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Abstract

What determines the success of a COVID-19 Test & Trace policy? We
use an SEIR agent-based model on a graph, with realistic epidemi-
ological parameters. Simulating variations in certain parameters of
Testing & Tracing, we find that important determinants of successful
containment are: (i) the time from symptom onset until a patient is
self-isolated and tested, and (ii) the share of contacts of a positive
patient who are successfully traced. Comparatively less important

is (iii) the time of test analysis and contact tracing. When the share

of contacts successfully traced is higher, the Test & Trace Time rises
somewhat in importance. These results are robust to a wide range of
values for how infectious presymptomatic patients are, to the amount
of asymptomatic patients, to the network degree distribution and

to base epidemic growth rate. We also provide mathematical argu-
ments for why these simulation results hold in more general settings.
Since real world Test & Trace systems and policies could affect all
three parameters, Symptom Onset to Test Time should be considered,
alongside test turnaround time and contact tracing coverage, as a key
determinant of Test & Trace success.

* I wish to thank Guy Shalev, Tom Kalvari, Aviad Reich and David Man-
heim who reviewed this manuscript and provided insightful comments and
suggestions. All errors are my own.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Introduction and Model Specification

The strategy of Testing & Tracing to contain the spread of COVID-19
has been proposed in many countries and contexts.[7][11][14] But
which factors of Testing & Tracing should be emphasized, in order
to achieve the best results? We analyze three possible determinants
of contact tracing success, to determine their relative influence on
epidemic growth rate and successful containment.

We use the same model as our previous paper[19], a Susceptible-
Exposed-Infected-Recovered (SEIR)[13] model for disease progres-
sion. We use an agent-based model, where each agent (person) is
represented as a node in a graph, and infection happens between
contacts, represented by graph edges. We also model testing and
self-isolation ("Quarantine"), and contact tracing of positives' graph
neighbors. In all configurations of the model, we calibrate the base
infection probability so that absent any intervention, the doubling
time of the number of infected is about 5 days. This sets a constant
benchmark when assessing different configurations, and simulates
some social distancing and hygiene measures, since without these
measures the observed doubling time is around 3 days.

There are two main additions to the model presented previously:
asymptomatic patients, and non-instantaneous Testing & Tracing.

Asymptomatics

A certain share of patients are asymptomatic, independent of any
other attribute (number of contacts, who they were infected from,
etc.). They differ from symptomatic patients in two ways:

1. They are 50% as infectious as symptomatic patients, both in the
final incubation (Exposed) phase and in the Infected phase.

2. They are never tested based on symptoms, since they do not dis-
play symptoms. They can be tested through contact tracing, and if
tested before becoming Recovered they test positive.

Non-instantaneous Testing & Tracing

Test results and contact tracing are not instantaneous, but instead
take a certain amount time. See section Model mechanics below.
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Figure 1: SEIR model progression for a
single agent.
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Figure 2: Infected nodes can infect
neighboring Susceptible nodes - those
who share an edge with them. Full ani-
mation at bit.ly/seir-graph-animation.
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Figure 3: Contact tracing. Share of
Contacts Traced of the neighbors of a
node which tests positive are traced
and themselves self-isolated and tested.
In this illustration, 60% of the Infected
positive node’s contacts were traced (3
out of 5).
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Figure 4: Quarantined node cannot
infect others. Susceptible, Exposed,
Infected and Recovered nodes shown.
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Figure 5: Illustration of the different

time intervals in the context of disease
Model mechanics progression. Symptom Onset to Test
Time is the time from symptom onset
to self-isolation and test. Test & Trace

. . . Time is the time from when the primary
testing, quarantine etc. in the model. References for the values of spe- patient is tested and isolated until its

We now describe more precisely the timeline of infection, symptoms,

cific parameters, where not provided here, are given in our previous contacts are tested and isolated. It is
also the time between when the con-

tacts are tested to when their contacts
interchangeably - they are all equivalent in our model. are isolated and tested. Not all contacts
are successfully traced, only a certain
fraction, Share of Contacts Traced.

paper[19]. We use the terms Quarantine, isolation and self-isolation

1. Agent is Susceptible.

2. Agent is infected by another agent. The agent becomes Exposed,
and begins its incubation phase (Gamma distributed, mean 5.1
days, std 4.4 days).

3. In the last 2 days of the incubation (Exposed) phase, it is infec-
tious, but only 50% as much as in the Infected phase (see sensitiv-
ity analysis in presymptomatic infectiousness section).

4. Incubation ends. Agent becomes Infected, develops symptoms (for
asymptomatic agents, see below).

5. After Symptom Onset to Test Time days, if the agent has not yet
Recovered, it shows up to be tested. At this point it is Quarantined

for 14 days, and the clock starts on test analysis." UIf it /s already recovered before its
. . X Symptom Onset to Test Time, it is not
Asymptomatic patients - 40% of agents are asymptomatic. They tested due to symptoms.

have the exact same disease progression, except they are 50%
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as infectious as the symptomatic at each stage (see Caveats and
limitations section for discussion of these numbers). They also
never show up to be tested based on symptoms (but if they are
tested through contact tracing, come out positive).

6. After Test & Trace Time days, the test analysis is complete and

results are positive.> At this point a certain fraction, Share of Con- 2 We also make the simplifying assump-
tion that while awaiting test results, an

tacts Traced, of the positive agent’s neighbors are traced, tested ! :
agent is not tested again.

and Quarantined immediately for 14 days. Therefore, we can think
of Test & Trace Time as the time between a symptomatic agent
being tested and their primary circle being Quarantined after a
positive result.

7. Contacts who tested positive seed a new contact tracing cycle.

8. An Infected agent Recovers after (on average, Exponentially dis-
tributed) 3.5 days. It stops being infectious and symptomatic. If an
agent is Recovered and has not yet been tested, it will not be tested
on account of symptoms (and if tested through contact tracing will
show up negative).

It is crucial that in our model isolation of a tested agent (either
symptomatic or traced) happens at the moment the test is performed,
not when results are back. If isolation happens only when the results
are back, it is roughly equivalent to effective parameters where the
test analysis time counts against both Symptom Onset to Test Time
and Test & Trace Time.

For more details about the model, see our previous paper[19] or the
open source code on GitHub.

Parameters of Test & Trace

We analyze three parameters of a Test & Trace policy to determine
their relative importance for containment. We formally define these
three parameters now.

Symptom Onset to Test Time- On average, how many days does it
take from symptom onset until an Infected individual shows up for a
test, at which point they are Quarantined even before test results are
back. This is used as the expectation of an Exponential distribution
sampled for each agent.

Test & Trace Time (Test to Contact Test Time) - The time from
the moment a primary patient is tested until its contacts (neighbors
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in the graph) are Quarantined and tested. This is a constant (not
distributed).

Share of Contacts Traced - The fraction of a positive’s neighbors
which are successfully traced. Equivalently, it is the probability that
each neighbor of a positive is traced. Successful tracing is sampled
independently for each neighbor of a known positive, with this prob-
ability. For example, 50% means (on average) half of neighbors are

traced.
Parameter Values Simulated Units
Symptom Onset to Test Time 0.2, 0.5, 1, 2, 3.33, infinity Days
Test & Trace Time 0,1,2,3,4,8 Days
Share of Contacts Traced 0,0.5,0.8, 1 Fraction
Table 1: Values analyzed for the Test
& Trace parameters. We simulated the
cartesian product of these values.
Simulations
Configuration

We present simulation results. The parameters we vary in these sim-
ulations are our three analyzed parameters: Symptom Onset to Test
Time, Test & Trace Time, and Share of Contacts Traced. See the spe-
cific values used for each in Table 1 above. For each set of parame-
ters, a full simulation of the epidemic progression on the graph is
performed. The simulation runs until 600 days have been simulated,
or until the epidemic is eradicated (no more Exposed or Infected
nodes). Several summary statistics are collected, most prominently
the fraction of the population which is ever infected, as our main
outcome measure. We perform 10 independent simulations and cal-
culate our statistics on the average of the 10 time series obtained, so
each data point is the result of 10 simulations. The graph is a scale-
free network of 100,000 nodes, with parameter gamma=o0.2 (in our
previous notation[19]), corresponding to a power law degree dis-
tribution with exponent -6 and mean degree 20. Each simulation is
seeded with a uniformly random 0.25% of the population Infected or
Exposed.

These simulations were done with some social distancing, i.e.
parameters calibrated to produce a base doubling time, absent any
testing and quarantine, of about 5 days. We obtained qualitatively
similar results when calibrating to a doubling time of 3.1 days.
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Trajectory with different parameters

Since there is considerable uncertainty about the prevalence of 102 Symptom to Test
asymptomatic patients, we performed a sensitivity analysis and ob- i
tained qualitatively similar results for 25% asymptomatic and for 0% [2.0,1.0]

. [1.0, 2.0]
asymptomatic. 10-3 — [02,3.0]
kel

We also obtained similar results for a graph which is not scale- g
free, but rather with a constant degree. The sensitivity analysis £
results are not shown here. The full raw data for these graphs is :

@ -4
freely available.[18] g 1o
Results
1075
We start with an illustrative example. Figure 6 shows the trajectory
of the epidemic in 4 simulations. The simulations are all with Share 0 100 200 360 430 500 600

of Contacts Traced = 50%, but different values of Symptom Onset day

to Test Time and Test & Trace Time, with their sum held roughly

Figure 6: Epidemic trajectories with
different time interval parameter

constant. Conditional on this sum, a shorter Symptom Onset to Test values. Plotting over time the (log-scale)
Time facilitates faster containment. The effect is large - the Share share of Exposed and Infected agents

. . o o . in the population. Keeping the sum
of population eventually infected ranges from 9.6% to 0.9%. This Symptom Onset to Test Time + Test &
illustrates the greater importance of Symptom Onset to Test Time Trace Time roughly constant at about 3

days, a shorter Symptom Onset to Test

over Test & Trace Time, comparing day for day' Time facilitates faster containment.

In what follows we abstract from the specific trajectories, and use
only the share of population eventually infected as our outcome mea-
sure, so each trajectory such as the ones above will be represented by
a single data point.

Figure 77 displays results of several simulations. In all of these,
Share of Contacts Traced = 50%, whereas Symptom Onset to Test
Time and of Test & Trace Time are varied to show their effects. Each

Share of Contacts Traced = 0.5

100

point in this graph is a simulation result. The Y value is the fraction
of the population which is eventually infected until the simulation
ends. Lower values mean successful suppression. The X value is the
Test & Trace Time, in days. The different series (colors) are simula-

Share of Population Infected

tions with different values of Symptom Onset to Test Time - lower Symptomto 4
numbers are quicker detection. “inf” stands for “infinity”, meaning 10 ’_/,/‘\v/ Rt
symptomatic agents are never detected. Indeed, when symptomatic DEboy
agents are never detected (brown line), the Test & Trace Time does o
not affect the outcome, since no contact tracing takes place. —— 02

103

0 1 2 3 4 5 6 7 8

It can be observed that the vertical distance between the different - .
est & Trace Time (Days)

lines is much larger than the vertical distance between the left and Figure 7: Simulation results varying

right ends of each line. This means changes in Symptom Onset to Symptom Onset to Test Time and

of Test & Trace Time. The vertical

. ) ] ) distance between the different lines is

Also note the scale is smaller - there is a big difference between 1 and much larger than the vertical distance

2 days in Symptom Onset to Test Time, whereas the X axis scale is %’efwee;‘ the left ark11d right ends of each
. . . . ine. This means changes in Symptom

multiple days. Test & Trace Time still does matter, especially for the Onset to Test Time are more influential

right parameters (e.g. 1 day Symptom Onset to Test Time). than changes in Test & Trace Time.

Test Time are more influential than changes in Test & Trace Time.
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Figure 8 shows a different slice of the parameter space - we fix
Symptom Onset to Test Time to 3.33 days, and show the effects of
the Share of Contacts Traced (color) along with Test & Trace Time
(X axis). Y is still the Share of Population Infected. As expected,
when Share of Contacts Traced = o, meaning no contacts are ever
traced (red line), Test & Trace Time does not affect the outcome. The
higher the share of traced neighbors (80% - brown, 100% - grey),
the more influential the Test & Trace Time is. This is because the
Test & Trace Time only affects the successfully traced contacts, so it
is more important when more contacts are traced. Similarly, when
Test & Trace Time is very long (8 days, right side of each line), the
Share of Contacts Traced has a smaller effect, since contact tracing is
much less effective when 8 days elapse from a positive test result to
tracing of contacts - 8 days is longer than most serial intervals so the
infection chain gains a longer and longer lead on the contact tracing,
and not the other way around.

Finally, Figure 9 shows another slice of the parameter space. We
fix Test & Trace Time to 2 days, and check the relative effects of
Symptom Onset to Test Time and Share of Contacts Traced. Again,
when no symptomatic agents are detected (Symptom Onset to Test
Time = infinity, brown line) the Share of Contacts Traced has no
effect. But for other values, both parameters affect the Share of Popu-
lation Infected - the vertical distance between the lines is comparable
to the vertical distance between the right side and left side of each
line.

In summary, we find that Symptom Onset to Test Time and Share
of Contacts Traced are stronger determinants of successful contain-
ment than Test & Trace Time. For example, reducing Symptom Onset
to Test Time from 2 days to 1 day has a similar effect as increasing
the Share of Contacts Traced from 50% to 80%, and both are more
effective than reducing the Test & Trace Time from 4 days to 1 day.
When the Share of Contacts Traced is higher, Test & Trace Time rises
in importance. Results for the full parameter space are presented in
the first row of Figure 10.

Effects of presymptomatic infectiousness

We test whether greater infectiousness in the presymptomatic phase
affects the results. It has been suggested[17][3][9][16] that patients

are most infectious in the final days before developing symptoms,
and in fact that most transmission happens before symptom onset. To
simulate this, we try three different values of presymptomatic relative

Symptom to Test Time = 3.33 Days

10°

H
2

Share of Population Infected
&

Share of Contacts Traced
—e— 0.0
—e— 0.5
—o— 0.8
1.0

0 1 2 3 4 5 6 7 8
Test & Trace Time (Days)

103

Figure 8: Higher Share of Contacts
Traced (color) lines have a steeper slope,
meaning for them Test & Trace Time (X
axis) has a stronger effect.

Test & Trace Time = 2 Days

10°

=
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L
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Symptom to
10-2/| TestTime (Days)
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—— 333 \\\<
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0.5
—— 0.2
103
0.0 0.2 0.4 0.6 0.8 1.0

Share of Contacts Traced

Figure 9: The vertical distance between
the colored lines is comparable to the
vertical distance between the right side
and left side of each line. This means
both Share of Contacts Traced and
Symptom Onset to Test Time signifi-
cantly affect the Share of Population
Infected.
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infectiousness. The presymptomatic relative infectiousness is the ratio
between the rate at which an agent in its infectious presymptomatic
phase (final 2 days of incubation) infects its neighbors, and the rate
for that agent in its symptomatic phase. A value of 0.5, for example,
means that if each day in the symptomatic phase, an agent infects a
neighbor with probability p, then each in the presymptomatic phase
that agent infects that neighbor with probability 0.5p. This parameter
controls the balance between presymptomatic infections and symp-
tomatic infections, with higher values meaning a higher share of total
infections comes from the presymptomatic phase. We simulate using

three values: 0.5 (the value used in results above), 1, and 1.65.3 For 3 We selected 1.65 to make total
presymptomatic infections roughly

each value we recalibrate the infection probability to produce a basic R
equal to total symptomatic infections.

doubling time (absent any intervention) of about 5 days.
Presymptomatic Infectiousness = 0.5

100 Share of Contacts Traced = 0.0 Share of Contacts Traced = 0.5 Share of Contacts Traced = 0.8 Share of Contacts Traced = 1.0
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Figure 10: Effects of presymptomatic
infectiousness. Each panel shows the

Results are presented in Figure 10. Each panel is similar to 7 effects of Symptom Onset to Test Time

above, with Share of Contacts Traced fixed to a certain value, de- (color) and Test & Trace Time (X axis)
termined by the column, and with Symptom Onset to Test Time on Share of Population Infected (Y

. . . . axis). Columns - Share of Contacts
(color) and Test & Trace Time (X axis) varying. The different rows Traced. Rows - presymptomatic relative
correspond to the different values of presymptomatic relative infec- infectiousness (0.5 - top, 1 - middle,

1.65 - bottom). Presymptomatic infec-
tiousness does not change the relative
importance of the main three parame-
ters.

tiousness, lower rows representing more presymptomatic infections.
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Comparing the different rows, we see that increased presymp-
tomatic infectiousness (lower rows) makes all Test & Trace efforts
more difficult, which is expected since in these settings serial inter-
vals are shorter and come before the indicator for testing - symptom
onset. However, presymptomatic infectiousness does not to change
the relative importance of the main three parameters - Share of Con-
tacts Traced (columns) and Symptom Onset to Test Time (colors)
still have a stronger effect than changes in Test & Trace Time (X axis
value).

Caveats and limitations

We note a few caveats and limitations of our model. Our model relies
on very few unknown free parameters and magic numbers, but in
return it is simplistic in many ways. We make a conscious choice

not to model parameters we cannot estimate, and bear the costs in
lacking representation, which is detailed here.

We model isolation of symptomatic agents and traced contacts
with perfect compliance immediately upon test time - in reality
compliance with isolation is probably higher once test results are
known to be positive.

There is considerable uncertainty about the epidemiological
parameters of asymptomatic patients - firstly their prevalence in
the patient population, but also relative infectiousness and disease
progression & duration. In our simulations, 40% of patients are
asymptomatic[6][5][8], and have 50% relative infectiousness (see
[15], and assumed by [1]). This does not contradict what we could
estimate from the literature on viral shedding[20], but is still highly
uncertain. Otherwise disease progression (incubation time etc.) are
the same as symptomatics. Our results are robust to the share of
asymptomatic patients being lower (25% or 0%, sensitivity analysis
not shown), which captures a similar parameter, since the boundary
between symptomatic and asymptomatic is gradual. Moreover, de-
creasing the infectiousness of asymptomatic patients to less than 50%
would only strengthen the results.

In our model, Test & Trace Time is assumed to be constant, not
randomly distributed. We don't think this is crucial, unless test times
are correlated with infectiousness (such as the degree of the node),
but it could affect the results.

We use the share of the population eventually infected as our main
outcome. In principle each parameter configuration results in one of
two regimes: either containment, in which case the share eventually
infected is proportional to the share initially infected, or mitigated
spread, in which case it is proportional to the population size. In


https://doi.org/10.1101/2020.08.05.20168799
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.08.05.20168799; this version posted August 6, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

COVID-19 TEST & TRACE SUCCESS DETERMINANTS: MODELING ON A NETWORK 10

theory, the share eventually infected is an imperfect proxy for this,
and the order of our results could depend on the network size or
number of nodes initially infected. In practice, we observed that there
is a preserved monotonic order across numbers of initial infected,

so that the share eventually infected for a single number of initially
infected provides a good separation between the regimes, so we do
not detail it, but it is another reason not to take the absolute numbers
presented as precise estimates.

All the general caveats about the model, stated in the previous
paper[19], apply. For example, no modeling of false test results, an
arbitrary mean degree, no graph locality, etc. Other studies have used
more realistic and complex social networks[1][4] or an age structured
population[2] to model epidemic spread.

Mathematical Arguments

We provide theoretical reasons for why Symptom Onset to Test Time,
the time from symptom onset to test and self-isolation, might be
more important for reducing growth rate than Test & Trace Time. We
give several reasons.

1. Reducing a day from Symptom Onset to Test Time, or reducing a
day from the Test & Trace Time, each have the same effect on the
time in which 18 circle contacts are traced, tested and isolated - in
both cases it makes it exactly one day earlier.

2. Reducing Symptom Onset to Test Time also reduces the amount
of time the primary patient can infect, since they are isolated as
soon as they are tested, not when results are back - this is not af-
fected by Test & Trace Time. In the time they are isolated, they do
not infect further. So it reduces the number of additional people
they infect, thereby reducing R.

3. In our model, reducing Symptom Onset to Test Time increases the
share of infected agents who are ever tested, since if agents recover
before their Symptom Onset to Test Time, they are not tested. This
gives contact tracing a better starting point - more infected agents
identified. If a patient is not tested, all contacts they infected must
be independently detected to break the chain.

4. Test & Trace Time only affects the traced contacts, and not the ones
who aren’t traced. The effect of Test & Trace Time is therefore mul-
tiplied by the Share of Contacts Traced. If only 50% of contacts are
traced, Test & Trace Time affects at most 50% of contacts and so
only 50% of the infection chains, reducing R by at most 50%.

Time Symptom Onset  Test & Trace
—_— to Test Time Time

—
Symptom Tested,
Onset Self-solated |

| Test & Trace
1 Time

—

Infection Contacts Tested,
Self-Isolated

Figure 11: Time intervals in disease and
Test & Trace progression.
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Discussion

We have found that increasing the Share of Contacts Traced and
reducing Symptom Onset to Test Time are important determinants
of successful contact tracing. Increasing the Share of Contacts Traced
has garnered much attention[4], with proposals such as smartphone
apps[10]. Contact Tracing techniques and Exposure Notifications
technologies can help with all the factors we’ve examined: People
who know they were exposed to a verified carrier AND develop
symptoms, will get tested earlier, more contacts can be traced and
of course more people will get tested as a result of getting notified
about a possible exposure. We therefore focus here on the second
important attribute, Symptom Onset to Test Time.

How might Symptom Onset to Test Time be reduced in practice?
Several policies can be considered. The first one - mentioned above,
and practiced is several countries - is that self-isolation begin at the
time of test sample collection (or the time of being notified of ex-
posure, for a traced contact), not at the time when test results are
back. Isolating patients only when test results are back is roughly
equivalent to including the test analysis time in both the effective
Symptom Onset to Test Time and the effective Test & Trace Time.
Symptomatic patients who are tested can be reminded or ordered
to self-isolate until test results come back. Another policy is public
service announcements to encourage self-isolation and testing at the
first sign of symptoms, thus encouraging a quicker response. A third
policy is reducing the effort and cost required to get tested, such as
via drive-in testing, home testing or guidance and support hotlines
(depending on test availability).

In order to track the current performance of efforts to reduce
the time from symptoms to self-isolation, that time interval must
be measured. It is possible to record the symptom onset time as
well as the time of self-isolation and test using self-reports by pa-
tients with symptoms at sample collection sites, or patients who
are contacted as part of contact tracing. For example, if a traced
contact has experienced symptoms for 2 days before being con-
tacted and has not independently asked for a test so far, we know
their Symptom Onset to Test Time is greater than 2 days. With the
Kaplan-Meier estimator[12], we can use these data points to estimate

the distribution of the Symptom Onset to Test Time for either the en-
tire population of traced individuals, or only the subset who end up
testing positive.

So far we have considered the effects of different policies, but not
the costs involved with them. We now make a few comments on cost
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and feasibility.

Reducing Symptom Onset to Test Time might be easier than re-
ducing the Test & Trace Time, since it involves one symptomatic
patient, and not multiple contacts. It is also easier since for the typ-
ical symptomatic patient to self-isolate does not require compet-
ing resources, unlike testing and tracing capacity which need to be
strengthened or diverted from other patients to speed up the Test &
Trace process.

However, there are factors which make it more difficult to reduce
Symptom Onset to Test Time. During an advanced containment
phase, the non-COVID symptomatics (due to the flu and other rea-
sons) far outnumber the COVID symptomatics, so efforts have to
impact many people who have a very weak incentive to comply. In
addition, the Testing & Tracing apparatus is typically centrally con-
trolled by the government, which makes it more amenable to tracking
and improvement, as opposed to symptomatic individuals who are
not in constant touch with any central agency and are much harder
to monitor.

To conclude, we feel that the Symptom Onset to Test Time has
been too absent from discussions about COVID-19 containment, and
was not prioritized highly enough in policy.
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