that try to maintain homeostasis 101 
lead to metabolic health changes over a lifetime. In particular, in this paper, we will use complex 102 
physiological networks to better understand these interactions, constructing a data-driven network of 103 
biomarkers that can be used to characterize homeostasis and how it changes as a function of age.  104 
 105 

2. Results 106 

2.1 Demographic description of the population 107 

A general description of our study population (n=2572), and the distinct age groups is provided in 108 
Table 1. The mean age of the participants was 38 years old (standard deviation, SD= 15, range from 109 
18 to 81 years old). Our population sample was predominantly female (65%). This predominance 110 
was preserved across all of the age groups considered with no statistically significant differences 111 
between groups. Our population sample comes mainly from the metropolitan region of Mexico City 112 
(93%), with the remaining participants from neighboring states. Educational level proportions 113 
changed within the age groups, with an increasing trend for postgraduate and basic education (at 114 
most 12 years of study), and a decreasing trend for undergraduate education, that are illustrative of 115 
the population composition within the sample (Table 1). We found that MetS prevalence, as defined 116 
by the criteria in (Alberti et al., 2009), increased significantly by age (under a chi-squared test for 117 
trend p<0.001), beginning with a prevalence of 4% for the first age group (<25 years old), which 118 
increased ten-fold to 47% in the age group from 55 to 65 years old. For adults older than 65 years 119 
old, MetS prevalence is high (43%) but is lower than that from 55 to 65, however, this difference 120 
between groups is not statistically significant (X2 (1, N = 659) = 0.14, p = 0.7). 121 

2.2 Physiological variables and pathological state prevalence change with age 122 

To examine whether this increase in MetS prevalence with age was due to an increment in the mean 123 
values of the physiological variables or to an increase in the tail of the distribution above the cut-off 124 
values (Table 2), linear regressions and chi-squared tests for trends were evaluated (Table 3). Most of 125 
the physiological variables (fasting glucose, HbA1c, LDL cholesterol, triglycerides, urea, creatinine, 126 
waist, weight, systolic and diastolic blood pressure) increased progressively with age, having a 127 
statistically significant positive linear regression slope, whereas height and axillar temperature 128 
decreased, being associated with a statistically significant negative linear regression slope. In 129 
contrast, three physiological variables: basal insulin, HDL cholesterol, and uric acid, showed no 130 
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linear changes as a function of age. Following the trend of their respective physiological variables, 131 
the prevalence of pathological states also grew with age, with one exception: high temperature. While 132 
changes in the mean values of the physiological variables as a function of age were considerably 133 
smaller, as shown by the slopes in the linear regressions, the proportion of the population above the 134 
cut-off values for the pathological states increased substantially (Table 3). For the physiological 135 
variables, waist circumference, weight, systolic and diastolic pressure had the greatest regression 136 
coefficients as a function of age. Regarding the prevalence of pathological states, overweight, low 137 
estimated glomerular filtration rate (eGFR), and hyperglycemia, had the greatest increase as a 138 
function of age, followed by high blood pressure, high LDL, hypertriglyceridemia, high HbA1c, and 139 
azotemia. Age had a widespread influence on most of the components of MetS, whether regarded as 140 
continuous or as categorical variables. The prevalence of low HDL and hyperuricemia changed with 141 
age, although this trend was not detected by a linear regression. 142 
 143 

2.3 Metabolic modules can be identified within the network 144 

To investigate how metabolic physiological components are grouped within the networks, we 145 
employed two strategies, either identifying largest cliques or finding clusters within the networks (see 146 
Figure 1). For the first strategy, the largest cliques method shows the biggest possible, maximally 147 
connected subgraphs of a network, indicating which components go hand in hand most frequently 148 
across distinct age groups (Figure 1C and 1D). For the physiological network, weight, waist 149 
circumference, uric acid, systolic and diastolic blood pressures appeared most frequently in the major 150 
cliques (Figure 1C). In the pathological states network, insulin resistance, hypertriglyceridemia, 151 
overweight and hyperglycemia were most frequently found to occur within the largest cliques (Figure 152 
1D). For the second strategy, the networks were assorted into different clusters, using the Louvain 153 
algorithm (Blondel et al., 2008) for the physiological network, or the Spinglass algorithm (Reichardt 154 
& Bornholdt, 2006) for the pathological states network (Figure 1E and 1F). Four main clusters were 155 
found in the physiological network (Figure 1E), with the main cluster associated with weight, 156 
followed by a cluster around urea. An intermediary cluster was found around glucose and HbA1c, 157 
while systolic and diastolic blood pressure remained separated from the rest. For the pathological 158 
states network, the main cluster was around hyperglycemia and the second was around low eGFR, 159 
with an intermediate cluster around high blood pressure and high temperature (Figure 1F). The 160 
metabolic components within these clusters were related by metabolic pathways, establishing 161 
metabolic modules. 162 
 163 
Both strategies lead to a selection of nodes that differs from current MetS criteria (Figure 1A and 164 
1B). While waist and weight are frequently part of the largest clique of the network, they are often 165 
clustered separately from the metabolic components of triglycerides and glucose. Triglycerides, both 166 
as a physiological variable or as pathological state, are frequently part of the largest cliques and 167 
belong to the main cluster of the networks. Hyperglycemia, on the other hand, is part of the main 168 
cluster only in the pathological states network and is frequently part of largest cliques but is not part 169 
of the largest cliques nor of the main cluster as a physiological variable (glucose). Systolic and 170 
diastolic blood pressures are also frequently part of the largest cliques, but only as physiological 171 
variables and not as a pathological state. They belong mainly to the cluster of overweight as 172 
pathological states, but are in an independent cluster as physiological variables. Finally, HDL 173 
cholesterol as a physiological variable was seldom part of the largest cliques, however, it was part of 174 
the main cluster in the pathological states network.  175 
 176 

2.4 The role of metabolic biomarkers within the network across a lifetime 177 
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The relations between the physiological variables and pathological states within the networks change 178 
with age. We observed that obesity, whether as proxied by the weight and waist circumference 179 
physiological variables, or as the overweight pathological state, is the main influencer in the network 180 
as measured by eigencentrality, a role which remained stable across all age groups (Figure 2A and 181 
2C). In contrast, physiological variables with characteristically tight homeostatic control, like 182 
glycemic variables and temperature, were uninfluential in the network (Figure 2C). For the 183 
pathological states network, the largest influence, as measured by hubscore (a generalization of 184 
eigencentrality for directed graphs), was exerted by overweight, with the components of dyslipidemia 185 
becoming less influential from 25 to 34 years old onwards, while the pathological states associated 186 
with low estimated glomerular filtration rate (low eGFR) steadily became more relevant above 65 187 
years old (Figure 2B and 2D). Gatekeeping biomarkers of the flow between systems were uric acid, 188 
insulin, HbA1c and HDL in the physiological network, while hypertriglyceridemia, insulin 189 
resistance, hyperglycemia and high HbA1c were the main intermediaries between pathological states 190 
(Figure 2E and 2F). Unlike eigencentrality values, flow betweenness values change profoundly as a 191 
function of age (Figure 2E and 2F). 192 
 193 

2.5 Whole network topology as a biomarker for metabolic homeostasis 194 

As well as local properties of the physiological variables and pathological states networks, global 195 
properties also change with age. Topological properties of these networks for all the age groups are 196 
summarized in Table 4. Noticeably, for the pathological states network, we found that reciprocity 197 
was lower than would be expected, while transitivity of the networks was greater than that expected 198 
for comparable networks of the same size, number of links or dyads (Table 4). Characteristic path 199 
length was lower than would be expected for random networks. Moreover, the local transitivity of 200 
physiological variables reaches a peak in the life decade between 25 and 34 years old, and from then 201 
on, the transitivity begins to decrease (Figure 3A and 3C). However, this decrease is not the result of 202 
a reduction in the weighted degree distribution (strength) of the correlations within the network, 203 
which are similar across all age groups (Figure 3E), instead it is related to an increase in the number 204 
of edges within the network, as presented by network density (Table 4). In other words, the 205 
organization of the physiological variables changed independently from the strength of the 206 
relationships between the variables. Over a lifetime, nodes within a cluster tend to connect more 207 
within themselves rather than outside the cluster. This topological change results in a modularity 208 
increase in the physiological network (Figure 3D). However, this trend was not shared with the 209 
pathological states network. In this network, there is a trend towards increasing transitivity until the 210 
45 to 54 years old age groups group, and a decrease in older groups (Figure 3B and 3C). Pathological 211 
states became increasingly correlated as a function of age, until reaching a maximum in the decade 212 
between 45 and 54 years old (Figure 3C). This clustering change is related to the weighted degree 213 
distribution of the pathological states network (Figure 3F) and to an increase in the density of the 214 
network (Table 4). In these networks, modularity decreases from the 35 to 44 years old group 215 
onwards (Figure 3D). Three stages become apparent: a healthy stage, where the clustering of both 216 
networks increases; a transition stage, where the clustering of pathological states increases, while the 217 
clustering of physiological variable decreases; and a disease stage, where the clustering of both 218 
networks decreases (Figure 3C). The proportion between clustering coefficient and characteristic 219 
path length in a network can be summarized by the small world index to compare structural changes 220 
in our matching networks of increasing age. For the physiological networks of groups starting below 221 
54 years, the small-world index has values between 1.3 and 1.9, increasing to values above 2 in the 222 
groups above 55 years old. All pathological networks had a greater small world index than the 223 
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corresponding physiological networks, which increased substantially in the age group above 65 years 224 
old and concurrently with a decrease in the global clustering coefficient. 225 
 226 
3 DISCUSSION 227 
Metabolic homeostasis loss is the main driver of noncommunicable diseases and their resulting 228 
mortality. These complex diseases involve diverse combinations of biomarkers of risk that occur 229 
more often together than by chance alone (Alberti et al., 2009). Currently, however, only five such 230 
factors are monitored for the assessment of metabolic health (overweight, high triglycerides, low 231 
HDL cholesterol, high systolic blood pressure, and high fasting plasma glucose). By adopting a 232 
network approach, in this study, we have shown that, in reality, not only the level of each individual 233 
factor is important, but also their correlations, both local and global. Local properties of the network 234 
are equivalent to current reductionist approaches, while global properties provide new metrics that 235 
can be used as markers of metabolic health. As allostatic load on body metabolism increases with 236 
age, changes in the ratios between different physiological variables represent the adaptive adjustment 237 
of their corresponding setpoints in order to accommodate an increasing burden of internal failures 238 
and cumulative external insults (Fossion et al., 2018; Goldstein, 2019). Here, we have shown that the 239 
number of correlations present within the networks, represented as network density (Table 4), the 240 
number of connections of each node, represented as the node’s degree, and the strength of the 241 
correlation, represented as weighted degree, all change gradually across age groups and reflect this 242 
adaptive adjustment (Figure 3). Therefore, topological properties that emerge from the structure of 243 
the networks reflect how whole-system interactions within the physiological network change over a 244 
lifetime and, in particular, show how, as age increases, the loss of metabolic homeostasis is revealed 245 
by these changes. For example, local weighted transitivity measures the probability that the 246 
neighbors of a node are connected among themselves. This measure has the advantage of being 247 
largely independent from the size of the network (Barabási et al., 2003). Changes in this metric give 248 
insight into how the cumulative impact of metabolic insults increases and decreases the relations 249 
between physiological variables and pathological states. At the global level, transitivity and the 250 
clustering coefficient of the network are two indicators of how the network’s connections become 251 
aggregated or disaggregated as a function of age. Therefore, these changes in the networks’ structure 252 
echo the underlying homeostatic changes.  253 
 254 
The transition from health to disease, in the case of complex diseases, can be described by three-state 255 
models (Chen et al., 2017). In the healthy stage, regulated variables are kept within strict bounds and 256 
physiological response systems increase their activity proportionally in order to compensate the 257 
impact of interaction with the environment. In the transition stage (from 35 to 54 years old) regulated 258 
variables increase their correlation with their physiological response system as metabolic insults are 259 
not fully compensated. At this stage internal malfunctions can be buffered, but at the expense of the 260 
development of pathological states, that then begin to correlate, leading to an ever increasing burden 261 
(Figure 3). Finally, homeostasis is lost, and pathological states lead to disease onset in an irreversible 262 
fashion, resulting in a decrease in the clustering of both network types. Regulated variables are now 263 
fully dysregulated from their corresponding regulatory system variables and correlations are lost. Our 264 
results show that the transition from health to disease is reflected in our topological metrics as a 265 
result of the changes in the correlations between physiological variables and the corresponding 266 
association between pathological states. The different network metrics we evaluated show that our 267 
networks are not random (Table 4). Although a formal, large-scale topological characterization of our 268 
physiological networks falls beyond the scope of this work, and would potentially require the 269 
addition of many more variables, it is interesting to point out that the observed properties of scale 270 
free and small world are properties that are frequently found in complex biological systems (Song et 271 
al., 2005). It has been argued that these topologies confer properties of network robustness and 272 
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adaptability that are desirable as properties with a homeostatic interpretation (Fossion et al., 2018; 273 
Toledo-Roy, Rivera, & Frank, 2019). Nevertheless, considering the wide structural diversity found in 274 
real-world networks, classification of these complex systems remains an active area of development 275 
(Broido & Clauset, 2019; Hilgetag & Goulas, 2016). 276 
 277 
Individual biomarkers were described in the context of the network through centrality measurements 278 
of influence and intermediacy. The important influence of weight on the metabolic network was 279 
found in both network approaches and was sustained across all age groups (Figure 2). Additionally, 280 
weight-associated physiological variables and their corresponding pathological states were most 281 
frequently embedded within the largest cliques. Both these results exhibit the central role of weight 282 
inside the metabolic networks. This has been confirmed in a large cross-sectional study, where long 283 
term sustained weight loss was seen to improve overall metabolic risk (Knell et al., 2018). However, 284 
some classically established MetS components, such as HDL cholesterol, are seldom present within 285 
the largest cliques, indicating a more peripheral role within this network. Some of the biomarkers we 286 
used have a high flow betweenness in the network, suggesting that they behave as an “exchange 287 
currency” among several metabolic subsystems. This was the case for triglycerides, insulin, uric acid 288 
and glucose, whether considered as physiological parameters or as pathological states (Figure 2). 289 
This suggests that they are key components in the transmission of disruptions between different 290 
metabolic subsystems. Additionally, these metabolic subsystems, as identified by our clustering 291 
strategies, are also those that would be considered as the natural ones from a medical perspective 292 
(Chan & Loscalzo, 2012; Goh et al., 2007). Our results show that different, relatively independent, 293 
metabolic modules arise, that communicate through some gatekeeping exchange molecules. With 294 
age, this modularity increases in the case of the physiological variables network (Figure 3C). Such 295 
modularity is a measure of how much the networks tend towards a community structure. 296 
Furthermore, there is a strong correspondence between the clusters that were found in the 297 
physiological variables network and those found in the pathological states network, suggesting that 298 
the associated pathological states emerged from the underlying relationships between the 299 
corresponding physiological variables and are, therefore, not just a byproduct of chance or prevalence 300 
alone. These two approaches complement each other, reinforcing their respective conclusions where 301 
both reach similar results. This was the case for the clustering of metabolic components in both the 302 
physiological variables networks, the pathological states networks (Figure 1E and 1F), and the 303 
corresponding centrality measurements (Figure 2). 304 
 305 
Finally, it is worth mentioning that another advantage of network analysis is that it can be used as 306 
part of an automated process for discovering and analyzing patterns in large datasets, with the 307 
assistance of experts to ensure a relevant and adequate interpretation (Merico, Gfeller, & Bader, 308 
2009). In this way,  networks can be extended in an iterative process in order to accommodate new 309 
biomarkers in a way that can both enrich and refine the generated network models (Aittokallio & 310 
Schwikowski, 2006). Our work provides the layout for an evidence-based rationale for adding (or 311 
replacing) other CVD risk factors (e.g., CRP or family history) to the definition of MetS (Kahn et al., 312 
2005). For instance, the physiological variables network does not rely on the particular values of cut-313 
offs and illustrates that some variables that are not monitored currently, such as uric acid, may be 314 
better early indicators of metabolic burden. It is important to notice that uric acid is not used 315 
traditionally as a biomarker of metabolic disorders, even when in our network analysis it is more 316 
frequently embedded within the largest cliques than blood pressure components, triglycerides and 317 
HDL cholesterol (Figure 1C). This result adds to the growing body of literature that considers uric 318 
acid to be a relevant biomarker in MetS (Kanbay et al., 2016). In summary, the physiological 319 
network approach to metabolic homeostasis is capable of providing useful insights on whole-system 320 
function that are inaccessible through reductionist approaches.  321 
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 322 
Conclusion 323 
 324 
Changes in network topology are global indicators of metabolic homeostasis and do not rely on any 325 
single parameter or threshold but, instead, assess the behavior of the whole system. Thus, this novel 326 
conceptualization of homeostatic health allows for a more holistic comprehension of a person’s 327 
physiology. Structural properties, such as weighted transitivity or the small-world index, may then 328 
serve as topological indicators of health for the metabolic physiological network.  329 
 330 

4. Methodology 331 

4.1 Ethical and human research considerations  332 
This study was carried out in accordance with current regulation contained in the Mexican Official 333 
Normativity, NOM-012-SSA3-2012. The Ethics Committee of the Facultad de Medicina of the 334 
UNAM approved the procedures and protocols for this study under project FM/DI/023/2014, all the 335 
participants provided a written informed consent. 336 

4.2 Study population and age sub-groups 337 

We performed a transversal, community-based study of an ethnically and educationally diverse 338 
sample within a large public university, comprising 2572 participants. Each participant answered a 339 
health questionnaire and underwent vital signs, and anthropometric measurements along with fasting 340 
blood tests. This resulted in a multi-dimensional data set. The sampling was performed in successive 341 
steps from 2014 to 2019. The global sample was divided into 6 groups of increasing age, beginning 342 
with less than 25 years, and increasing in decades up to above 65 years of age. As a result, we 343 
obtained 6 age groups (see Table 1).  344 

4.3 Anthropometric measurements and laboratory procedures 345 

All tests were performed in the morning during a 4-hour period (from 6 a.m. to 10 a.m.) after 346 
verifying fasting and general status. Anthropometric measurements (weight, height, waist and hip 347 
circumferences) and vital signs (blood pressure and temperature) were taken by trained medical staff 348 
using standard procedures (Whelton et al., 2018; WHO, 1995). Blood samples were obtained from 349 
participants who had fasted for 8 to 12 hours. Samples were stored at 4-5 ºC and submitted for 350 
chemical analysis of glucose, glycated hemoglobin (HbA1c), insulin, triglycerides, total cholesterol, 351 
HDL cholesterol, LDL cholesterol, uric acid and creatinine. Fasting plasma glucose was measured 352 
using spectrophotometry and potentiometry with a hexokinase kit (amorting PIPES, NAD, 353 
Hexokinase, ATP, Mg2+, G6P-DH; AU 2700 Beckman Coulter R). HbA1c was measured with High 354 
Performance Liquid Chromatography (HPLC) analysis with the Variant R Turbo kit 2.0, which 355 
consisted of 2 buffers and 1 wash solution. Fasting plasma insulin concentrations were determined 356 
using Chemiluminescence (Access Ultrasensitive Insulin, Unicell Dxl 800 Beckman Coulter R, 357 
Sensitivity: 0.03-300 U/mL). The lipid profile was obtained with enzymatic colorimetric assay 358 
(glycerol phosphate oxidase, cholesterol oxidase, accelerator-selective, detergent, and liquid-selective 359 
detergent). Uric acid was measured using the colorimetric method with uricase enzymatic OSR6698, 360 
system AU2700/5400, Beckmann Coulter R. This resulted in a set of 15 non-derivative, independent, 361 
continuous, physiological variables. From the original data set, 14 particular values associated with 362 
distinct variables were excluded, based on two main criteria:  363 
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• 1. Outliers based on physiologically improbable values that are most likely to be erroneous as 364 

they would be incompatible with life. This included removing three values of blood pressure, 365 

three values of axillar temperature, two glucose measurements, two values of HbA1c, and one 366 

each of uric acid, and LDL. 367 

• 2. Anthropometric measurements which were inconsistent between themselves. For example, 368 

exceedingly high values of waist circumference in an underweight participant. Thirteen 369 

values of waist and one value of height were discarded on this account. 370 

4.4 Pathological states assessment 371 

From these physiological variables, thresholds were defined in order to distinguish normal values 372 
from abnormal values, thus categorizing health status or a pathological state (Table 2). We would like 373 
to emphasize that the thresholds used here are not diagnostic of disease, instead they are low enough 374 
values that indicate increased risk. Most of our criteria are backed up by major health societies and 375 
organizations, however, when a consensus was not available, we used literature-based cut-off values 376 
that best correlated with the increased risk-prevention view of the harmonized MetS criteria (Alberti 377 
et al., 2009; American Diabetes Association, 2020; Esteghamati et al., 2009; Khanna et al., 2012; 378 
Levin et al., 2013; Mach et al., 2019; Sund-Levander, Forsberg, & Wahren, 2002; Tyagi & Aeddula, 379 
2019; Whelton et al., 2018). Thus, the pathological states described here are not diseases per se, but 380 
an indication that physiological values do not represent normal health status. Three of the 381 
physiological variables that we measured do not have a pathological state by themselves alone. For 382 
instance, high blood pressure was determined by either elevated systolic or diastolic values. For 383 
insulin and creatinine, two derived indices were calculated: Homeostasis Model Assessment Insulin 384 
Resistance index (HOMA-IR) (Wallace, Levy, & Matthews, 2004) for the pathological state of 385 
insulin resistance, and eGFR for chronic kidney disease (Levin et al., 2013).  386 

4.5 Network modelling  387 

It has been observed that two models of metabolism are possible. In the first one metabolic risk 388 
increases progressively as an increasing function of certain physiological variables (Knell et al., 389 
2018; Wijndaele et al., 2006). In the second one, metabolic homeostasis is bimodal, and as such, risk 390 
increases significantly only upon exceeding certain thresholds associated with the diagnosis of the 391 
pathological state (Alberti et al., 2009; Stern et al., 2005). Therefore, to encompass both possibilities, 392 
we created a network model for both employing accessible biomarkers that probe the underlying 393 
metabolism.  394 
 395 
In the first case, the coupling between two physiological variables can be explored through their rate 396 
of change in the population. Here, a monotonic association would be found between those variables 397 
that interact directly or indirectly within the physiological network. We tested the physiological 398 
variables datasets for normality using the Shapiro-Wilk test and screened them for extreme values. 399 
Since the data sets were not normally distributed and had extreme values expected to be real, we 400 
selected the Spearman Rank Correlation (Batushansky, Toubiana, & Fait, 2016) as a measure of 401 
correlation. We modeled the metabolic physiological network as a continuous association of pairs of 402 
variables. For this monotonic correlation model, a correlation matrix was constructed for the 15 403 
chosen physiological parameters (Figure 4). Significant correlations were established at a value of 404 
p<0.001, indicating that the relation does not support the null hypothesis that the independent and 405 
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dependent variables are unrelated. The weight of the Spearman’s rho correlation was squared in order 406 
to obtain only positive values. 407 
 408 
For the second case, a pathological states network was constructed using currently accepted 409 
thresholds from the literature. Here, cut-off values allow the comparison of the tails of the 410 
distributions across age groups. The objective here was to indicate whether the participants within the 411 
tail of the distribution of one physiological variable have a greater probability of being also in the tail 412 
of the distribution of another physiological variable than would be explained by the prevalence of the 413 
pathological states alone. This probability of being in a pathological state B given that the individual 414 
is in a pathological state A was described using the following binomial test: 415 
 416 

� � �
�
����|	
 � ���
�


�
�
�1 � ���
����


 

This test is not necessarily reciprocal, thus giving a weighted directionality to the relationship. If a 417 
pathological state is probably the origin of another, their � value would be expected to be high in that 418 
direction, while it could be low in the opposite one. For this binomial test the null hypothesis is that 419 
the probability of presenting condition C is not affected by having condition X. The statistical 420 
significance, ε, is a measure of the extent to which the null hypothesis is verified by the data. In the 421 
circumstance, which is valid here, where the binomial distribution can be approximated by a normal 422 
distribution, � > 1.96 corresponds to the standard 95% confidence interval (Easton, Stephens, & 423 
Angelova, 2014). As the pathological states network is based upon thresholds accepted by medical 424 
consensus, this network adheres well to the known progression of MetS. However, the employment 425 
of cut-off values for asserting associations between states may result in an association towards the 426 
most sensitive, low thresholds. Exceedingly low thresholds can make pathological states seem more 427 
prevalent and bias the direction of � (Easton et al., 2019). In consequence, care was taken for the 428 
selection of thresholds consistent with the preventive scope of MetS. 429 
 430 
In summary, for the first case, physiological variables are monotonically correlated along all their 431 
biologically plausible spectrum. In this scenario the associations between parameters are present even 432 
at healthy values and represent a continuum. For the second case, pathological states are best 433 
regarded as binomial. Upon reaching a threshold, the association between these states either appears 434 
or increases significantly. This second model resembles the current interpretation of MetS, as it 435 
requires a co-occurrence higher than would be expected by chance and contemplates cutoff values as 436 
all or nothing states (Alberti et al., 2009). Finally, we used groups of individuals of different ages in 437 
order to explore the progressive changes that occur during the aging process and which result in an 438 
increasing prevalence of MetS. From the systems biology perspective, the network structure is a 439 
direct result of the coordination, or lack thereof, of components that are linked by homeostatic 440 
feedback (Goldstein, 2019).  441 
 442 

4.6 Network construction and statistical analysis 443 

For the construction of our considered networks we used correlation matrices of physiological 444 
variables and pathological states. These matrices were interpreted as weighted adjacency matrices, 445 
where adjacency is represented by the Spearman rhos or the � values between each pair of metabolic 446 
components. The resulting matrices were weighted and undirected for the Pearson correlation matrix 447 
and weighted and directed in the case of ε values (Figure 4). For the construction of the Spearman 448 
correlation matrix, data-set normality testing, linear regression and chi-squared tests for trends were 449 
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all done with Prism 8.1.2(277), GraphPad Software, La Jolla, California USA, www.graphpad.com. 450 
For the network construction RStudio, an R language programing suite and igraph package (Csárdi, 451 
Nepusz, & Airoldi, 2016; R Core Team, 2020; RStudio Team, 2020). 452 
 453 
Nodes within a network can be ranked according to several centrality definitions that fall into two 454 
main groups, radial measures and medial measures. Inferring causality exclusively from centrality 455 
within networks, requires caution, although eigencentrality has been found to be the best centrality 456 
measurement for this purpose, especially for small networks with less than 30 nodes (Dablander & 457 
Hinne, 2019). Therefore, we selected eigenvector for undirected networks and hubscore for directed 458 
networks as radial measures. For medial measures we decided to use flow betweenness. These 459 
centrality values allow for a direct comparison of either the influence of nodes (radial measure) or 460 
gatekeeping (medial measure) within the network (Borgatti & Everett, 2006). Eigencentrality 461 
corresponds to the value of the first eigenvector of the graph adjacency matrix and was interpreted as 462 
a measure of influence within the undirected networks. These values were obtained using the evcent 463 
function from the SNA package (Butts, 2019). For directed networks, hub score and authority score, 464 
are a better way of representing influence as these measures take into account the directionality of the 465 
links. Hub scores are defined as the principal eigenvectors of A*t(A), where A is the adjacency 466 
matrix of the network. These values were calculated with the hub_score function from the igraph 467 
package (Kleinberg, 1998). Flow betweenness was used as a measurement of intermediation within 468 
the network. Flow betweenness was calculated using the flowbet function from the SNA package. In 469 
order to test if the eigencentrality and flow betweenness values obtained would be seen in a random 470 
graph with the same number of vertices, edges or dyads, univariate conditionally uniform graph tests 471 
(CUG test) were employed with the cug.test function from the SNA package. 472 
 473 
Networks can contain subgraphs, subsets of vertices with a specific set of edges connecting them 474 
within the original graph, that are of particular relevance (Aittokallio & Schwikowski, 2006). We 475 
sought two particular subgraphs within our models: First, the graph corresponding to those variables 476 
associated with the current definition of MetS, and second, the largest clique within the graph. As 477 
there may be more than one combination of nodes that result in a largest clique, we registered the 478 
number of times each node appeared within a possible largest clique. These maximally connected 479 
subgraphs - largest cliques - were identified using the largest_cliques function of the igraph package 480 
(Eppstein, Löffler, & Strash, 2010). Largest clique and current MetS variables were highlighted as 481 
subgraphs, along with the graph diameter.  482 
 483 
The largest clique is the biggest, maximally connected subgraph of a graph and contains vertices such 484 
that each vertex is connected with every other vertex of the clique. This gives an idea of which 485 
vertices go hand in hand in each network (Pavlopoulos et al., 2011). On the other hand, a cluster, as 486 
defined using a suitable clustering algorithm, is a group of vertices within a graph that are more 487 
densely connected to one another than to other vertices (Csárdi et al., 2016). There are several 488 
alternative algorithms for discovering communities of vertices within graphs. For community 489 
detection within the networks we used two different algorithms. For the Pearson model, the Louvain 490 
algorithm was employed as a heuristic method based on modularity optimization, with the 491 
cluster_louvain function from the igraph package (Blondel et al., 2008). In the � model, the spinglass 492 
community algorithm selects those nodes with the greatest probability to be found in the same state 493 
concurrently, with the cluster_spinglass function from the igraph package (Reichardt & Bornholdt, 494 
2006). These two approaches to identifying related biomarkers are complementary - clustering 495 
strategies maximize the modularity of the network, while largest-clique identification maximizes the 496 
transitivity of the largest possible subgraph. 497 
 498 
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Topological properties were assessed as follows: Density, reciprocity and characteristic path length 499 
of the networks were calculated using the igraph package. For the calculation of the weighted 500 
transitivity and the clustering coefficient in directed and undirected weighted networks the 501 
DirectedClustering package was employed (Clemente & Grassi, 2018). The Small world index, as 502 
calculated by qgraph, was used as a summary metric of the network topology (Watts & Strogatz, 503 
1998). CUG tests were also performed for network density, reciprocity, transitivity and characteristic 504 
path length.  505 
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 704 
Figure Captions 705 
 706 
Figure 1. Physiological subsystems identified by Data-driven association.  707 
Representative networks (A) for the physiological variables network and (B) for the pathological 708 
states network. Physiological variables and pathological states clusters are shown as largest cliques 709 
(blue connections), and, as clusters (nodes within color highlighted areas). In both metabolic 710 
physiological networks, the red subgraph shows the currently accepted MetS components. The 711 
diameter of the network - the two furthest nodes path - is highlighted in purple. (C) Frequency of 712 
physiological variables composing the largest clique of each age group network. (D) Frequency of 713 
pathological states fully associated within largest cliques as shown by the pathological states 714 
network. The frequency of appearance of a node pertaining to a certain cluster (membership) was 715 
registered. Since 7 networks were generated (all participants, and 6 age-range groups), a node 716 
belonging to the same cluster across the entire lifespan would reach a value of 7. In (E), the 717 
frequency value represents how many times a node is part of the same cluster for the physiological 718 
variables, where the Louvain algorithm was used to determine clusters. Three main clusters appear, 719 
with blood pressure variables making a fourth. (F) Cluster membership of pathological states using 720 
the spinglass community algorithm that selects the group of nodes most likely to be found in the 721 
same state. Three main clusters appear, with different groups of pathological states in each one. 722 
 723 
Figure 2. Network modeling highlights physiological and pathological interactions. 724 
Centrality measurements identify the role of each physiological variable or pathological state within 725 
the metabolic network. (A) Physiological network from 35 to 44 years old, and (B) pathological 726 
network from 55 to 64 years old, as examples of the different centrality contribution that each node 727 
has. Influence is measured by eigencentrality and is represented by node color, while betweenness is 728 
measured by flow and represented by node size. The values from these examples are emphasized 729 
inside gray rectangles. (C) Most influential nodes in the physiological variables network, Weight and 730 
waist, are indicated. (D) Most influential nodes as seen by eigencentrality in the pathological states 731 
network. Overweight, dyslipidemia and low eGFR are indicated. (E) Gatekeeping nodes, as seen by 732 
flow betweenness, that mediate the associations between those physiological variables that are not 733 
directly connected. (F) Gatekeeping nodes that are the route between unconnected pathological 734 
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states. The most meaningful nodes in this regard are hypertriglyceridemia, insulin resistance, 735 
hyperglycemia and high HbA1c as age increases. � indicates values unlikely to be found by chance 736 
alone in CUG tests. 737 
 738 
Figure 3. Topological properties from physiological and pathological networks. 739 
Network structural changes as a function of age can be seen using several topological metrics. (A) 740 
Physiological network of the third decade of life as a visual example of weighted transitivity in a 741 
tightly intertwined network. (B) Pathological network of the fifth decade of life as an example of 742 
weighted transitivity in a directed network. These two networks represent the greatest transitivity in 743 
all age groups. (C) Weighted transitivity of each network as the mean ± S.E.M. from all life decades, 744 
n=2572. The values that come from the physiological network nodes are highlighted in blue and for 745 
the pathological states network in pink. (D) Weighted transitivity of each network as the mean ± 746 
S.E.M. value of the 12 tested pathological states from all the age groups. Frequency distribution of 747 
the weighted degree (strength) of the network in each life decade (E) for the physiological networks 748 
and (F) for the pathological states networks. Age dissociates physiological variables, as seen by the 749 
reduction of the weighted transitivity in the physiological network, but without a significant change 750 
in the weighted degree, while pathological conditions become more associated with age, as seen in 751 
the pathological network, reaching a peak at the fifth decade of life. 752 
 753 
Figure 4. Metabolic physiological network construction from matrices.  754 
(A) Correlation of 15 physiological variables and their corresponding 12 pathological states 755 
associations were modelled using Spearman correlation and � value, respectively. (B) Adjacency 756 
matrix as a heatmap where the darker the red indicates a greater monotonic relationship between two 757 
physiological variables, as calculated by the Spearman rank correlation rho. (C) � value between each 758 
pair of pathological states, a darker red indicating a greater probability of coexistence. In both 759 
heatmaps, rows and columns are ordered by weighted degree, and on the left side of the heat maps 760 
the resulting hierarchical dendrogram is shown. For directed networks some nodes lacked outgoing 761 
links, this is presented as blank rows. (D) Undirected network of physiological variables for the 762 
whole sample. The edges are weighted by the rho value in the Spearman correlation. The size of the 763 
node shows the flow betweenness of a node, the eigencentrality is shown by its colour and the colour 764 
shadowed areas indicate the Louvain clusters. (E) Directed network of pathological states. The edges 765 
are weighted by the � value, the size of the node shows the flow betweenness of each node, the 766 
eigencentrality is shown by its colour and the colour shadowed areas indicate spinglass clusters. In 767 
both networks, the red subgraph shows the components of MetS, while the blue subgraph highlights 768 
the largest clique and the diameter of the network is in purple. For Spearman correlation, values with 769 
p>0.001 were discarded, whereas for �, values below 1.96 were discarded. 770 
 771 
Table 1. Demographic description of the population. General description of the total sample and 772 
the age groups is provided with sex (female percentage), mean age ± SD and total number of 773 
participants in each group. The presence of a trend with age by chi-squared tests for trends is 774 
indicated by *** for p<0.001. 775 

 
Total Age groups 

Age range (min-max years) 18-81 <25 25-34 35-44 45-54 55-64 >65 

Age (years ± SD) 38 ± 15 20 ± 2 30 ± 3 40 ± 3 50 ± 3 59 ± 3 70 ± 4 
Sex (female%) 65% 68% 57% 66% 72% 60% 64% 
n 2572 680 528 445 468 352 99 
Basic education*** 16% 2% 6% 13% 20% 21% 22% 
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Undergraduate*** 50% 97% 64% 51% 55% 45% 29% 
Postgraduate*** 34% 0% 31% 35% 25% 35% 48% 
MetS prevalence*** 25% 4% 19% 35% 42% 47% 43% 
 776 
Table 2. Pathological states criteria. Threshold values employed for the classification of 777 
pathological states. Current criteria that are tailored for age and sex are indicated in the columns. 778 

 
Physiological 

variables  
Pathological 

states 
Cut-off 

value 
Sex Age Organization Reference 

1 
Fasting 
glucose 
(mmol/L) 

1 
Hyper-

glycemia 
>5.55 

mmol/L   IDF Alberti et al., 2009 

2 HbA1c (%) 2 High HbA1c >6.5 % 
  ADA 

American Diabetes 

Association, 2020 

3 
Basal insulin 

(pmol/L) 3 
Insulin 

resistance 
M >1.7  

F >1.8 
X 

 
— 

Esteghamati et al., 

2009 

4 HDL 
(mmol/L) 4 Low HDL 

M <1.03 

mmol/L  

F <1.3 

mmol/L 

X 
 

IDF Alberti et al., 2009 

5 LDL 
(mmol/L) 5 High LDL 

>3 

mmol/L   ESC/EAS Mach et al., 2019 

6 
Triglycerides 

(mmol/L) 6 
Hyper-

triglyceridemia 
>1.7 

mmol/L   IDF Alberti et al., 2009 

7 Uric Acid 
(umol/L) 

7 Hyper-
uricemia 

>405 

umol/L   ACR Khana et al., 2012 

8 Urea 
(mmol/L) 

8 Azotemia 
>7.5 

mmol/L   — 
Tyagi and Aeddula, 

2019 

9 Creatinine 
(umol/L) 9 Low eGFR 

<90 

ml/min 
X X KDIGO Levin et al., 2013 

10 Waist (cm) 

10 Overweight 
M >90 cm  

F >80 cm 
X 

 
IDF Alberti et al., 2009 11 Weight (Kg) 

12 Height (cm) 

13 
Axilar 

temperature 
(ºC) 

11 High 
Temperature 

>37ºC 
  — 

Sund-Levander et 

al., 2002 

14 
Systolic 
(mmHg) 12 

High Blood 
Pressure 

> 120/80 

mmHg   ACC/AHA 
Whelton et al., 

2017 
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15 Diastolic 
(mmHg) 

 779 
Table 3. Physiological variables means and pathological states prevalence. Mean ± SD of each of 780 
the 15 physiological variables and prevalence of each of the 12 pathological states are displayed for 781 
each group.  Linear regressions for the physiological variables, and chi-squared tests for trends of the 782 
pathological states prevalence are given. Significance of the trend with age is indicated by *for 783 
p<0.05, ** for p<0.01, and *** for p<0.001.  784 

   Age groups 

  Total <25 25-34 35-44 45-54 55-64 >65 

Physiological 
variable Slope Mean ± SD 

 
Waist (cm) 0.3 

*** 88 ± 12 82 ± 11 87 ± 12 91 ± 12 93 ± 12 93 ± 11 94 ± 12  

 Systolic blood 
pressure 
(mmHg) 

0.3 
*** 113 ± 14 109 ± 11 109 ± 12 113 ± 14 115 ± 14 121 ± 16 124 ± 19 

 

 Diastolic blood 
pressure 
(mmHg) 

0.2 
*** 74 ± 10 71 ± 9 73 ± 9 76 ± 11 77 ± 10 79 ± 11  78 ± 11 

 

 
Weight (Kg) 0.17 

*** 68 ± 15 63.± 13 68 ± 15 72 ± 15 71 ± 14 70 ± 14 68 ± 13  

 Basal insulin 
(pmol/L) 

0.12 
ns 58 ± 48   55 ± 36 54 ± 52 57 ± 42 60 ± 62 59 ± 40 59 ± 44  

 Creatinine 
(umol/L) 

0.12 
** 72 ± 29 70 ± 14 74 ± 45 70 ± 16 70 ± 17 74 ± 18 88 ± 78  

 Uric Acid 
(umol/L) 

0.09 
ns 322 ± 87 323 ± 92 326 ± 90 319 ± 87 315 ± 82 331 ± 88 335 ± 85  

 Fasting glucose 
(mmol/L) 

0.028 
*** 5 ± 1.5 4.6 ± 0.5 4.7 ± 0.7 5 ± 1 5 ± 2 5 ± 2 6 ± 2  

 
Urea (mmol/L) 0.026 

*** 5 ± 1 4 ± 1 5 ± 2 4 ± 1 5 ± 1 5 ± 1 6 ± 2  

 
HbA1c (%) 0.022 

*** 5.5 ± 1 5.1 ± 0.5 5.1 ± 0.6 5 ± 2 6 ± 2 6 ± 2 6 ± 2  

 Triglycerides 
(mmol/L) 

0.019 
*** 1.6 ± 1 1.1 ± 0.6 1 ± 1 2 ± 2 2 ± 1 2 ± 1 2 ± 1  

 
LDL (mmol/L) 0.016 

*** 3 ± 1 2.5 ± 0.6 3 ± 1 3 ± 2 3.2 ± 0.8 3.3 ± 0.9 3.2 ± 0.8  

 
HDL (mmol/L) 0.0004 

ns 1.2 ± 0.3 1.3 ± 0.3 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.3 1.3 ± 0.3  

 
Height (cm) -0.098 

*** 162 ± 9 162 ± 9 164 ± 9 162 ± 9 159 ± 9 160 ± 10 159 ± 10  

 Axilar 
temperature 

(ºC) 

-0.0053 
*** 37 ±0.5 37.2 ±0.5 37.0 ±0.5 37.0 ±0.5 37.0 ±0.5 36.8 ±0.5 36.7 ±0.6 

 

 Pathological 
states 

Chi-
square Prevalence (%)  

 
Overweight 506 

*** 60 38 52 73 80 82 80  

 
Low eGFR 463 

*** 22 4.6 11 18 34 51 75  

 
Hyperglycemia 228 

*** 13 1.5 4.4 12 23 28 31  

 High Blood 202 21 11 11 22 28 42 41  
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Pressure *** 

High LDL 189 
*** 49 24 42 51 62 65 62  

 Hyper-
triglyceridemia 

159 
*** 33 14 32 41 44 48 43  

 
High HbA1c 116 

*** 5.6 0.7 0.6 5.2 8.8 12 18  

 
Azotemia 41 

*** 3.2 0.4 2.4 3.8 6.1 7.5 15  

 Insulin 
resistance 

10.3 
** 14 9.2 12 13 14 16 12  

 
Low HDL 8.8 

** 47 43 46 53 50 42 39  

 
Hyperuricemia 4.5 

* 15 13 19 14 14 18 21  

 High 
Temperature 

0.05 
ns 1.1 0.9 0.4 0.9 1.7 0.6 0  

  785 
Table 4. Topological properties of the physiological variables and pathological states networks. 786 
Global measurements for topological properties are shown for each network. In the case of the 787 
pathological states network, since it is directed, reciprocity of the network is also shown. 788 

 Total 
Age groups 

 
<25 25-34 35-44 45-54 55-64 >65 

Physiological variables networks 
      Density 0.73 0.47 0.63 0.53 0.49 0.39 0.26 

Global transitivity 0.79 0.71 0.74 0.70 0.70 0.67 0.47 
Characteristic path length L 1.27 1.38 1.40 1.57 1.67 1.54 1.85 
Clustering coefficient C 0.84 0.67 0.78 0.69 0.63 0.58 0.51 
Smallworld Index 1.3 1.9 1.3 1.4 1.5 2.1 2.3 
Pathological states networks 

      Density 0.48 0.33 0.40 0.40 0.42 0.39 0.30 
Reciprocity 0.07 0.10 0.04 0.06 0.04 0.06 0.03 
Global transitivity 0.91 0.69 0.79 0.79 0.83 0.78 0.67 
Characteristic path length L 1.19 1.27 1.15 1.23 1.20 1.25 1.09 
Clustering coefficient C 0.50 0.41 0.41 0.43 0.43 0.42 0.32 
Smallworld Index 2.8 3.5 3.3 3.1 3.1 3.1 4.6 
 789 
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