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Abstract:

Background:  Accessible datasets are of fundamental importance to the advancement of

Alzheimer’s disease (AD) research. The AddNeuroMed consortium conducted a longitudinal

observational  cohort  study with the aim to discover  AD biomarkers.  During this  study,  a

broad selection of data modalities was measured including clinical assessments, magnetic

resonance imaging, genotyping, transcriptomic profiling and blood plasma proteomics. Some

of  the  collected  data  were  shared  with  third-party  researchers.  However,  this  data  was

incomplete, erroneous and lacking in interoperability.

Methods: We systematically addressed several limitations of the originally shared data and

provide additional unreleased data to enhance the patient-level dataset.

Results: In  this  work,  we  publish  and  describe  ANMerge,  a  new  version  of  the

AddNeuroMed dataset. ANMerge includes multimodal data from 1702 study participants and

is accessible to the research community via a centralized portal. 
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Conclusions: ANMerge is an information rich patient-level data resource that can serve as

a discovery and validation cohort for data-driven AD research, such as for example machine

learning and artificial intelligence approaches. 

ANMerge can be downloaded here: https://doi.org/10.7303/syn22252881
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1. Background

Alzheimer’s disease (AD) is a progressive disease whose pathology develops years before

cognitive symptoms arise and a diagnosis is made by a clinician (Sperling et al., 2011). Early

intervention in non-cognitively impaired, pre-symptomatic disease stages is instrumental to

any future disease modifying therapy. Enabling such an early intervention poses the problem

of diagnosing a patient with AD before cognitive symptoms indicate disease presence. One

approach to establish whether a specific individual is in the pre-symptomatic stages of the

disease is a diagnosis based on informative disease biomarkers. The critical prerequisite for

discovery and validation of such biomarkers are resourceful patient-level datasets (Morgan

et al., 2019). However, findable AD cohort datasets which are accessible to the research

community are scarce.

Open  science  is  a  paradigm  aimed  at  increasing  societal  benefit  of  research  through

dissemination and sharing of scientific data. This enables usage and analysis of collected

data  by  the  whole  research  community  which  subsequently  will  increase  the  achieved

knowledge gain. Currently, the prime example of following the open science paradigm in the

AD field is  the Alzheimer’s  Disease Neuroimaging Initiative (ADNI;  Mueller  et al.,  2005).
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ADNI is an information rich, comprehensive clinical AD cohort dataset that enables secure,

yet easy access to its patient level data for researchers with reasonable study interest. In

only a few days raw data as well as a preprocessed version of ADNI (ADNIMERGE) are

accessible via the Laboratory of Neuro Imaging (LONI) service (http://loni.usc.edu/). Initial

preprocessing,  arranging  and cleaning  of  data is  the most  time consuming step in  data

analysis.  Due  to  that,  a  major  cumulative  time  save  is  possible  by  sharing  an  already

preprocessed, easy to analyse dataset instead of a raw data collection. Here, researchers

can simply use the provided ADNIMERGE and thereby avoid investing additional time into

data preprocessing and cleaning.

While ADNI is a tremendously important resource, as every cohort dataset it comes with its

own limitations and biases (Whitwell et al., 2012, Ferreira et al., 2017). To ensure reliability

of  observations  made  in  one  cohort,  validation  in  data  from  independent  cohorts  is

necessary  (Fröhlich  et  al.,  2018).  Still,  apart  from ADNI  there  are  not  many  AD cohort

studies  which 1)  share their  data in  a similarly  comprehensive  version and 2)  keep the

bureaucracy  during  an  access  application  as  straightforward  as  ADNI  does.  From  our

experience, access applications are often time consuming and if access is granted, shared

data  is  sometimes  lacking  important  information.  Therefore,  other  easily  accessible  and

information rich alternatives besides ADNI are crucial.

In  2005,  Lovestone  et  al. started  AddNeuroMed,  an  Innovative  Medicine  Initiative  (IMI)

funded project  which involved gathering longitudinal  patient  data at  multiple sites across

Europe (Lovestone et al., 2007). Its main goal was to identify urgently needed progression

biomarkers for AD. For this purpose, a broad spectrum of variables was measured including

demographics,  neuropsychological  assessments,  genetic  variations  and  transcriptomics,

blood plasma proteomics, and structural magnetic resonance imaging (MRI) of the brain. In

2015 a subset of the collected data was uploaded on Synapse (https://www.synapse.org/).

Next to the original AddNeuroMed data, some data from participants of the Maudsley BRC

Dementia  Case  Registry  at  King’s  Health  Partners  cohort  (DCR)  and  the  Alzheimer’s
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Research Trust  UK cohort  (ART) was included (Hye  et.  al.,  2006).  Although the shared

AddNeuroMed collection is a large dataset, involving more than 1700 participants, it has only

been cited 64 times1. In contrast, ADNI, which involves roughly 2400 individuals, was cited

more than 1300 times2. Compared to the impact ADNI has had on recent research activities,

it  seems  AddNeuroMed  does  not  reach  its  full  potential.  One  probable  reason  for  the

comparably lower data usage might be the findability and the state of the data published on

Synapse. The dataset 1) has never been officially published, 2) is not easy to work with due

to missing organisation,  and 3)  is  not  complete  with several  entries being  erroneous or

lacking information. To enable the research community to leverage the full potential of this

dataset, a lot of data preprocessing efforts are needed and it is vital to point the community

towards this unsalvaged resource.

In this work, we present and publish a new, improved and updated version of AddNeuroMed

called ANMerge. ANMerge is a comprehensive, preprocessed AD cohort dataset which is

again accessible via Synapse (https://www.synapse.org/#!Synapse:syn4907804). It  is fully

interoperable in between its modalities and rigorous data curation was performed to ensure

higher information density and usability.  Furthermore, we present a detailed overview on

which and how much data is available in the dataset. Finally,  we highlight the increased

preprocessing efforts involved in creating such a dataset. By making ANMerge accessible,

we  aim  to  provide  the  AD  research  community  with  an  information  rich  alternative  to

previously  published  cohort  datasets,  and  thereby  support  the  discovery  and  robust

validation of scientific insights.

1  PubMed query: "AddNeuroMed" AND ("Alzheimer's disease" OR "dementia"); state
18.09.2019

2  PubMed  query:  "ADNI"  AND  ("Alzheimer's  disease"  OR  "dementia");  state
18.09.2019
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2. Methods

2.1 Data collection

AddNeuroMed  data  collection  was  performed  at  six  different  centers  across  Europe:

University of Kuopio, Finland;  Aristotle University of Thessaloniki,  Greece; King’s College

London,  United  Kingdom;  University  of  Lodz,  Poland;  University  of  Perugia,  Italy;  and

University of Toulouse, France (Lovestone et al., 2007). The participation of those centers

highlights AddNeuroMed as a major cross-european effort in AD related data collection. At

each site, all protocols and procedures were approved by Institutional Review Boards and

informed  consent  was  obtained  for  all  patients  according  to  the  Declaration  of  Helsinki

(1991) (Simmons et al., 2009). In cases where dementia compromised capacity assent from

the patient and consent from a relative, according to local law, was obtained. 

Exclusion criteria included other neurological  or  psychiatric diseases,  significant  unstable

systemic illness or organ failure, and alcohol or substance misuse. AD diagnosis followed

the  Diagnostic  and  Statistical  Manual  for  Mental  Diagnosis,  fourth  edition  and  National

Institute of Neurological and Communicative Disorders and Stroke–Alzheimer’s Disease and

Related Disorders Association criteria (McKhann et al., 1984). AD patients were included if

they exhibited  a Mini  Mental  State Examination  (MMSE) score in  the range of  12-28,  a

Clinical Dementia Rating (CDR) scale score of above 0.5, and were aged 65 years or above.

Individuals were considered as MCI according to the Petersen criteria (Petersen, 2004). For

inclusion, MCI patients aged 65 or above, the MMSE score ranged between 24 and 30, and

they scored 0.5 on the CDR. Participants were considered to be cognitively healthy if they

showed normal performance on cognitive tests (within 1,5 SD of average for age, gender

and education) and scored 0 on the CDR (Hye et al., 2014).

AddNeuroMed’s study protocols were designed to be at least partially compatible to ADNI

(Lovestone et al., 2007).  Figure 1 illustrates when data collection was performed for each

modality.
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Figure  1: Overview  on  longitudinal  data  collection  per  modality.  Proteomics:  Proteomic  data  from  blood

plasma,. Transcriptomics: Transcriptomic data from blood plasma. 

Clinical assessments

At  each participants  visit  throughout  the study,  a broad collection  of  neurocognitive  and

psychological assessments were performed, including the MMSE , CDR , GDS (Geriatric

Depression  Scale),  NPI  (Neuropsychiatric  Inventory),  ADAS-Cog  (Alzheimer's  Disease

Assessment  Scale-Cognitive  Subscale),  ADCS-ADL  (Alzheimer’s  Disease  Cooperative

Study Activities  of  Daily  Living  Scale),  the full  CERAD battery (Morris  et  al.,  1989),  the

Hachinski  Ischemic  Score  and  the  Webster  Rating  Scale.  The  frequency  with  which

assessments were made varied between diagnostic groups. During the first year, AD cases

completed assessments every three months and annual  follow-up visits  afterwards.  MCI

patients and healthy individuals from AddNeuroMed, as well as all participants from the ART

and DCR cohorts were assessed regularly every twelve months. 

Proteomics

Proteomic data were measured in blood plasma using a Slow Off-rate Modified Aptamer

(SOMAmer)-based  array  called  ‘SOMAscan’  (SomaLogic,  Inc,  Boulder,  Colorado).  Data

collection was performed at baseline and again one year into the study. Details on data
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acquisition are presented in Kiddle et al. (2010) and Sattlecker et al. (2014). In brief, using

chemically altered nucleotides the protein signal is turned into a nucleotide signal that can be

measured using microarrays. Per sample 8 µL plasma were required and levels of 1001

distinct  proteins were measured. An in-depth description of the array technology can be

found in Gold et al. (2010). 

Genotyping

AddNeuroMed  participants  were  genotyped  in  two  batches.  For  batch  one  the  Illumina

HumanHap610-Quad Beadchip was used, while batch two was processed using the Illumina

HumanOmniExpress-12  v1.0.  More  information  can  be  found  in  the  method  section  of

Loudursamy  et al. (2012) and Proitsi  et al. (2014). All  genotyping was performed at  the

Centre National de Génotypage in France.

Transcriptomics

Blood samples  for  the collection  of  gene expression data were taken at  study baseline.

Transcriptional profiling was performed in two batches using the Illumina HumanHT-12 v3

(batch one) and v4 (batch two) Expression BeadChip kits. Original raw data can be found in

GEO3.  Preprocessed  raw  data  files,  as  well  as  post  quality  control,  batch  corrected

expression values, are distributed via Synapse. The processed data underwent background

correction, log base two transformation and all values were robust spline normalized (Voyle

et  al.,  2016).  Outlying  samples  were  excluded.  Batch  correction  was  performed  using

ComBat  (Johnson  et  al.,  2007).  All  data  were  subset  to  probes  that  could  reliably  be

detected in at least 80% of samples in at least one diagnostic group. More details on the

processing of the data is explained in Voyle et al. (2016).

3 Batch one: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63060

Batch two: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63061
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Magnetic Resonance Imaging

1.5 Tesla T1-weighted MRI images were taken at three different timepoints throughout the

study (Month 0, 3, 12). The first 3 month interval was explicitly chosen to contrast the 6

month MRI follow-up of ADNI and thereby evaluate if 3 month could potentially be enough to

observe substantial changes in brain structure. Protocols for imaging were aligned to the

ADNI  study.  Details  on the AddNeuroMed MRI data  acquisition  have been described in

Simmons et al. (2011 and 2009). ANMerge provides access to collected raw images as well

as processed brain volumes and cortical thickness calculated using FreeSurfer 5.3 and 6.0. 

2.2 Data preprocessing

First, we manually investigated all raw data files and evaluated the availability and state of all

data types. Manual changes to the data were avoided by performing all  data alternating

steps computationally. 

We tried  to build  the  most  informative  and complete,  yet  minimally  complex,  version of

AddNeuroMed possible.  Therefore,  we carefully  selected features  from the raw data  for

inclusion into the new ANMerge version. To reduce the number of variables in ANMerge, we

only  included  total  scores  of  clinical  assessments  instead  of  listing  all  sub-scores  and

individual answers. Variables not considered in the new dataset are still accessible through

Synapse. 

Not all participants from the DCR and ART cohorts underwent data collection in the course

of AddNeuroMed. However, since clinical assessments between the original AddNeuroMed

study and DCR were largely overlapping, we decided to include all DCR participants into

ANMerge, even if they lacked other modalities apart from clinical data. From the ART cohort,

we only included individuals who had been assessed in at least one modality next to clinical

data to reduce data sparsity.

The new ANMerge dataset is divided into modality specific subtables which makes unimodal
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analysis straightforward. To enable full interoperability between these subtables, we mapped

all previously modality specific participant identifier to a single common one. Additionally, we

enriched ANMerge with data previously not available in the Synapse version. For example,

we added missing diagnoses and clinical assessment scores as well as months in study as

an unambiguous time scale. Previously,  only visit  numbers were reported. The latter are

misleading due to differences in assessment intervals between diagnostic groups (e.g. visit 2

for healthy and MCI participants corresponds to visit 5 of AD patients). Information which is

no subject to change (e.g. APOE genotype) was added to all entries of a participant in order

to reduce sparsity. Furthermore, to increase interoperability not only within AddNeuroMed

itself  but  also  to  other  data  resources,  we  mapped  variable  names  to  public  database

identifiers  wherever  possible.  For  example,  proteomic  variables  are  given  as  UniProt

identifiers, genotype data is encoded as rs-numbers and gene expression probes as Illumina

IDs (Du et al., 2008). All of these identifiers can be easily mapped to other resources and be

enriched with information from public databases.

3. Results

3.1 Overview on Data

The resulting ANMerge dataset comprises four data modality specific subtables, genotype

data in PLINK format and one combined table providing all preprocessed information as one.

Respectively, one subtable was created for clinical data, proteomics, FreeSurfer calculated

MRI features, and gene expression values. Next to diagnosis and clinical assessments, the

clinical  subtable  also  provides  participants  demographics,  family  history  and  medication

data.

In total the dataset comprises information on 1702 patients, out of which 773, 665 and 264

originated from the AddNeuroMed, DCR and ART cohorts respectively (Table 1). Data on

4585 individual participant visits are reported. At study baseline, 512 participants had been

diagnosed with AD, 397 with MCI and 793 were non cognitively impaired individuals. Table 1
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describes  the average characteristics of  each diagnosis  group at  baseline.  On average,

cognitively affected individuals (i.e. MCI and AD) in ANMerge were 77 years old at baseline,

completed 9.7 years of full-time education and 59% of them were female. Healthy individuals

averaged to an age of 74.5 years, underwent 12.3 years of education and 59% are female.

During study runtime 48 and 11 healthy participants converted to MCI and AD respectively.

Out of all patients diagnosed with MCI at baseline 70 converted to AD.

Table  1: Summary  statistics  describing  the  ANMerge  cohort  at  baseline.  N: Number  of  participants  with

corresponding diagnosis. ANM: Number of participants originally from the AddNeuroMed study, DCR: Number of

participants originally from the DCR study. ART: Number of participants originally from ART study. CTL: Healthy

control participants

Diagnosis N ANM DCR ART Age (SD) Female 

%

Education

(SD)

APOE e4 

positive %

CTL 793 266 423 104 74.5 (6.4) 59 12.3 (4.3) 25

MCI 397 247 89 61 76.0 (6.5) 55 10.0 (4.3) 40

AD 512 260 153 99 78.6 (7.2) 63 9.4 (4.3) 54

Total 1702 773 665 264 76.4 (6.9) 59 10.9 (4.5) 39

Not every study participant took part in data collection of all modalities. For our evaluation,

we considered participants as represented in a modality if  at  least  one modality specific

variable was measured. This implies that not necessary all variables of that modality were

available  for  a given participant  (e.g.  an individual  listed in  the clinical  table might  have

MMSE scores  but  no  ADAS-Cog).  We  found  that  clinical  data  is  reported  for  all  1702

participants, while MRI, proteomic, gene expression, and genotype data were collected for

subsets of several hundred participants each (Table 2 ‘Subjects’). Figure 2 demonstrates the

number of patients assessed across multiple modalities. In total, 235 participants have been

assessed  with  regard  to  all  five  data  modalities.  By  reducing  the number  of  modalities

included  into  an  analysis,  subsequently  the  number  of  available  participants  rises.  For
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example, when conducting a multimodal study using transcriptomic, genotype and clinical

variables data from 484 participants would be available.  Focusing only on genotype and

clinical data yields 640 analyzable subjects. 

Table 2: Content of modality subtables.

Modality Subjects Features

Clinical 1702 40

Proteomics 680 1016

MRI 453 136

Gene expression 709 56701

Genotype 644 789470

Figure 2: Participant overlap across modalities. The numbers illustrate the amount of participants with available

information.

All  in  all,  data  on  more  than  800,000  variables  are  reported  in  ANMerge.  40  of  them
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correspond to the clinical modality, 56701 originate from gene expression analysis, 136 are

MRI variables, and 1016 were assessed in blood proteomics (Table 2 ‘Features’). 

As  most  clinical  studies,  AddNeuroMed exhibits  a  declining  number  of  participants  over

study runtime (Figure 3). For most patients (n = 1136) at least one additional visit 12 months

after baseline is available in the data. The drop of AD patients at month 3 to 9 is explained

by the fact  that  only  AD cases  recruited  in  the  original  AddNeuroMed study  had  three

monthly visits during the first year, while ART and DCR assessed all patients annually. The

longest follow-up exhibited in the data spanned 12 years.

Figure  3: Longitudinal  follow-up  and  patient  drop-out  throughout  study  runtime  per  diagnosis  group.  CTL:

Healthy controls. MCI: Mild cognitive impaired participants.  AD: Alzheimer’s disease patients.

3.2 Data After Preprocessing

During  the  preprocessing  and  curation  of  AddNeuroMed  we  addressed  multiple  issues

detected in the previous version. The previous version of AddNeuroMed was indexed using

distinct patient identifier across its modalities, thereby impeding multimodal analysis due to

missing internal interoperability. Standard data integration techniques like table joins were

impossible. By mapping all present identifiers to a unique one, we enabled inter-modality
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interoperability  such  that  tables  can  now  easily  be  analyzed  together.  Additionally,  we

provide a new identifier mapping file which helps to map the unified identifiers to the raw

data for backwards compatibility. The exact visit dates and time scale (months in study) we

added  to  patient  entries  make  longitudinal  follow-up  easier  to  understand  and  time

differences less misleading than relying on previously reported visit enumeration. Information

that will stay permanent (e.g. APOE e4 status) throughout study runtime is now reported at

every visit for that respective patient, not only at baseline. Multiple issues found in the data

(e.g. typos and erroneous entries) have been corrected.

Although for example proteomic and transcriptomic data were presented for some DCR and

ART participants in the previous AddNeuroMed version, no corresponding clinical data was

available, including important information like participant diagnosis.  ANMerge now has all

available clinical data for the two associated cohorts, which critically increases the amount of

actionable information in the dataset.

3.3 Accessing ANMerge

ANMerge  and  the  underlying  data  are  available  under  https://www.synapse.org/#!

Synapse:syn4907804. To ensure data privacy a straight-forward data access application has

to  be  completed.  Access  approval  takes  roughly  seven  days.  These  data  also  provide

subscores and individual answers for each clinical assessment / questionnaire.

4. Discussion 

In this work, we presented ANMerge, a longitudinal multimodal AD cohort dataset that we

made accessible to the research community. Since the most time consuming part about data

analysis  is  often  the  preprocessing  of  data,  we  believe  that  the  cumulative  time  save,

achieved  by  sharing  readily  preprocessed  datasets,  can  lead  to  faster  global  scientific

advancement. Additionally, by describing the characteristics of the available our dataset in

detail, we aim to enable researchers to evaluate on first sight if ANMerge is suited for their
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analysis. 

Establishing reliable results through external validation on independent cohorts is of utmost

importance, especially when dealing with high complex diseases like AD. Up to date, and to

the best of our knowledge, the vast majority of data-driven approaches in AD rely solely on

ADNI  data.  To validate  discoveries  made in  ADNI  on other  datasets,  a high overlap in

measured variables is a prerequisite. Previously, we could demonstrate that despite evident

differences to ADNI, ANMerge is a viable validation dataset (Birkenbihl et al., 2020).

Recently, more studies such as PREVENT-AD (Tremblay-Mercier  et al., 2014) and EPAD

(Solomon et al., 2018) joined the ranks of ADNI, DIAN (Morris  et al., 2012) and others by

making their data accessible to third party researchers. The currently running Deep Frequent

Phenotype  Study  (Lawson  et  al.,  2017)  already  emphasized  that  collected  data  will  be

published. This shift in the AD data landscape towards increasingly accessible datasets is an

important development for the goal of finding reliable biomarkers.

5. Limitations

While  AddNeuroMed  is  undoubtedly  a  valuable  dataset,  it  still  has  some  noteworthy

limitations.  The main  limitation  of  the  data  is  that  the  amyloid  statues of  participants  is

unknown.  No  positron  emission  tomography  (PET)  imaging  was  performed  and

cerebrospinal fluid markers were not assessed.

As in many clinical cohort datasets, missing data is a considerable issue in AddNeuroMed.

Not  every  patient  was  involved  in  the  assessment  of  every  data  modality  and  within  a

modality not necessarily all variables were measured for each patient. 

Compared  to  ADNI,  AddNeuroMed  lacks  comprehensive  documentation.  Retrospectively

searching for study procedures and protocols of an already concluded, older cohort study

proved  to  be  very  difficult.  The  original  study  website  is  not  available  anymore  and

exhaustive study protocols were not findable. However, we tried to address this limitation by
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collecting and assembling all  available information and links in this publication. While the

original  AddNeuroMed  dataset  provided  descriptive  data  dictionaries  for  most  clinical

variables,  we extent the documentation by meaningful  connections of other modalities to

public databases (e.g. UniProt or dbSNP) by mapping their variable names to appropriate

identifiers wherever possible.

The genotype and transcriptomic data presented in ANMerge was acquired in two separate

batches of participants. This implies that the data can be subject to systematic batch effects

and appropriate adjustments should be made (Benito et al., 2004). 

6. Conclusion

By publishing ANMerge, we want to follow the open science paradigm and contribute to a

culture of data sharing in AD research. Participation in observational clinical cohort studies is

a huge investment by volunteering patients and healthy individuals. They undergo extensive

and  sometimes  intrusive  repeated  measurements,  most  of  the  times  without  any  direct

benefit  for  the  individuals  themselves,  with  the  ultimate  aim  to  contribute  to  disease

research. We believe that it is an ethical imperative to honor their investment by enabling

that their data is used to generate the most societal benefit possible. 
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